Space-time-frequency (STF) MIMO communication systems with blind receiver based on a generalized PARATUCK2 model

Abstract : In this paper, we first propose a generalized fourth-order PARATUCK2 tensor model for multiple-input multiple-output (MIMO) communication systems with space-time-frequency (STF) spreading-multiplexing. The core of the proposed PARATUCK2 model is composed of two third-order interaction tensors that define a joint time and frequency allocation of the data streams to the transmit antennas, thus allowing to adjust the multiplexing degree and spreading redundancy in three domains: space (transmit antennas), time (blocks) and frequency (subcarriers). Then, we investigate the identifiability of the PARATUCK2-STF MIMO system by deriving sufficient conditions which are translated into design recommendations for the STF allocation structure. In particular, essential uniqueness is discussed by interpreting the generalized fourth-order PARATUCK2 model as an equivalent third-order constrained factor (CONFAC) model with two fixed constraint matrices and one variable constraint matrix that depends on the stream-to-antenna allocation structure. We also present a blind receiver using the Levenberg-Marquardt (LM) algorithm based on the generalized fourth-order PARATUCK2 model. Numerical results are provided for a bit-error-rate performance evaluation and a comparison with some competing algorithms.
Type de document :
Article dans une revue
IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2013, 61 (8), pp.1895-1909. <10.1109/TSP.2013.2238534>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01245336
Contributeur : José Henrique De Morais Goulart <>
Soumis le : jeudi 17 décembre 2015 - 09:27:43
Dernière modification le : vendredi 18 décembre 2015 - 01:11:59

Identifiants

Collections

Citation

André L. F. De Almeida, Gérard Favier, Leandro Ronchini Ximenes. Space-time-frequency (STF) MIMO communication systems with blind receiver based on a generalized PARATUCK2 model. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2013, 61 (8), pp.1895-1909. <10.1109/TSP.2013.2238534>. <hal-01245336>

Partager

Métriques

Consultations de la notice

52