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Abstra
t

We propose in this paper a new 3D fully parallel

thinning algorithm that we believe to be the most 
on-


ise due to its simple 
hara
terization. The algorithm

is indeed 
ompletely de�ned by a set of �ve patterns,

three removing 
onditions and two non-removing 
on-

ditions. These patterns are designed from the two fun-

damental and 
ompatible 
onstraints usually expe
ted

in skeleta: (1) Topology preservation and (2) Medial

surfa
e. From these two 
onstraints, the removing pat-

terns (�

1

, �

2

and �

3

) dete
t the non-lo
al maxima,

whereas the non-removing patterns (�

1

and �

2

) pre-

vent any topology 
hange that the removing 
onditions


ould imply. We show that the three mentioned 
on-

straints are respe
ted. The logi
al 
on
iseness of our

pro
edure, 
alled MB-3D, makes it to our knowledge

the easiest 3D thinning algorithm to implement. Some

results are displayed, that illustrate the relevan
e of

our approa
h.

Keywords

3D fully parallel thinning algorithm - Dis
rete topo-

logy - Con
ise Boolean expression.

1 Introdu
tion

Skeletonization is a very 
ommon way to represent

binary shapes with a limited amount of information.

A skeleton that faithfully represents a shape is ex-

pe
ted to (1) be topologi
ally equivalent to that shape

and (2) render its geometry and lo
ation. Skeleta are

usually obtained through an iterative redu
tion ope-

rator 
alled thinning : 
ertain types of border points

are iteratively removed until no more points 
an be

deleted: the remaining image is 
alled the skeleton.

Thinning algorithms have been an important subje
t

of resear
h for years in 2D, and more re
ently in 3D.

Lots of e�orts have been done to provide the simplest


hara
terization of the non-skeletal points removed by

an elementary thinning iteration. In 3D, the 
hara
-

terizations remain 
ompli
ated, with great number of

deleting 
onditions and ex
eptions [10℄, [2℄, [6℄, [7℄, or

with spe
ial rules to avoid dis
onne
tion due to paral-

lel removal [5℄.

We present in this paper what we believe to be the

most 
omputationally eÆ
ient to date Boolean expres-

sion of a fully parallel 3D thinning pro
ess: the non-

skeletal points are entirely 
hara
terized through a set

of three Boolean removing 
onditions and two Boolean

remaining 
onditions, every 
ondition being de�ned by

a simple pattern, whi
h makes our algorithm straight-

forward to implement. Our algorithm meets two fun-

damental (yet 
ompatible) 
onstraints: (1) Topology

preservation (2) presen
e of the lo
al maxima. Con-

straint (2) ensures that the skeleton is lo
ated right

at the \middle" of shapes, and renders their most sig-

ni�
ant geometri
al features. The algorithm, 
alled

MB-3D, is 
ompletely de�ned by two small families of

patterns:

� Patterns �

1

, �

2

and �

3

are designed to remove

non lo
al maxima points for the distan
e indu
ed

by the 6-topology, within the 26-neighborhood.

� Patterns �

1

and �

2

are designed to avoid dis
on-

ne
tion of 18- and 26-
onne
ted points respe
tive-

ly.

For self-
ontainedness purposes, the following se
tion

re
alls some preliminaries. In Se
tion 3, we present

our algorithm, giving the Boolean expression and the

visual representation of the patterns. Then we show

that with the two simple pattern families that de�ne

it, the MB-3D algorithm respe
ts the two 
onstraints

stated above. At the same time, we illustrate the pa-

per with some results and dis
uss the behavior of the

algorithm.

2 Theoreti
al ba
kground

In this se
tion we set out the mathemati
al tools

ne
essary to handle the notions we are dealing with. In

the �rst subse
tion, we present the dis
rete geometry

framework, the 
ubi
 grid. Next, we dis
uss the issue
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Figure 1: Unity sized balls for the three di�erent

topologies in the 
ubi
 grid.

of topology preservation, and present the way it has

been addressed for the 
ubi
 grid in the litterature.

Finally, we introdu
e the morphologi
al operators to

be used for the de�nition of our thinning pro
edure.

2.1 Dis
rete topologies in the 
ubi
 grid

Let Z

3

be the dis
rete spa
e. Let X � Z

3

a (binary)

(three-dimensional) image. Let X




= Z

3

n X denote

the ba
kground of X . We are working in the 
ubi


grid, this means that the real spa
e R

3

is dis
retized

into Z

3

by means of the 
ubi
 quantization: A point

z 2 Z

3

represents an elementary volume whi
h is the

unit 
ube 
entered around z. In this mesh, three dif-

ferent 
onne
tivity relations 
an be de�ned. Figure 1

shows the di�erent topologies in the 
ubi
 grid, as de-

�ned by the unity sized balls. The topology (and the

indu
ed distan
e) is usually denoted using the number

of neighbors in the 
orresponding type of 
onne
tivity.

Namely, a point, i.e. a 
ube in our representation, has

6 (respe
tively 18, 26) neighbors in the 
onne
tivity

de�ned by B

6

(respe
tively B

18

, B

26

) whi
h are the

points it shares a fa
e (respe
tively an edge, a vertex)

with. Let x; y be two points of Z

3

. We say that x is

N-adja
ent to y (N = 6, 18 or 26) if x is a N -neighbor

of y. Let A;B be two subsets of Z

3

. We say that A

is N-adja
ent to B if there exists a 2 A and b 2 B

su
h that a is N -adja
ent to b. Let X � Z

3

. X is an

N-
onne
ted 
omponent (N-

) of Z

3

if there does not

exist any partition of X into two subsets that are not

N -adja
ent. Let X � Z

3

be an image. x 2 X is said

to be N-interior to X if all its N -neighbors belong to

X .

De�nition 1 Let d

N

be the distan
e indu
ed by the

N-topology. Let X � Z

3

. A ball B is maximal in

X if B � X and there does not exist a ball B

0

su
h

that B � B

0

� X. Let S

N

(X) be the 
olle
tion of the


entres of maximum balls asso
iated with d

N

.

De�nition 2 Let X � Z

3

. The distan
e fun
tion

asso
iated with d

N

on X is �

N

(x) = d

N

(x;X




).

Property 1 S

N

(X) = fx 2 X ;8y N-adja
ent to

x;�

N

(x) � �

N

(y)g: In other words, the 
olle
tion of

the 
entres of maximal balls 
orresponds to the set of

lo
al maxima of the distan
e map.

This formalism aims at giving a sound basis to the

notion of medial surfa
e. Indeed, we ensure that the

skeleton lies \at the middle" of the shape if we know

that it 
ontains the lo
al maxima of the 
orresponding

distan
e fun
tion.

2.2 Topology preservation

The topologi
al equivalen
e is a well known prop-

erty. A doughnut is equivalent to a 
o�ee 
up be-


ause they have both exa
tly one \hole of the same

type" (the handle). In 2D and 3D, the topology 
an

be 
hara
terized by the so-
alled fundamental group,

i.e a partition of the 
urves by the homotopi
 relation

(two 
urves are homotopi
 if there exists a 
ontinuous

morphing from one to the other).

To get a sound de�nition of su
h topologi
al proper-

ty in our 
ubi
 grid, spe
ial 
are must be taken in

the 
hoi
e of the 
onne
tivity. In parti
ular, an ob-

je
t may be 
rossed by a 
onne
ted 
omponent of the

ba
kground only if there is a hole through it ! In this

respe
t, it is usually 
hosen the strongest 
onne
tivity

for the ba
kground (i.e. fa
e sharing), and a weaker

one for the obje
t itself (i.e. edge or vertex sharing).

The 
onne
tivity model that is used in this paper is

(26,6)-
onne
tivity, whi
h means 26-
onne
tivity for

the image and 6-
onne
tivity for the ba
kground.

Our thinning pro
ess works by iterative deletion of

sets of points. The 
entral notion around the 
hara
-

terization of the deleted points is simpli
ity. A point

is simple if its deletion does not 
hange the topology.

As in 2D, the 
omputation of simpli
ity 
an be done

within a �nite neighborhood of the point. The most


on
ise 
hara
terization is provided by Bertrand and

Malandain in [1℄:

Theorem 1 (Bertrand and Malandain 94)

Let X � Z

3

be a binary image. Let x 2 X. Let X

x

26

denote the set of all the 26-neighbors of x, ex
ept x

itself, that belong to X, and X

x

18

the set of all the 18-

neighbors of x that do not belong to X. x is simple in

X for the (26,6)-
onne
tivity model if and only if the

two following 
onditions hold:

� x is 26-adja
ent to only one 26-

 of X

x

26

.

� x is 6-adja
ent to only one 6-

 of X

x

18

.

This 
hara
terization uses 
onne
ted 
omponents


ounting only, as in the 2D 
ase. It is important to

noti
e, however, that simpli
ity is a property whi
h is

stri
tly individual with respe
t to a point of the 
u-

bi
 grid. In general, simultaneously removing simple

points from a shape leads to topology 
hanges. From

this problem arose the notion of simple sets, whi
h are

sets of points that 
an be removed from a shape while



preserving the topology. Ronse �rst introdu
ed the


on
ept in [8℄ for 2D images, 
on
ept that was then

generalised by Kong in [3℄ for higher-dimensional im-

ages. In these papers, it is shown that a set is simple

for the image X if and only if it 
an be ordered in a

sequen
e of points fx

1

; : : : ; x

n

g su
h that for every i

in f1; : : : ; ng, x

i

is individually simple (in the former

sense) with respe
t to X n fx

1

; : : : ; x

i�1

g. From this

property, Ronse proposed in [9℄ suÆ
ient 
onditions

that were very eÆ
ient to prove the soundness of par-

allel thinning algorithm in 2D. This result has been

extended to the 3D 
ase by Ma in [4℄. We now give

Ma's result for the (26,6)-
onne
tivity. Let a unit lat-

ti
e square be the set of four 
orners of a unit square

of the 
ubi
 grid, and a unit latti
e 
ube be the set of

eight 
orners of a unit 
ube of the 
ubi
 grid.

Theorem 2 (Ma 94)

Let X � Z

3

be a binary image. An algorithm that

removes points in parallel from a binary 3D shape X

preserves (26,6)-
onne
tivity if the two following 
on-

ditions are satis�ed:

� Every subset of X that is 
ontained in a unit lat-

ti
e square and that is removed by the algorithm

is simple.

� No 
onne
ted 
omponent of X 
ontained in a unit

latti
e 
ube is 
ompletely removed.

This theorem allows to prove the soundness of a par-

allel thinning algorithm by 
he
king a limited number

of 
on�gurations.

2.3 Morphologi
al operators

We de�ne hereunder the morphologi
al operators

needed to provide the Boolean expression of our thin-

ning pro
edure.

The morphologi
al erosion of an image X by a set

B � Z

3

, denoted X 	 B is the set of all points x of

Z

3

su
h that the translated set of B by ve
tor x is


ompletely in
luded in X .

The morphologi
al dilation of an image X by a set

B � Z

3

, denoted X � B is the set of all points x of

Z

3

su
h that the interse
tion of the translated set of

B by ve
tor x with X is non-empty.

A pattern of Z

3

is a tuple (H;M) of �nite subsets of

Z

3

su
h that H \M = ;.

The Hit-Or-Miss Transform (HMT) of an image X by

a pattern 
 = (H;M) is the image:

X ~ 
 = (X 	H) \ (X




	M).

We will say that x mat
hes 
 every time that x 2

X ~ 
.

If we denote B

N

the set of all the N -neighbors of the

origin (N = 6, 18 or 26, 
f. Figure 1), we may also de-

�ne another transformation that we 
all Hit-Or-Miss

Neighborhood Transform (HMNT) relative to the N -

neighborhood, that we denote X }

N


, and de�ne by:

X }

N


 = (X ~ 
)� (B

N

	 (H [M))

Note that X }

N


 is a superset of X ~ 
.

These notions are going to be used in the de�nition of

MB-3D. HMT 
orresponds to a 
on�guration that the

neighborhood of a point must exa
tly mat
h, whereas

HMNT 
orresponds to a 
on�guration that must be


ontained in the mentioned neighborhood.

3 The thinning pro
edure

MB-3D is an iterative parallel thinning algorithm,

where ea
h iteration deletes from an image X a set

of points denoted mb(X), 
orresponding to 
ertain

neighborhood 
onditions. These 
onditions are based

on patterns that are shown in Table 1. Every pattern

a
tually 
omes with all its �=2 rotated versions around

the three axes Ox, Oy, and Oz.

z 2 mb(X) if and only if:

(1) 9i 2 f1; 2; 3g; z 2 X ~ �

i

(2) z 62 X }

18

�

1

and (3) z 62 X }

26

�

2

Let X

0

= X , X

n+1

= X

n

nmb(X

n

).

The MB-3D skeleton of X is X

1

.

α
1

α
2

α
3 β

1
β

2

Table 1: De�nition of the MB-3D algorithm, based

on 5 
lasses of patterns.

The �rst 
olle
tion (the �

i

family) is used in HMTs.

Every pattern represents two subsets of Z

3

, The Hit-

set 
orresponds to the grey 
ubes, whi
h are the points

whose value is 1. The Miss-set 
orresponds to the

transparent 
ubes, whi
h are the points whose value

is 0. The dark 
ube 
orresponds to the origin. No ori-

entation is given, as every pattern must be 
onsidered

in all its possible orientations, indeed, the pro
edure

is 
ompletely isotropi
. Note right away that �

1

, �

2

and �

3

are based on the unity sized ball B

6

of Fi-

gure 1. Thus these patterns naturally lend themselves

to 
omputationally eÆ
ient des
ription and manipu-

lation. The se
ond 
olle
tion (the �

i

family) is used in

HMNTs, �

1

is to be dete
ted in the 18-neighborhood,

�

2

in the 26-neighborhood. Note that no origin is

ne
essary here, sin
e both patterns are symmetri
al.

To simplify in the following se
tions we shall say \x

mat
hes �

1

" (resp. �

2

) every time that x 2 X }

18

�

1

(resp. x 2 X }

26

�

2

).



(1) (2)

Figure 2: Two examples to illustrate the ne
essity of

patterns �

i

.

The thinning a
tion 
learly results from the shape of

the �

i

patterns. We a
tually believe that the de�ni-

tion of these patterns is a very pure 
hara
terization

of a peeling pro
ess: any point that mat
hes an �

i

is

adja
ent to a 6-interior point, su
h that all the fa
es

opposite to this interior point are on the frontier of

the image. Still the �

i

are a bit greedy: some topolo-

gy 
hanges would o

ur without the safety provided

by the �

i

patterns. Figure 2 shows why the �

i

are ne-


essary through two examples. The bla
k points be-

long to the image, the white ones to the ba
kground.

(1) The square point mat
h pattern �

1

, but its re-

moval would lead to 26-dis
onne
tion: MB-3D will not

remove it sin
e �

1

is 
ontained in its 18-neighborhood.

(2) The two square points mat
h pattern �

1

, but their

simultaneous removal would 6-
onne
t the two white

points, whi
h is forbidden: MB-3D will not remove

them sin
e �

2

is 
ontained in the 26-neighborhood of

the bla
k square points.

4 Results and behavior

Some results of our thinning algorithm 
an be seen

on Figure 3. The results of MB-3D are displayed on

the left 
olumn (Images (1.a) to (4.a)). As expe
ted,

there are two pixel-thi
k surfa
es. This is a natural

out
ome of the isotropy 
onstraint.

In this se
tion, we establish the soundness of the pro-


edure, �rstly, by proving that the algorithm preserves

the (26,6)-topology, and se
ondly by showing that, un-

der a 
ertain 
ondition whi
h is expli
ited, the skele-

ton 
ontains the maxima of the d

6

distan
es within the

26-neighborhood. We next dis
uss the behavior of the

algorithm as it is applied to some signi�
ant shapes.

4.1 Topologi
al properties

We prove in this se
tion that the MB-3D algorithm

preserves the (26-6)-topology of the binary shapes. If

x 2 X , we use the two sets X

x

26

and X

x

18

de�ned in

Theorem 1. The proof is based on �ve lemmae. Lem-

mae 1 to 3 deal with the 26-topology preservation of

obje
ts, whereas Lemmae 4 and 5 deal with the 6-

topology preservation of the ba
kground. Lemma 1

and 4 prove that one iteration of the MB-3D algorith-

m removes only simple points. Lemma 1 and Lemma 2

(1.a)(1)

(2) (2.a)

(3) (3.a)

(4) (4.a)

Figure 3: Some results of the thinning algorithm. The

left 
olumn 
ontains the original images. The right


olumn displays the results of MB-3D.

are used to prove Lemma 3. Lemma 4 is used to prove

Lemma 5. Lemmae 3 and 5 prove that any pair of

6-adja
ent points removed by MB-3D is a simple set.

Finally, the proof is 
ompleted in Proposition 1.

Lemma 1 Let x 2 X, between two 6-neighbors a and

b, with a 62 X and b 2 X (
f Figure 6). If x is 26-

adja
ent to more than one 26-

 of X

x

26

, then either

x is 
ontained in pattern �

1

, or x is 
ontained in the

pattern � represented on Figure 5.

proof

If x is 26-adja
ent to more than one 26-



 of X

x

26

, then there must exist a point

y in X

x

26

whi
h is not 26-adja
ent to b. y


annot be a 6-neighbor of x, but it may

be an 18-neighbor, as illustrated by 
 on

Figure 5:

Pattern �.

Figure 6(1). In that 
ase, sin
e 
 and b are not in the

same 26-

, x mat
hes �

1

. If there is no su
h 
, then

y is only a 26-neighbor of x, as illustrated by d on

Figure 6(2). In that 
ase, x mat
hes � 2



Figure 4: Result of MB-3D on a segmented image of

lung.

a

x

bb

x

a d

(2)

c

(1)

Figure 6: Proving Lemma 1.

Corollary 1 Any point removed by one iteration of

the algorithm ful�ls 
ondition 1 of Theorem 1.

Indeed, any point that mat
hes pattern �

1

or �

2

is

ne
essarily between two 6-neighbors, one in X , the

other in the ba
kground. The same holds for a point

that mat
hes �

3

, and not �

1

. Then Lemma 1 applies

and, sin
e pattern � is a parti
ular 
ase of pattern �

2

,

the point is 26-adja
ent to only one 26-

 of X

x

26

.

Lemma 2 Let x 2 X. Let Y be a subset of X su
h

that Y � mb(X) and Y [ fxg is 
ontained in a unit

latti
e square. Then x 2 (X n Y ) }

26

� implies x 2

X }

26

�

2

.

proof

Let us 
onsider x 2 (X n Y ) }

26

�. If x 2 X }

26

�,

then x 2 X }

26

�

2

. If not, the situation is that of

Figure 7(1), where Y � fy

1

; y

2

; y

3

g. Note that the

three points represented by squares belong either to

Y or to X




. If y

1

2 X




or y

3

2 X




, then obviously

x 2 X }

26

�

2

. If not, fy

1

; y

3

; zg � X . It follows

that y

2

may mat
h an �

i

only with an interior point

within the 
ube drawn on Figure 7(1). But for

ea
h of the seven possibilities, one 
an easily 
he
k

that this is not possible. Then y

2

62 Y , so y

2

2 X




,

and the four points fx; t; y

2

; zgmake up a �

2

pattern 2

Lemma 3 Let x and y be two 6-neighbors su
h that

fx; yg � mb(X). Then x is 26-adja
ent to only one

26-

 of (X n fyg)

x

26

.

y2

y
1

y3

(1)

z

x t

e

(2)

f

c

a

x

b

y

Figure 7: Proving Lemmae 2 and 3.

proof

Under the premises of Lemma 3, it 
an easily be


he
ked that whatever the �

i

it mat
hes, x is al-

ways between two 6-neighbors su
h that one belongs

to X n fyg and the other to X




. Now suppose that x

is 26-adja
ent to more than one 26-

 of (X n fyg)

x

26

.

From Lemma 1, x must mat
h one of the two pattern-

s �

1

or � within (X n fyg). But Lemma 2 shows it


annot be � sin
e x would have mat
hed �

2

before the

removal of y, in 
ontradi
tion with x being removed by

MB-3D. So x mat
hes �

1

within (X n fyg); more pre-


isely, the situation of x is that of Figure 6(1), with


 and b in distin
t 26-

s. Sin
e x does not mat
h

�

1

within X , y as a removed point, is part of �

1

, as

shown on Figure 7(2). Besides, e and f must both

belong to X




. But then, y 
ould not have mat
hed an

�

i

pattern, whi
h is in 
ontradi
tion with its removal

by MB-3D 2

Lemma 4 Let x 2 X, between two 6-neighbors a and

b, with a 62 X and b 2 X. If x is 6-adja
ent to more

than one 6-

 of X

x

18

, then x is 
ontained in pattern

�

1

.

proof

See Figure 8(1). If there exists 
 62 X su
h that a and


 belong to two distin
t 6-

s of X

x

18

, then point d su
h

that d 6= x, d 6-adja
ent to both a and 
 must belong

to X . So x mat
hes pattern �

1

2

Corollary 2 Any point removed by one iteration of

the algorithm ful�ls 
ondition 2 of Theorem 1.

Lemma 5 Let x and y be two 6-neighbors su
h that

fx; yg � mb(X). Then x is 6-adja
ent to only one

6-

 of (X n fyg)

x

18

.

proof

The premises of Lemma 5 (identi
al to those of Lem-

ma 3), implies that x is between two 6-neighbors su
h

that one belongs to X nfyg and the other to X




. Now

suppose that x is 6-adja
ent to more than one 6-

 of

(X n fyg)

x

18

. From Lemma 4, x must mat
h �

1

within



(1) (2)

d

a

x

c b

e a

d

b

x
c

y

Figure 8: Proving Lemmae 4 and 5.

(X n fyg). See Figure 8(2), where a and y belong to

distin
t 6-

s of (X n fyg)

x

18

. If b and 
 both belong to

X , then y 
ould not have mat
hed an �

i

pattern, so b

or 
 belong to X




. Let us suppose it is b. Sin
e x is

removed, it does not mat
h pattern �

2

, and so d 2 X




.

Sin
e x does not mat
h pattern �

1

, e 2 X




also, and

�nally a and y belong to the same 6-

. That leads to

a 
ontradi
tion 2

We may now give the main proposition.

Proposition 1 The MB-3D algorithm preserves the

(26,6) topology.

proof

As mentioned earlier, Lemma 1 and Lemma 4 prove

that one iteration of the MB-3D algorithm removes

only simple points. Now let fx

1

; x

2

g be a pair of 6-

adja
ent points, simultaneously removed by MB-3D.

Lemma 3 and Lemma 5 prove that fx

1

; x

2

g is a sim-

ple set. More generally, let Y be a set of points su
h

that Y � mb(X) and Y is 
ontained in a unit lat-

ti
e square. Let x 2 Y su
h that x is not simple in

(X n (Y n fxg)). Then Lemmae 1 and 4, show that x

mat
hes pattern �

1

or �, but the latter is forbiden by

Lemma 2. Then x mat
hes �

1

within (X n (Y n fxg)).

Now let us 
onsider fx

1

; x

2

g � mb(X) a pair of 18-

adja
ent, not 6-adja
ent points. It is easy to see that

if x

1

62 X }

18

�

1

, then x

1

62 (X n fx

2

g) }

18

�

1

. So

x

1

is simple in (X n fx

2

g), and then fx

1

; x

2

g is a

simple set. Let fx

1

; x

2

; x

3

g � mb(X) be a triplet

of points 
ontained in a unit latti
e square su
h that

x

1

and x

2

are 6-adja
ent. Then fx

1

; x

2

g is simple,

and it is easy to see that if x

3

62 X }

18

�

1

, then

x

3

62 (X n fx

1

; x

2

g) }

18

�

1

, so fx

1

; x

2

; x

3

g is a simple

set. Let fx

1

; x

2

; x

3

; x

4

g � mb(X) be the four 
orners

of a unit latti
e square. fx

1

; x

2

; x

3

g is a simple set, and

if x

4

62 X}

18

�

1

, then x

4

62 (X nfx

1

; x

2

; x

3

g)}

18

�

1

, so

fx

1

; x

2

; x

3

; x

4

g is a simple set. Thus we have proved

that any set 
ontained within a unit latti
e square is a

simple set. At last, it is obvious that an iteration of the

MB-3D algorithm 
annot entirely remove a 
onne
ted


omponent 
ontained in a unit latti
e 
ube, sin
e no

�

i

�ts into this elementary 
ube. So we have proved

that MB-3D is a parallel redu
tion operator that ful-

�ls 
onditions (1) and (2) of Theorem 2. Then MB-3D

preserves (26,6)-topology 2

4.2 Non-topologi
al properties

As we have seen in Se
tion 2.1, geometry preser-

vation is related to the notion of medial surfa
e. In

the 
ubi
 grid, there exist three 
anoni
al distan
es,

namely d

6

, d

18

and d

26

, leading to three di�erent lo
al

maxima sets. A fully parallel thinning algorithm has

to favor the 6-distan
e, sin
e a removed point must

be a 6-
ontour point (i.e. have a 6-neighbor in the

ba
kground). Let k = 6, 18 or 26. We de�ne the

(6; k)�medial surfa
e as the following set:

S

k

6

(X) = fx 2 X ;8y k-adja
ent to x;�

6

(x) � �

6

(y)g

Note that the 
ase k = 6 
orresponds to the set

S

6

(X) de�ned in Se
tion 2.1. In order to get a faithful

shape representation featuring some noise immunity,

the MB-3D algorithm is based on the (6; 26)�medial

surfa
e, i.e. S

26

6

(X).

We illustrate the sele
tive a
tion of the �

i

by apply-

ing the MB-3D to a parallelepiped, �rstly restri
ted to

pattern �

1

, se
ondly to the two patterns �

1

and �

2

,

and �nally the 
omplete algorithm. Results 
an be

seen on Figure 9. We see that di�erent skeleta are ob-

tained a

ording to the medial surfa
e they are built

on. The skeleton (b) (resp. (
), (d)) is based on the

medial surfa
e S

6

(X) (resp. S

18

6

(X), S

26

6

(X)). Thus

the MB algorithm 
an lead to di�erent skeleta by the

restri
tion to 
ertain �

i

patterns. This 
an be very

useful for the versatile representation of 
omplex 3D

obje
ts.

As every removed point is adja
en-

t to a 6-interior point, it 
an be for-

mally shown that the skeleton 
ontains

the set S

26

6

(X) de�ned above, as long

as the points are examined in the order

indu
ed by the distan
e fun
tion. This

is what appends with usual images.

Nevertheless, there are ex
eptions, 
or-

Figure 10:

Ill-
onstru
ted

2D image.

responding to ill-
onstru
ted images. These images

are the 3D equivalent of the better known patholog-

(a) (b) (c) (d)

Figure 9: Di�erent 
hoi
es of the medial surfa
e lead-

ing to di�erent skeleta.



(1) (2)

Figure 11: Ill-
onstru
ted patterns.

i
al images in 2D, of whi
h we give an example on

Figure 10. These images 
orrespond to a 
on�gura-

tion that would \prote
t" a pie
e of surfa
e, prevent-

ing a thi
k volume from being thinned. In 3D, an

image is ill-
onstru
ted if it 
ontains one of the two

patterns shown on Figure 11 (at least one of the two

square points does not belong to X). Note that it


orresponds to one-pixel holes mat
hing �

1

or �

2

.

The last, but not least, property of MB-3D to be

emphasized on is its 
omputational eÆ
ien
y. Firstly,

the 
on
iseness of the Boolean de�nitions of the pro-


edure leads to a 
ompa
t 
omputational des
ription,

whi
h means eÆ
ien
y in the 
omputation of one itera-

tion. Se
ondly, the full parallelism of the algorithm

implies that the overall number of iterations needed

to a
hieve the 
omputation of the skeleton equals the

radius of the largest 6-ball 
ontained as many itera-

tions.

5 Con
lusion

A new thinning algorithm for 3D digital pi
tures

has been proposed. We have given in Table 1 its 
om-

plete expression. Compared to the other algorithms

we know of, MB-3D seems to be the most 
on
ise and

then the simplest to implement. Indeed, the points re-

moved by the �

i

patterns are those that are adja
ent

to a 6-interior point, and for whi
h every fa
e oppo-

site to this interior point is a frontier fa
e. With this

very short 
hara
terization, the �

i

patterns allow to

obtain the medial surfa
e through a fully parallel and

isotropi
 pro
edure while preserving 
onne
tivity, ex-


ept in a few 
ases, taken 
are of by the even simpler

�

i

patterns. Although the de�nition of the thinning

algorithm is mu
h shorter than all other algorithms

we are aware of, the results prove to be satisfying.
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