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Abstract

We propose in this paper a new 3D fully parallel
thinning algorithm that we believe to be the most con-
cise due to its simple characterization. The algorithm
is indeed completely defined by a set of five patterns,
three removing conditions and two non-removing con-
ditions. These patterns are designed from the two fun-
damental and compatible constraints usually expected
in skeleta: (1) Topology preservation and (2) Medial
surface. From these two constraints, the removing pat-
terns (a1, as and asz) detect the non-local mazima,
whereas the non-removing patterns (B1 and [B2) pre-
vent any topology change that the removing conditions
could imply. We show that the three mentioned con-
straints are respected. The logical conciseness of our
procedure, called MB-3D, makes it to our knowledge
the easiest 3D thinning algorithm to implement. Some
results are displayed, that illustrate the relevance of
our approach.

Keywords

3D fully parallel thinning algorithm - Discrete topo-
logy - Concise Boolean expression.

1 Introduction

Skeletonization is a very common way to represent
binary shapes with a limited amount of information.
A skeleton that faithfully represents a shape is ex-
pected to (1) be topologically equivalent to that shape
and (2) render its geometry and location. Skeleta are
usually obtained through an iterative reduction ope-
rator called thinning: certain types of border points
are iteratively removed until no more points can be
deleted: the remaining image is called the skeleton.
Thinning algorithms have been an important subject
of research for years in 2D, and more recently in 3D.
Lots of efforts have been done to provide the simplest
characterization of the non-skeletal points removed by
an elementary thinning iteration. In 3D, the charac-
terizations remain complicated, with great number of
deleting conditions and exceptions [10], [2], [6], [7], or
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with special rules to avoid disconnection due to paral-
lel removal [5].

We present in this paper what we believe to be the
most computationally efficient to date Boolean expres-
sion of a fully parallel 3D thinning process: the non-
skeletal points are entirely characterized through a set
of three Boolean removing conditions and two Boolean
remaining conditions, every condition being defined by
a simple pattern, which makes our algorithm straight-
forward to implement. Our algorithm meets two fun-
damental (yet compatible) constraints: (1) Topology
preservation (2) presence of the local maxima. Con-
straint (2) ensures that the skeleton is located right
at the “middle” of shapes, and renders their most sig-
nificant geometrical features. The algorithm, called
MB-3D, is completely defined by two small families of
patterns:

e Patterns oy, a; and ag are designed to remove
non local maxima points for the distance induced
by the 6-topology, within the 26-neighborhood.

e Patterns 51 and [, are designed to avoid discon-
nection of 18- and 26-connected points respective-

ly.

For self-containedness purposes, the following section
recalls some preliminaries. In Section 3, we present
our algorithm, giving the Boolean expression and the
visual representation of the patterns. Then we show
that with the two simple pattern families that define
it, the MB-3D algorithm respects the two constraints
stated above. At the same time, we illustrate the pa-
per with some results and discuss the behavior of the
algorithm.

2 Theoretical background

In this section we set out the mathematical tools
necessary to handle the notions we are dealing with. In
the first subsection, we present the discrete geometry
framework, the cubic grid. Next, we discuss the issue



Figure 1: Unity sized balls for the three different
topologies in the cubic grid.

of topology preservation, and present the way it has
been addressed for the cubic grid in the litterature.
Finally, we introduce the morphological operators to
be used for the definition of our thinning procedure.
2.1 Discrete topologies in the cubic grid

Let Z3 be the discrete space. Let X C Z? a (binary)
(three-dimensional) image. Let X¢ = Z3\ X denote
the background of X. We are working in the cubic
grid, this means that the real space R? is discretized
into Z> by means of the cubic quantization: A point
z € 7% represents an elementary volume which is the
unit cube centered around z. In this mesh, three dif-
ferent connectivity relations can be defined. Figure 1
shows the different topologies in the cubic grid, as de-
fined by the unity sized balls. The topology (and the
induced distance) is usually denoted using the number
of neighbors in the corresponding type of connectivity.
Namely, a point, i.e. a cube in our representation, has
6 (respectively 18, 26) neighbors in the connectivity
defined by Bg (respectively Big, Bsg) which are the
points it shares a face (respectively an edge, a vertex)
with. Let 2,y be two points of Z3. We say that z is
N-adjacent toy (N = 6, 18 or 26) if x is a N-neighbor
of y. Let A, B be two subsets of Z>. We say that A
is N-adjacent to B if there exists a € A and b € B
such that a is N-adjacent to b. Let X C Z3. X is an
N-connected component (N-cc) of Z? if there does not
exist any partition of X into two subsets that are not
N-adjacent. Let X C Z3 be an image. = € X is said
to be N-interior to X if all its N-neighbors belong to
X.

Definition 1 Let dy be the distance induced by the
N-topology. Let X C 7Z3. A ball B is maximal in
X if B € X and there does not exist a ball B' such
that B C B' C X. Let Sny(X) be the collection of the
centres of maximum balls associated with dp .

Definition 2 Let X C Z3. The distance function
associated with dy on X is ®n(z) = dy(z, X°).

Property 1 Sy(X) = {z € X;Vy N-adjacent to
z,Pn(z) > ®n(y)}. In other words, the collection of
the centres of maximal balls corresponds to the set of
local mazima of the distance map.

This formalism aims at giving a sound basis to the
notion of medial surface. Indeed, we ensure that the
skeleton lies “at the middle” of the shape if we know
that it contains the local maxima of the corresponding
distance function.
2.2 Topology preservation

The topological equivalence is a well known prop-
erty. A doughnut is equivalent to a coffee cup be-
cause they have both exactly one “hole of the same
type” (the handle). In 2D and 3D, the topology can
be characterized by the so-called fundamental group,
i.e a partition of the curves by the homotopic relation
(two curves are homotopic if there exists a continuous
morphing from one to the other).
To get a sound definition of such topological proper-
ty in our cubic grid, special care must be taken in
the choice of the connectivity. In particular, an ob-
ject may be crossed by a connected component of the
background only if there is a hole through it ! In this
respect, it is usually chosen the strongest connectivity
for the background (i.e. face sharing), and a weaker
one for the object itself (i.e. edge or vertex sharing).
The connectivity model that is used in this paper is
(26,6)-connectivity, which means 26-connectivity for
the image and 6-connectivity for the background.
Our thinning process works by iterative deletion of
sets of points. The central notion around the charac-
terization of the deleted points is simplicity. A point
is simple if its deletion does not change the topology.
As in 2D, the computation of simplicity can be done
within a finite neighborhood of the point. The most
concise characterization is provided by Bertrand and
Malandain in [1]:

Theorem 1 (Bertrand and Malandain 94)

Let X C Z? be a binary image. Let v € X. Let X5,
denote the set of all the 26-neighbors of x, except x
itself, that belong to X, and X7 the set of all the 18-
neighbors of x that do not belong to X. x is simple in
X for the (26,6)-connectivity model if and only if the
two following conditions hold:

o 1 is 26-adjacent to only one 26-cc of X35.
e z is 6-adjacent to only one 6-cc of X{.

This characterization uses connected components
counting only, as in the 2D case. It is important to
notice, however, that simplicity is a property which is
strictly individual with respect to a point of the cu-
bic grid. In general, simultaneously removing simple
points from a shape leads to topology changes. From
this problem arose the notion of simple sets, which are
sets of points that can be removed from a shape while



preserving the topology. Ronse first introduced the
concept in [8] for 2D images, concept that was then
generalised by Kong in [3] for higher-dimensional im-
ages. In these papers, it is shown that a set is simple
for the image X if and only if it can be ordered in a
sequence of points {z1,...,x,} such that for every i
in {1,...,n}, x; is individually simple (in the former
sense) with respect to X \ {z1,...,2;—1}. From this
property, Ronse proposed in [9] sufficient conditions
that were very efficient to prove the soundness of par-
allel thinning algorithm in 2D. This result has been
extended to the 3D case by Ma in [4]. We now give
Ma’s result for the (26,6)-connectivity. Let a unit lat-
tice square be the set of four corners of a unit square
of the cubic grid, and a unit lattice cube be the set of
eight corners of a unit cube of the cubic grid.

Theorem 2 (Ma 94)

Let X C Z? be a binary image. An algorithm that
removes points in parallel from a binary 3D shape X
preserves (26,6)-connectivity if the two following con-
ditions are satisfied:

o Every subset of X that is contained in a unit lat-
tice square and that is removed by the algorithm
is simple.

e No connected component of X contained in a unit
lattice cube is completely removed.

This theorem allows to prove the soundness of a par-
allel thinning algorithm by checking a limited number
of configurations.

2.3 Morphological operators

We define hereunder the morphological operators
needed to provide the Boolean expression of our thin-
ning procedure.

The morphological erosion of an image X by a set

B C 73, denoted X © B is the set of all points x of

73 such that the translated set of B by vector z is

completely included in X.

The morphological dilation of an image X by a set

B C 73, denoted X @ B is the set of all points z of

73 such that the intersection of the translated set of

B by vector x with X is non-empty.

A pattern of Z3 is a tuple (H, M) of finite subsets of

7.% such that H N M = ().

The Hit-Or-Miss Transform (HMT) of an image X by

a pattern v = (H, M) is the image:
X®y=(XeH)n(X°eM).

We will say that = matches v every time that = €

X ®7.

If we denote By the set of all the N-neighbors of the

origin (N = 6, 18 or 26, cf. Figure 1), we may also de-
fine another transformation that we call Hit-Or-Miss
Neighborhood Transform (HMNT) relative to the N-
neighborhood, that we denote X ®x v, and define by:
Xony=(X®9)® (By O (HUM))

Note that X @y 7y is a superset of X ® ~.

These notions are going to be used in the definition of
MB-3D. HMT corresponds to a configuration that the
neighborhood of a point must exzactly match, whereas
HMNT corresponds to a configuration that must be
contained in the mentioned neighborhood.

3 The thinning procedure

MB-3D is an iterative parallel thinning algorithm,
where each iteration deletes from an image X a set
of points denoted mb(X), corresponding to certain
neighborhood conditions. These conditions are based
on patterns that are shown in Table 1. Every pattern
actually comes with all its 7/2 rotated versions around
the three axes Ox, Oy, and Oz.

z € mb(X) if and only if:
(1) 3 e{1,2,3},ze X ®a; (2) 2¢ X @15 1
and (3) z g X ©926 62
Let X0 = X, X" = X"\ mb(X™).
The MB-3D skeleton of X is X,

o % o B, B,
Table 1: Definition of the MB-3D algorithm, based
on 5 classes of patterns.

The first collection (the a; family) is used in HMTs.
Every pattern represents two subsets of Z?3, The Hit-
set corresponds to the grey cubes, which are the points
whose value is 1. The Miss-set corresponds to the
transparent cubes, which are the points whose value
is 0. The dark cube corresponds to the origin. No ori-
entation is given, as every pattern must be considered
in all its possible orientations, indeed, the procedure
is completely isotropic. Note right away that ai, as
and a3 are based on the unity sized ball Bg of Fi-
gure 1. Thus these patterns naturally lend themselves
to computationally efficient description and manipu-
lation. The second collection (the f; family) is used in
HMNTs, 31 is to be detected in the 18-neighborhood,
B2 in the 26-neighborhood. Note that no origin is
necessary here, since both patterns are symmetrical.
To simplify in the following sections we shall say “z
matches $1” (resp. f2) every time that z € X ®15 51
(resp. © € X @a6 32).
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Figure 2: Two examples to illustrate the necessity of
patterns ;.

The thinning action clearly results from the shape of
the «; patterns. We actually believe that the defini-
tion of these patterns is a very pure characterization
of a peeling process: any point that matches an «; is
adjacent to a 6-interior point, such that all the faces
opposite to this interior point are on the frontier of
the image. Still the a; are a bit greedy: some topolo-
gy changes would occur without the safety provided
by the 3; patterns. Figure 2 shows why the 3; are ne-
cessary through two examples. The black points be-
long to the image, the white ones to the background.
(1) The square point match pattern «a;, but its re-
moval would lead to 26-disconnection: MB-3D will not
remove it since (; is contained in its 18-neighborhood.
(2) The two square points match pattern «q, but their
simultaneous removal would 6-connect the two white
points, which is forbidden: MB-3D will not remove
them since f35 is contained in the 26-neighborhood of
the black square points.

4 Results and behavior

Some results of our thinning algorithm can be seen
on Figure 3. The results of MB-3D are displayed on
the left column (Images (1.a) to (4.a)). As expected,
there are two pixel-thick surfaces. This is a natural
outcome of the isotropy constraint.
In this section, we establish the soundness of the pro-
cedure, firstly, by proving that the algorithm preserves
the (26,6)-topology, and secondly by showing that, un-
der a certain condition which is explicited, the skele-
ton contains the maxima of the dg distances within the
26-neighborhood. We next discuss the behavior of the
algorithm as it is applied to some significant shapes.

4.1 Topological properties

We prove in this section that the MB-3D algorithm
preserves the (26-6)-topology of the binary shapes. If
x € X, we use the two sets XJ; and X{; defined in
Theorem 1. The proof is based on five lemmae. Lem-
mae 1 to 3 deal with the 26-topology preservation of
objects, whereas Lemmae 4 and 5 deal with the 6-
topology preservation of the background. Lemma 1
and 4 prove that one iteration of the MB-3D algorith-
m removes only simple points. Lemma 1 and Lemma 2

%) (4.a)

Figure 3: Some results of the thinning algorithm. The
left column contains the original images. The right
column displays the results of MB-3D.

are used to prove Lemma 3. Lemma 4 is used to prove
Lemma 5. Lemmae 3 and 5 prove that any pair of
6-adjacent points removed by MB-3D is a simple set.
Finally, the proof is completed in Proposition 1.

Lemma 1 Let x € X, between two 6-neighbors a and
b, with a ¢ X and b € X (cf Figure 6). If x is 26-
adjacent to more than one 26-cc of X3, then either
T is contained in pattern By, or x is contained in the
pattern X represented on Figure 5.

PROOF
If z is 26-adjacent to more than one 26-

cc of X3, then there must exist a point

y in XJ; which is not 26-adjacent to b. y

cannot be a 6-neighbor of z, but it may Figure 5:

be an 18-neighbor, as illustrated by ¢ on Pattern A.

Figure 6(1). In that case, since ¢ and b are not in the
same 26-cc, x matches f;. If there is no such ¢, then
y is only a 26-neighbor of z, as illustrated by d on
Figure 6(2). In that case,  matches A O
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Figure 4: Result of MB-3D on a segmented image of
lung.
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Figure 6: Proving Lemma 1.

Corollary 1 Any point removed by one iteration of
the algorithm fulfils condition 1 of Theorem 1.

Indeed, any point that matches pattern oy or as is
necessarily between two 6-neighbors, one in X, the
other in the background. The same holds for a point
that matches a3, and not 3;. Then Lemma 1 applies
and, since pattern X is a particular case of pattern s,
the point is 26-adjacent to only one 26-cc of Xg;.

Lemma 2 Let x € X. Let Y be a subset of X such
that Y C mb(X) and Y U {x} is contained in a unit

lattice square. Then x© € (X \'Y) © A implies z €
X @26 (-

PROOF

Let us consider z € (X \Y) @ A. If z € X @96 A,
then z € X ©34 2. If not, the situation is that of
Figure 7(1), where Y C {y1,y2,y3}. Note that the
three points represented by squares belong either to
Y or to X¢ If y; € X° or y3 € X°¢, then obviously
x € X @9 B2 If not, {y1,ys,2} C X. It follows
that y» may match an a; only with an interior point
within the cube drawn on Figure 7(1). But for
each of the seven possibilities, one can easily check
that this is not possible. Then y5 € Y, so y» € X€,
and the four points {z, t,y», 2} make up a (2 pattern O

Lemma 3 Let x and y be two 6-neighbors such that
{z,y} C mb(X). Then x is 26-adjacent to only one
26-cc of (X \ {y})3s-

q
) z -
Y . E}*t
y |
X t b

Figure 7: Proving Lemmae 2 and 3.

PROOF

Under the premises of Lemma 3, it can easily be
checked that whatever the «a; it matches, z is al-
ways between two 6-neighbors such that one belongs
to X \ {y} and the other to X°. Now suppose that z
is 26-adjacent to more than one 26-cc of (X \ {y})3%-
From Lemma 1, £ must match one of the two pattern-
s 81 or A within (X \ {y}). But Lemma 2 shows it
cannot be A since  would have matched 3> before the
removal of y, in contradiction with x being removed by
MB-3D. So & matches 81 within (X \ {y}); more pre-
cisely, the situation of z is that of Figure 6(1), with
¢ and b in distinct 26-ccs. Since x does not match
B1 within X, y as a removed point, is part of 3;, as
shown on Figure 7(2). Besides, e and f must both
belong to X°¢. But then, y could not have matched an

«; pattern, which is in contradiction with its removal
by MB-3D O

Lemma 4 Let x € X, between two 6-neighbors a and
b, with a € X and b € X. If x is 6-adjacent to more
than one 6-cc of X{s, then x is contained in pattern

Br.

PROOF

See Figure 8(1). If there exists ¢ ¢ X such that a and
¢ belong to two distinct 6-ccs of X{g, then point d such
that d # z, d 6-adjacent to both a and ¢ must belong
to X. So x matches pattern 5; O

Corollary 2 Any point removed by one iteration of
the algorithm fulfils condition 2 of Theorem 1.

Lemma 5 Let x and y be two 6-neighbors such that
{z,y} C mb(X). Then x is 6-adjacent to only one
6-cc of (X \ {y})is-

PROOF
The premises of Lemma 5 (identical to those of Lem-
ma 3), implies that z is between two 6-neighbors such

that one belongs to X \ {y} and the other to X¢. Now
suppose that x is 6-adjacent to more than one 6-cc of

(X \ {y})%s- From Lemma 4,  must match 4, within
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Figure 8: Proving Lemmae 4 and 5.

(X \ {y})- See Figure 8(2), where a and y belong to
distinct 6-ccs of (X \ {y})7s- If b and ¢ both belong to
X, then y could not have matched an «; pattern, so b
or ¢ belong to X¢. Let us suppose it is b. Since z is
removed, it does not match pattern 2, and so d € X°.
Since = does not match pattern 31, e € X° also, and
finally a and y belong to the same 6-cc. That leads to
a contradiction O

We may now give the main proposition.

Proposition 1 The MB-3D algorithm preserves the
(26,6) topology.

PROOF

As mentioned earlier, Lemma 1 and Lemma 4 prove
that one iteration of the MB-3D algorithm removes
only simple points. Now let {x;,z2} be a pair of 6-
adjacent points, simultaneously removed by MB-3D.
Lemma 3 and Lemma 5 prove that {z;,z,} is a sim-
ple set. More generally, let Y be a set of points such
that ¥ C mb(X) and Y is contained in a unit lat-
tice square. Let z € Y such that = is not simple in
(X \ (Y \ {z})). Then Lemmae 1 and 4, show that =
matches pattern 51 or A, but the latter is forbiden by
Lemma 2. Then z matches §; within (X \ (Y'\ {z})).
Now let us consider {z1,22} C mb(X) a pair of 18-
adjacent, not 6-adjacent points. It is easy to see that
if z1 ¢ X ©138 B1, then x € (X \ {:EQ}) ©®18 B1. So
x1 is simple in (X \ {z2}), and then {z;,z5} is a
simple set. Let {z1,z2,23} C mb(X) be a triplet
of points contained in a unit lattice square such that
xz1 and zy are 6-adjacent. Then {z1,z2} is simple,
and it is easy to see that if 23 € X ®3 1, then
3 & (X \ {:El,iL”Q}) ©®18 31, SO {331,:172,:173} is a simple
set. Let {x1,22,23,24} C mb(X) be the four corners
of a unit lattice square. {x1,z2,z3} is a simple set, and
ifl‘4 g X@lgﬂl, then Ty g (X\{$1,$2,1'3})@18ﬂ1, SO
{x1,22,%3,24} is a simple set. Thus we have proved
that any set contained within a unit lattice square is a
simple set. At last, it is obvious that an iteration of the
MB-3D algorithm cannot entirely remove a connected
component contained in a unit lattice cube, since no
«; fits into this elementary cube. So we have proved
that MB-3D is a parallel reduction operator that ful-

fils conditions (1) and (2) of Theorem 2. Then MB-3D
preserves (26,6)-topology O

4.2 Non-topological properties

As we have seen in Section 2.1, geometry preser-
vation is related to the notion of medial surface. In
the cubic grid, there exist three canonical distances,
namely dg, dig and dsg, leading to three different local
maxima sets. A fully parallel thinning algorithm has
to favor the 6-distance, since a removed point must
be a 6-contour point (i.e. have a 6-neighbor in the
background). Let k& = 6, 18 or 26. We define the
(6, k)—medial surface as the following set:

Sk(X) = {r € X;Vy k-adjacent to z, ®g(z) > Ps(y)}
Note that the case k& = 6 corresponds to the set
Se(X) defined in Section 2.1. In order to get a faithful
shape representation featuring some noise immunity,
the MB-3D algorithm is based on the (6,26)—medial
surface, i.e. S2%(X).

We illustrate the selective action of the «; by apply-
ing the MB-3D to a parallelepiped, firstly restricted to
pattern «ay, secondly to the two patterns a; and as,
and finally the complete algorithm. Results can be
seen on Figure 9. We see that different skeleta are ob-
tained according to the medial surface they are built
on. The skeleton (b) (resp. (c), (d)) is based on the
medial surface Sg(X) (resp. Sg¥(X), S25(X)). Thus
the MB algorithm can lead to different skeleta by the
restriction to certain a; patterns. This can be very
useful for the versatile representation of complex 3D
objects.

As every removed point is adjacen-
t to a 6-interior point, it can be for-
mally shown that the skeleton contains
the set S2°(X) defined above, as long
as the points are examined in the order
induced by the distance function. This Figure 10:
is what appends with usual images. [l-constructed
Nevertheless, there are exceptions, cor- 20 mage-
responding to ill-constructed images. These images
are the 3D equivalent of the better known patholog-

() (b) (© (d)

Figure 9: Different choices of the medial surface lead-
ing to different skeleta.
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Figure 11: Ill-constructed patterns.

ical images in 2D, of which we give an example on
Figure 10. These images correspond to a configura-
tion that would “protect” a piece of surface, prevent-
ing a thick volume from being thinned. In 3D, an
image is ill-constructed if it contains one of the two
patterns shown on Figure 11 (at least one of the two
square points does not belong to X). Note that it
corresponds to one-pixel holes matching 3; or (3s.

The last, but not least, property of MB-3D to be
emphasized on is its computational efficiency. Firstly,
the conciseness of the Boolean definitions of the pro-
cedure leads to a compact computational description,
which means efficiency in the computation of one itera-
tion. Secondly, the full parallelism of the algorithm
implies that the overall number of iterations needed
to achieve the computation of the skeleton equals the
radius of the largest 6-ball contained as many itera-
tions.

5 Conclusion

A new thinning algorithm for 3D digital pictures
has been proposed. We have given in Table 1 its com-
plete expression. Compared to the other algorithms
we know of, MB-3D seems to be the most concise and
then the simplest to implement. Indeed, the points re-
moved by the a; patterns are those that are adjacent
to a 6-interior point, and for which every face oppo-
site to this interior point is a frontier face. With this
very short characterization, the a; patterns allow to
obtain the medial surface through a fully parallel and
isotropic procedure while preserving connectivity, ex-
cept in a few cases, taken care of by the even simpler
Bi patterns. Although the definition of the thinning
algorithm is much shorter than all other algorithms
we are aware of, the results prove to be satisfying.
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