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Abstract This paper proposes a new method for solving the Machine Reassignment Prob-
lem in a very short computational time. The problem has been proposed by Google as sub-
ject of the Challenge ROADEF/EURO 2012. The Machine Reassignment Problem consists
in looking for a reassignment of processes to machines in order to minimize a complex
objective function, subject to a rich set of constraints including multidimensional resource,
conflict and dependency constraints.

In this study, a cooperative search approach is presented for machine reassignment. This
approach uses two components: Adaptive Variable Neighbourhood Search and Simulated
Annealing based Hyper-Heuristic, running in parallel on two threads and exchanging solu-
tions. Both algorithms employ a rich set of heuristics and a learning mechanism to select the
best neighborhood/move type during the search process. The cooperation mechanism acts
as a multiple restart which gets triggered whenever a new better solution is achieved by a
thread and then shared with the other thread.

Computational results on the Challenge instances as well as instances of a Generalized
Assignment-like problem are given to show the relevance of the chosen methods and the
high benefits of cooperation.

Keywords Generalized Assignment, Adaptive Variable Neighborhood Search, Simulated
Annealing, Hyper-Heuristic, Cooperative Parallel Search

1 Introduction

This paper considers the Machine Reassignment Problem (MRP) which consists in opti-
mizing the usage of available machine resources by reallocating processes to different ma-
chines in a cost-efficient way. The reallocation of the processes must satisfy capacity con-
straints associated with the machines, and other types of constraints linking subsets of pro-
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cesses. This difficult optimization problem was originally proposed by Google for the 2012
ROADEF/EURO Challenge, further denoted by ”Challenge” ( 1).

This problem can be seen as a multi-resource generalized assignment problem (MR-
GAP) with some additional constraints and a more complex objective function. In the MR-
GAP, a set of jobs is assigned to a set of machines. Each job has a cost or profit, and should
be assigned to a single machine. When assigned to a machine, each job consumes some re-
source units. Several resources are associated with a machine in the MRGAP, contrary to the
simpler Generalized Assignment Problem (GAP) where only one resource per machine is
considered, and the capacity or availability of each resource should not be exceeded, for each
machine. The aim of the MRGAP is to find a minimum-cost assignment of jobs to machines,
each of which are subject to multi-resource capacity constraints. The MRGAP is NP-hard
and has practical applications in distributed computer systems. The Challenge problem ex-
tends the MRGAP to a more sophisticated objective function mixing several kinds of costs,
and to additional constraints on subsets of jobs. Since the problem is close to the MRGAP,
we decided to adapt the algorithm proposed in this paper to the MRGAP as well.

The Challenge problem is also connected to another problem called the Vector Bin Pack-
ing (VBP) problem, a multidimensional variant of the Bin Packing Problem (BPP). In the
simplest form of the BPP, one considers a set of bins of equal capacity and a list of items,
each item having a weight, or processing cost, that is supposed not to vary over bins. The
objective is to find the minimum number of bins to pack all items. An instance of the VBP
problem consists of a set of items with given sizes that can represent services with known
demands, and a set of bins that can represent servers, with known capacities. The service de-
mands and the server capacities span across multiple dimensions in the VBP. The objective
is to assign each item to one bin in such a way that for each bin, the total size of the items
assigned to the bin does not exceed its capacity for every dimension. The VBP is NP-hard,
even when restricted to the one-dimensional case (only an asymptotic Polynomial-Time Ap-
proximation Scheme exists see e.g. Vazirani 2001).

The aforementioned two problems, MRGAP and VBP, have different objective func-
tions and formulations, but have the same structure of assigning items to agents at minimum
cost while satisfying multi-dimensional capacity constraints. The MRGAP is closer to the
Challenge problem, because they share the same characteristics that the cost function de-
pends on the assignment variables and the resource consumption of an item varies over the
agents, which is not the case for the VBP.

Recently there has been renewed interest in the VBP problem and in the MRGAP be-
cause they model particularly well the problem of Virtual Machine (VM) placement. Virtu-
alization has been a growing trend in data-centers with the promise of using computational
power more efficiently. Many companies have adopted this technology to cut budgets and
maintenance costs. However, the performance of this technique depends on the quality of the
management layer that schedules or assigns the virtual machines within a pool of machines
in the data-center. While doing this assignment, it is important to make sure that no host gets
overloaded while minimizing the number of hosts being used. The goal is not only to reduce
the upfront investment in hardware, but also to minimize the energy cost of operating the
data center, even when hardware may have been over-provisioned. This problem is made dif-
ficult by the multidimensional nature of the load. For example, each virtual machine has its
own CPU utilization, memory, and disk, network input and output requirements. Likewise,
each host has a capacity for each of these dimensions, and the assignment should ensure that
the number of hosts is minimized while no capacity constraint is violated. Moreover, these

1 http://challenge.roadef.org/2012
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requirements often vary over time, and if one wishes to avoid migration, one can model the
problem by having a dimension for each resource, for each time period. As a consequence,
the dimensionality of the problem is increased farther. If we assume that when different vir-
tual machines are placed in the same host, their loads across each dimension are summed
up, then the problem of assigning virtual machines to hosts is close to the VBP problem and
to the MRGAP.

Given the instance sizes and the computational time limit fixed by the Challenge, we
have decided to use heuristics, since exact methods are unlikely to finish within the time
limit. The proposed method, called Fast Machine Reassignment (FMR), is a Parallel Coop-
eration Search. This area has receive much attention in the last decade (see for example Le
Bouthillier and Crainic 2005; Crainic and Gendreau 2002; Crainic et al 2004; James et al
2009; Ouelhadj and Petrovic 2008; Rattadilok et al 2005). Our FMR algorithm explores co-
operation of an Adaptive Variable Neighborhood Search (AVNS, see e.g. Ropke and Pisinger
2006) and a Simulating Annealing based Hyper-Heuristic denoted by SAHH (for an exam-
ple of hyper-heuristic using simulated annealing see Kalender et al 2013). A hyper-heuristic
is a methodology designed for hard optimization problems that ”performs a search over the
space of heuristics rather than the space of solutions” (Burke et al, 2013). It selects itera-
tively some heuristic in a list of heuristics according to some criteria, that can be in some
cases the performance of the heuristic over the last iterations, and may accept or not the
output solutions during the search as Simulated Annealing does.

AVNS and SAHH are running in parallel on two threads, exchanging solutions from
one thread to another with controlled frequency in order to avoid excessive communica-
tion between threads. The main novelty in the proposed method is the way we combine
these components, which leads to a large number of local search combinations and exper-
imentally gives better results than threads running fully independently. This confirms the
result of (Lehre and Özcan, 2013) according to which the cooperation of heuristics or meta-
heuristics may provide much better results than running them independently. However, this
paper shows that the performance of mixing move operators relies critically on having the
right mixing distribution, which is problem dependent.

In order to end this introduction and before providing the organization of the paper, let
us mention some relevant papers dealing with solving the aforementioned problems. For
the Generalized Assignment Problem and its variants, a survey on the algorithms used to
solve them can be found in (Cattrysse and Van Wassenhove, 1992; Pentico, 2007). Some
heuristics have been proposed for the MRGAP, see (Gavish and Pirkul, 1991; Yagiura et al,
2004b). For bin packing problems, there are many books such as (Hochbaum, 1996; Kellerer
et al, 2004) that detail most of the theoretical literature. Many authors have studied the one-
dimensional (Maruyama et al, 1977), the two-dimensional (Chung et al, 1982; Lodi et al,
2002; Puchinger and Raidl, 2007) and the three-dimensional case (Martello et al, 2000;
Miyazawa and Wakabayashi, 2007) and have developed heuristics (Spieksma, 1994) and ex-
act methods (Caprara and Toth, 2001; Han et al, 1994). To the best of our knowledge, for the
large dimensional case, the best empirical results are obtained by variants of the most popu-
lar heuristic FFD (First-Fit Decreasing). General systems that manage resources in a shared
hosting environment can benefit from good heuristics for VBP (see for example Chen et al
2005), there are far too many of those to be covered extensively here. Focusing on Virtual
Machine placement, there are several VM consolidation heuristics currently used in research
prototypes and real VM management tools. For example in (Wood et al, 2007), a research
system that enables live migration of VMs around overloaded hosts uses a heuristic inspired
from FFD, taking the product of CPU, memory, and network loads. CPU consumption and
loads are also considered in the Challenge problem.
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The paper is organized as follows. Section 2 contains the description of the Challenge
problem proposed by Google. The mathematical model and its relations with the MRGAP
and VBP are given in section 3. We describe our algorithm named FMR2 (Fast Machine
Reassignment), its components and implementation details in sections 4 and 5 respectively.
We provide then some experimental results in section 6 for both MRP and MRGAP, and
finally conclude the paper.

2 Problem description

The aim of the Machine Reassignment Problem (MRP) is to improve the usage of a set
of machines. A machine has several resource types, like for example RAM and CPU, and
runs processes that consume these resources. Initially each process is assigned to a machine.
In order to improve machine usage, processes can be moved from one machine to another.
Possible moves are limited by hard constraints, such as for example resource capacity con-
straints, and have a cost. A solution to this problem is a new process-machine assignment
which satisfies all the hard constraints and minimizes a given objective cost.

In the following problem description, we keep the notations of the Challenge as much
as possible in order to ease readability for researchers who already know the Challenge
problem.

2.1 Decision variables

Let M be the set of machines, and P the set of processes. A solution is an assignment of
each process p ∈P to one and only one machine m ∈M ; this assignment is noted by the
mapping M(p) = m. The original assignment of process p is denoted M0(p). Note that the
original assignment is feasible, i.e. all hard constraints are satisfied.

2.2 Hard constraints

2.2.1 Capacity constraints

Let R be the set of resources which is present on each machine, Cmr the capacity of resource
r ∈R for machine m ∈M and Rpr the consumption of resource r ∈R for process p ∈P .
Then, given an assignment M, the usage U of a machine m for a resource r is defined as:

U(m,r) = ∑
p∈P s.t. M(p)=m

Rpr

A process can run on a machine if and only if the machine has enough capacity available on
every resource. More formally, a feasible assignment must satisfy the capacity constraints:

∀ m ∈M,r ∈R, U(m,r)≤Cmr

2 FMR is open source and is distributed under GPL, see http://www.lipn.fr/~butelle/s26.tgz
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2.2.2 Conflict constraints

Processes are partitioned into services. Let S be a set of services. A service s ∈S is a set
of processes that must run on distinct machines:

∀ s ∈S ,∀{pi, p j} ∈ s2, pi 6= p j =⇒ M(pi) 6= M(p j)

2.2.3 Spread constraints

Let L be the set of locations, a location l ∈L being a set of machines. Note that L is a
partition of the set of machines M . For each s ∈S , let spreadMins ∈N be the minimum
number of distinct locations running at least one process of service s. The constraints are
defined by:

∀ s ∈S , ∑
l∈L

min
(

1,
∣∣∣{p ∈ s |M(p) ∈ l}

∣∣∣)≥ spreadMins

2.2.4 Dependency constraints

Let N be the set of neighborhoods, a neighborhood n ∈N being a set of machines. Note
that N is a partition of the set of machines M . If service sa depends on service sb, then
each process of sa should run in the neighborhood of a sb process:

∀ pa ∈ sa,∃ pb ∈ sb and n ∈N such that M(pa) ∈ n and M(pb) ∈ n

Note that dependency constraints are not symmetric.

2.2.5 Transient usage constraints

When a process p is moved from a machine m to another machine m′, some resources are
consumed twice; for example, disk space is not available on machine m during a copy from
machine m to m′, and m′ should obviously have enough available disk space for the copy.
Let T ⊆ R be the subset of resources which need transient usage, i.e. require capacity
on both original assignment M0(p) and current assignment M(p). Then the transient usage
constraints are:

∀ m ∈M ,r ∈T , ∑
p∈P s.t.

M0(p)=m ∨ M(p)=m

Rpr ≤Cmr

Note there is no time dimension in this problem, i.e. all moves are assumed to be done
at the exact same time. Then for resources in T these constraints subsume the capacity
constraints.

2.3 Classification of costs in the objective function

The aim is to improve the usage of the set of machines. To do so a total objective cost is
built by combining a load cost, a balance cost and several move costs.
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2.3.1 Load cost

Let SCmr be the safety capacity of a resource r ∈R on a machine m ∈M . The load cost is
defined per resource and corresponds to the used capacity above the safety capacity. More
formally, let us denote the ”over safety capacity” by δ 1

mr = max
(
0,U(m,r)−SCmr

)
, then

loadCost(r) = ∑
m∈M

δ
1
mr

A unit cost c1
r is associated with the quantity loadCost(r).

2.3.2 Balance cost

As having available CPU resource without having available RAM resource is useless for
future assignments, one objective of the problem is to balance available resources. The idea
is to achieve a given target tr1,r2 on the available ratio of two different resources r1 and r2.
Let B ⊂R2 be the set of pairs of resources (r1,r2) which play a role in the expression of
the balance cost.

Let us note by δ 2
m,r1,r2

= max
(
0, tr1,r2 · (Cmmr1−U(m,r1))− (Cmr2 −U(m,r2))

)
.

The balance cost for (r1,r2) is:

balCost(r1,r2) = ∑
m∈M

δ
2
m,r1,r2

A unit cost c2
r1,r2

is associated with the quantity balCost(r1,r2).

2.3.3 Process move cost

Some processes are painful to move (having a big code and/or using a big amount of data);
to model this soft constraint a process move cost is defined. Let c3

p be the cost of moving the
process p from its original machine M0(p).

processMoveCost = ∑
p∈P s.t.

M(p)6=M0(p)

c3
p

2.3.4 Service move cost

To balance moves among services, a service move cost is defined as the maximum number
of moved processes over services. More formally:

servMoveCost = max
s∈S

(∣∣∣{p ∈ s |M(p) 6= M0(p)}
∣∣∣)

2.3.5 Machine move cost

Let c5
p,m be the cost of moving p from M0(p) to M(p) = m (if M(p) = M0(p) then this cost

is zero). The machine move cost is then the sum of these costs over all processes:

machMoveCost = ∑
p∈P

c5
p,M(p)
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2.3.6 Total objective cost

The total objective cost to minimize is a weighted sum of all previous costs.

totalCost = w1 ∑
r∈R

c1
r · loadCost(r)

+ w2 ∑
(r1,r2)∈B

c2
r1,r2
·balCost(r1,r2)

+ w3 · processMoveCost

+ w4 · servMoveCost

+ w5 ·machMoveCost

In the data provided by the Challenge we have w1 = w2 = 1.

3 Mixed Integer Programming formulations

In this section, we give the formulation of the MRP issued from the Challenge, and a for-
mulation of the MRGAP that uses consistent notations with those of the MRP.

3.1 MRP formulation

We give a MIP formulation of the Google machine reassignment problem, where the only
binary variables are assignment variables, and all other variables are continuous variables
which are used to express some constraints or terms of the objective function. The decision
variables are:

– xpm = 1 if process p ∈P is assigned to machine m ∈M , 0 otherwise
– δ 1

mr = number of units of resource r over Safety Capacity on machine m.
– δ 2

m,r1,r2
= number of available units of resource r2 on machine m which are under the

target, expressed with respect to the number of available units of resource r1 for (r1,r2)∈
B.

– yls = 1 if at least one process in service s ∈ S is assigned to a machine in location
l ∈L , 0 otherwise (no need actually to set these variables as binary in the model).

– z = maximum number of moved processes over services.

min w1 ∑
r∈R

c1
r ∑

m∈M
δ

1
mr loadCost (1)

+w2 ∑
(r1,r2)∈B

c2
r1,r2 ∑

m∈M
δ

2
m,r1,r2

balanceCost (2)

+w3
∑

p∈P
c3

p(1− xp,M0(p)) processMoveCost (3)

+w4z serviceMoveCost (4)

+w5
∑

p∈P
∑

m∈M
c5

pmxpm machineMoveCost (5)
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s.t.

∑
p∈P

Rprxpm ≤Cmr ∀m ∈M ,r ∈R (6)

∑
p∈P s.t.

M(p)6=M0(p)

Rpr + ∑
p∈P s.t.

M(p)6=M0(p)

Rprxpm ≤Cmr ∀m ∈M ,r ∈T (7)

∑
p∈s

xpm ≤ 1 ∀m ∈M ,s ∈S (8)

δ
1
mr ≥ ∑

p∈P
Rprxpm−SCmr ∀m ∈M ,r ∈R (9)

δ
2
m,r1,r2

≥ tr1,r2

(
Cm,r1 − ∑

p∈P
Rp,r1 xpm

)

−

(
Cm,r2 − ∑

p∈P
Rp,r2 xpm

)
∀m ∈M ,(r1,r2) ∈B (10)

∑
m∈M

xpm = 1 ∀p ∈P (11)

∑
l∈L

ysl ≥ spreadMins ∀s ∈S (12)

ysl ≤ 1 ∀s ∈S , l ∈L (13)

ysl ≤ ∑
p∈s

∑
m∈l

xpm ∀s ∈S , l ∈L (14)

∑
p′∈sb

∑
m∈n

xp′m ≥ ∑
m∈n

xpm ∀(sa,sb), p ∈ sa,n ∈N (15)

z≥ ∑
p∈s

∑
m∈M s.t.
m 6=M0(p)

xpm ∀s ∈S (16)

xpm ∈ {0,1} (17)

δ
1
mr,δ

2
m,r1,r2

,yls,z≥ 0 (18)

There are two types of constraints:

(i) Local constraints (6-10) that hold for every machine m ∈M :
Capacity constraints (6) (see 2.2.1) express that the total amount of each resource r on a
given machine should not exceed the resource capacity. Transient usage constraints (7)
(see 2.2.5) state that for a subset of resources T ⊂R, the total resource consumption
of processes p that are assigned to machine m or were initially assigned to m, is no
more than the capacity. Conflict constraints (8) (see 2.2.2) state that any two processes
of the same service s should not be assigned to the same machine. LoadCost constraints
(9) (see 2.3.1) define variables δ 1

mr as the number of units of resource r over Safety
Capacity on machine m, together with non-negativity constraints on these variables.
Finally, BalanceCost constraints (10) (see 2.3.2) define variables δ 2

m,r1,r2
, as the number

of available units of resource r2 on machine m under the target, expressed with respect
to the number of available units of r1. These variables will be equal to zero if the target
is achieved due to non-negativity of variables, and are used in the objective function to
model so-called balance costs.

(ii) Global constraints (11-16) that link machines of M altogether:
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Assignment constraints (11) express that each process should be assigned to a single
machine.
Spread constraints (12-14) (see 2.2.3) are separated into three blocks of constraints.
Technical constraints (13) and (14) define variables ysl as equal to 0 if no process in
service s ∈S is assigned to a machine in location l ∈L ; otherwise we have ysl ≤ 1 so
in order to contribute to cover the right-hand-side of constraint (12) ysl can be set to one.
Constraints (12) state that the number of distinct locations where at least one process of
service s should run is at least the threshold spreadMins.
Dependency constraints (15) (see 2.2.4) express that if a service p in a service sa is as-
signed to a machine in a neighborhood n, then there must be at least one process p′ in the
service sb that depends on sa, that is assigned to a machine in the same neighborhood n.
Finally, serviceMoveCost constraints (16) (see 2.3.4) define the service move cost as the
maximum number of moved processes over services.

3.2 MRGAP formulation

The MRGAP mathematical formulation can be obtained by relaxing different sets of con-
straints, since the constraints needed to describe the problem are only: (6), (11) and (17).
The objective function changes completely, since the MRGAP objective function takes into
account only the process move cost, but in a different way with respect to the Machine Re-
assignment Problem. In the MRGAP we have a single cost matrix in the objective function,
where cpm is the cost of assigning process p to machine m. Therefore, the MRGAP problem
can be formulated as follows:

z = min ∑
p∈P

∑
m∈M

cpmxpm (19)

s.t.

∑
p∈P

Rprxpm ≤Cmr ∀m ∈M ,r ∈R (20)

∑
m∈M

xpm = 1 ∀p ∈P (21)

xpm ∈ {0,1} (22)

4 The FMR method

The method proposed in this paper is a Cooperative Parallel Search which runs in parallel
two different algorithms on two threads asynchronously. Because of the time limitation and
the dual core processor of the Challenge, we have considered a simple cooperative scheme
with two threads which communicate their best solution and operate multiple restarts. More
sophisticated techniques can be found in (Le Bouthillier and Crainic, 2005) (where a pool of
solutions is shared between the threads, instead of a single one in FMR, in a solution ware-
house). Moreover, in our approach there is no need to have a controller as in (Ouelhadj and
Petrovic, 2008; Rattadilok et al, 2005) that would coordinate solution exchanges between
threads.

Our FMR algorithm uses a particular combination of an Adaptive Variable Neighbor-
hood Search (AVNS) and Simulated Annealing based Hyper-Heuristic (SAHH).
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The AVNS running on the first thread is based on the idea reported in (Ropke and
Pisinger, 2006) and (Pisinger and Ropke, 2007) where the probability of choosing among
the different neighborhoods is updated based on the best results found so far. Nevertheless,
our AVNS algorithm has the particularity to be initialized with a warm start greedy heuristic,
which generally improves the initial assignment.

The method running on the second thread is a Simulated Annealing based Hyper-Heuristic
(SAHH). Hyper-heuristics have been defined for the first time in (Cowling et al, 2001). The
proposed algorithm does not belong to the category of HH which generate heuristics, but to
those that only select heuristics. Therefore it can be mapped completely in the classification
scheme proposed in (Burke et al, 2010) and reported in (Burke et al, 2013). The scheme is
based on two dimensions: selection of the heuristic search space and move acceptance.

Note that the complete combination of neighborhoods and ways of exploring them gives
a potentially very large set of heuristics. Nevertheless, both threads use a learning mecha-
nism for choosing the heuristic or neighborhood to execute (some applications of such learn-
ing mechanisms can be found in Pisinger and Ropke 2007; Kalender et al 2013; Burke et al
2012).

In this section, for illustration purposes we need to describe some numerical results on
some particular instances of the Challenge. A full description of the Challenge instances and
numerical experiments will be found in Sect. 6.

4.1 Cooperative Parallel Search

An interesting feature of our parallel cooperation scheme is the fact that the threads are
asynchronous and the number of exchanges is controlled to avoid excessive communication
between threads. It can been seen as a restart mechanism since each thread uses a new start-
ing solution whenever the other one communicates an improving solution. Another choice
we made was to be very modular and use a list of algorithms (AlgoList) to apply for each
thread, with a learning mechanism for part of them.

A simplified version of the overall algorithm is described in Algorithm 1. The main
aspect of parallelization in this algorithm is that when one thread finds a new bestKnown

solution, the other thread can replace its current solution (assign) by bestKnown. In that
sense, there is a real cooperation between the two threads. Note that this replacement may
occur before the end of the execution of the current algorithm algo running on the thread;
for easing readability we did not mention this technicality in Algo. 1.

The cooperation of the two threads is illustrated by Fig.1 that represents the improve-
ments on the best known solution for each thread running on instance a2 4 (with seed 9).
Once in a while, ”Thread 1 coop” and ”Thread 2 coop” take into account the result of the
other thread and introduce improvements and exploration of other neighborhoods. Thread 1
uses a first sequence of heuristics (see Sect. 6.1) followed by AVNS and Thread 2 also uses
a first sequence of heuristics followed by SAHH.

We have compared the numerical results of independent threads (taking their best so-
lution only when the time is elapsed) versus our cooperative scheme. Experiments show
that the cooperative scheme outperforms the independent solving approach. More details
are provided in Sect. 6 with a complete result table.

In the following section, we describe the algorithms implemented for AlgoList: Local
Search, Greedy, Adaptive Variable Neighborhood Search and Simulated Annealing based
Hyper-Heuristic. The specific lists of algorithms chosen for each thread are detailed in
Sect. 6.1.



Fast Machine Reassignment 11

Algorithm 1: Cooperative Parallel Search algorithm
input : M0: Initial assignment of processes to machines, Problem description,

AlgoList1, AlgoList2, TimeOut (or use default values)
output: bestKnown: An assignment of processes to machines & improvement value

begin
bestKnown← cost of M0;
Create an alarm to stop threads and save bestKnown when TimeOut is reached ;
Run Threads in parallel

/* bestKnown is shared between the two threads */
Thread 1: doWork(AlgoList1, M0) ;
Thread 2: doWork(AlgoList2, M0) ;

/* Each thread is working on its own local copy of the assignment. */
procedure doWork(AlgoList, assign)

for i←1 to |AlgoList | do
algo←AlgoList [i];
assign← algo(M0,bestKnown,assign) ;
mutual exclusion between threads

if cost(assign) < cost(bestKnown) then
bestKnown←assign;
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Fig. 1 Comparison of independent threads vs cooperative threads on instance a2 4.

4.2 Local Search and Neighborhoods

Since the problem is quite similar to a Generalized Assignment Problem (Yagiura et al,
1998), we used the best known moves for the GAP for neighborhood exploration, namely:
Shift, Swap and Ejection Chain.

Shift
Consider a process p, assigned to a machine m. A Shift moves p from m to some other
machine m′ if no constraint is violated.
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Swap
Consider two processes p and p′ assigned to machines m and m′ respectively. A Swap ex-
changes their assignment (if no constraint is violated) i.e. p on m′ and p′ on m.

Ejection Chain (Yagiura et al, 2004a, 2006)

p1

C

SC

r1 r2 r3 r4

m1

C

SC

r1 r2 r3 r4

m2

p2

pi

C

SC

r1 r2 r3 r4

mi

C

SC

r1 r2 r3 r4

mB

p1 is moved
to mi or mB

Fig. 2 Ejection Chain example (C=Capacity, SC=Safety Capacity).

Fig. 2 shows the Ejection Chain mechanism: choose a process p1 assigned to a machine m1
and look for the ”best” machine mB on which p1 can be assigned. The ”best” machine is the
one that minimizes the cost when p1 is moved from m1 to mB. Then process p1 is removed
from m1 and its destination machine will be identified at the end of the Ejection Chain. Now
find a second process p2 that can be moved from its machine m2 to machine m1. Then find a
third process and so on, until a machine mi gives a process pi. We stop this procedure at mi if
no more machine has an interesting candidate or when the maximum length of the ejection
chain (which is an adjustable parameter), is reached. At the end of this chain process p1 may
be inserted on mB or on mi depending on the best move.

Local search heuristics
According to the policy of acceptance/selection of a new solution (to replace the incumbent)
we used the following local search algorithms: first improvement by a shift move denoted
by Shift-FI, best improvement by a shift move denoted by Shift-BI, first improvement by a
swap move denoted by Swap-FI and Swap-BI the best improvement by a swap move.

For Ejection Chain, we use the first improvement acceptance policy only.
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4.3 Greedy heuristic

The following greedy heuristic (see Romeijn and Morales, 2000 for a similar approach) is
performed in order to build an alternate feasible initial solution quite far from the initial
assignment M0 provided with the data set.

First, we partition the services in two classes: the core services are the services submitted
to precedence constraints, and the out-of-core services are independent services without
such constraints.

Then the processes of the out-of-core services are simply removed from M0. Thus, we
get a partial solution based only on the core services and obviously with less resource con-
sumption than the initial solution.

On this partial (core) solution Shift and Swap moves are applied to improve the (partial)
cost function (Ejection chain has not been considered as it typically takes more than one
minute to find an improvement). In practice, we only apply Shift-FI on the core for the
following reasons :

– During our experiments, Shift-FI leads to the best ratio of cost improvement over com-
putation time (see Table 1, instances B1, B3, B5 and B8 are not represented because
they have transient usage constraints). The ratio is 0 for instances B2 and B6 because
the initial solution is already a local minimum (for the core) with respect to those two
types of move. More details on instances are given in Sect. 6.

– Searching some neighborhoods can be time-consuming and must be avoided (Shift is
the only one that has linear time complexity according to |P|).

– Combining several neighborhoods on the core provides a low gain on the core after ap-
plying the first neighborhood, and may not enable to re-insert all the previously removed
processes (too many changes on the core).

Table 1 Cost improvement over computation time ratio for various local search heuristics when using the
greedy heuristic.

Inst.\Algo Swap-FI Swap-BI Shift-FI Shift-BI

B2 0 0 0 0
B4 5.8×104 5.8×104 9.8×105 9.8×105

B6 0 0 0 0
B7 7.3×107 1.5×106 1.8×108 3.4×106

B9 1.2×103 1.2×103 1.7×104 1.7×104

B10 3.2×107 4.4×105 1.1×108 1.4×106

In the end, if all the previously removed processes of the out-of-core services are re-
inserted, then we obtain a new initial solution for the next step with a lower cost. During
the re-insertion step, the algorithm first checks how many machines each process can be
assigned to. If there are processes that can be assigned to one machine only (sometimes
the original machine) the process is assigned first to prevent infeasibility. Once a process
has been assigned, the data is updated and the algorithm checks again if there exists a pro-
cess with only one possible insertion point. The procedure goes on until all the remaining
processes can be assigned to several machines.

Then for each process p, a function weight[p], summing resource consumptions nor-
malized by the residual capacity of each machine, is computed. Processes are iteratively
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assigned, in decreasing order of weight (as low-weight processes are easier to place later),
to a machine that maximizes cost improvement. The algorithm avoids infeasibility checks
whenever it can.

This greedy heuristic is summarized in Algorithm 2. It only runs for instances with no
transient usage constraints since experiments showed it was generally difficult to reconstruct
a feasible solution otherwise.

Algorithm 2: Greedy Heuristic
input : Initial assignment of processes to machines; core←set of all the processes; out-of-core← /0
output: New assignment of processes to machines

if no transient usage constraints then
foreach p ∈ core do

m←M0(p) ;
if no precedence relation then

out-of-core← out-of-core ∪ {p} ;
core← core \ {p} ;

Apply shift moves to the processes of the core;
foreach p ∈ out-of-core do

weight [p]← 0 ;
foreach m ∈M do

foreach r ∈R do
weight [p]←weight [p] + Rpr / Cmr ;

Label all the processes in out-of-core according to an ascending sort of the weights ;
foreach p ∈ out-of-core do

BestMachine← /0 ;
MaxGain← 0 ;
foreach m ∈M do

if p can be assigned to m then
gain← gain associated to assigning p to m ;
if gain >MaxGain then

MaxGain←gain;
BestMachine← m ;

Assign p to BestMachine;

4.4 Adaptive Variable Neighborhood Search

The neighborhoods described in Sect. 4.2 are indexed by i below. The AVNS procedure
dynamically changes the current neighborhood (Ropke and Pisinger, 2006; Pisinger and
Ropke, 2007). A learning mechanism is used for choosing the next neighborhood. It is based
on a scoring function of the neighborhood. More precisely, we use a roulette wheel selec-
tion where the score score[i] of neighborhood i equals one initially, and then is updated
as score[i]← (1− r)score[i] + r p[i]

θ [i] , where p[i] is the number of times i has improved the
solution, θ [i] counts the number of times i has been used, and r ∈ [0,1] is a tuning parameter.

According to the size and/or the structure of the instance (e.g. |M | ≥ 10,000 and/or
|P| ≥ 100,000), we may decide before starting the exploration of the neighborhood by
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the AVNS algorithm, that some types of moves (typically the Ejection Chain) have to be
excluded from the set of possible moves.

The AVNS procedure is described in Algorithm 3.

Algorithm 3: Adaptive Variable Neighborhood Search
input : Initial assignment of processes to machines; NH: set of neighborhoods (Local Search)
output: New assignment of processes to machines

foreach i ∈NH do
score[i]← 1 ; p[i]← 1 ; θ [i]← 1 ;

while time remains do
foreach i ∈NH do

score[i]← score[i](1− r)+ r p[i]
θ [i] ;

current← 0 ;
foreach i ∈NH do

interval [i]←
[
current,current+ score[i]

]
;

current← current +w[i] ;

MaxFitness← current ;
Choose randomly rand ∈ [0,MaxFitness] ;
Select i ∈NH s.t. rand ∈ interval [i] and i is not the previous neighborhood used
θ [i]++ ;
Apply neighborhood i ;
gain←gain associated to applying neighborhood i ;
if gain > 0 then

p[i]++ ;

4.5 Simulated Annealing based Hyper-Heuristic (SAHH)

The proposed selection Hyper-Heuristic framework, called Simulated Annealing based Hyper-
Heuristic (SAHH), alternates between two Hyper-Heuristic Selection Strategies (HHSS). A
HHSS is defined as a combination of a heuristic selection method and an acceptance method.
Indeed, as shown in (Bilgin et al, 2006) the computational results might be improved by
combining different heuristic selection methods with different acceptance methods. The pro-
posed SAHH framework moves from one HHSS to the other based on the following simple
greedy criteria: if a HHSS does not improve the best solution found so far during t f rozen
seconds, it ends and the other one starts. Following the classification of (Burke et al, 2013),
the first HHSS (hereafter referred as Temperature Descent) uses a simple random method to
select a heuristic among a set of available heuristics, and accepts new solutions according
to the Simulated Annealing function (Kirkpatrick et al, 1983), that allow to accept some
non-improving solutions with probabilities depending on their scores. Variants of Simulated
Annealing are useful as move acceptance components in hyper-heuristics as shown in (Bai
and Kendall, 2005; Dowsland et al, 2007; Bai et al, 2012).

In what follows, we use SR for Simple Random, and SA for Simulated Annealing with
reheating, based on the definition in (Burke et al, 2012).

The second HHSS (FastMinimum) performs the selection according to a history-based
choice function and always rejects non-improving solutions. The proposed framework is re-
lated to the one described in (Kalender et al, 2013), which can be seen as a mix of those
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two strategies, where a history-based choice function selects the heuristic and where non-
improving solutions can be accepted with time-decreasing probabilities. In the next para-
graphs we detail the HHSS used by SAHH.

InitialTemperature()
The HHSS called Temperature Descent makes use of a temperature to compute the proba-
bility of accepting a non-improving move. This temperature decreases with time, following
a predefined function, but its initial value comes as a parameter to the algorithm and should
be fitted to the instance: if it is two low, the algorithm will reject all non improving solutions;
two high and it will spend most of its time wandering regardless of the solution costs. We
used the following heuristic to compute the initial temperature: during the first time interval
tinit , we randomly try at most N f eas feasible moves (Shift or Swap) starting from the initial
solution and we store the absolute value of the gain for each move. We then choose the initial
temperature T0 as the median of these stored values, which approximately leads to an initial
acceptance rate of 50% of non-improving moves in TemperatureDescent().

TemperatureDescent(T0)
This HHSS iteratively calculates a new temperature T as a function fT (T0, tr, tdescent), of
the initial temperature T0, the remaining computational time for this descent tr and the time
allocated to the descent tdescent . Experimentally the following function(

tr
tdescent

)2

T0

has been used.
Then a move is chosen randomly among the implemented ones (i.e. Shift and Swap),

leading to a candidate configuration Rnew. If no feasible move has been identified during a
time period tlookup, then this function stops. Otherwise, it decides whether it accepts the new
configuration Rnew or stays on the previous one Rold: Rnew is accepted if its cost is lower, or
else with a probability p = exp( cost(Rold)−cost(Rnew)

T ) (where T is the temperature computed
before). If no move has been accepted during t f rozen seconds, then this HHSS stops and the
second one executes. Otherwise, it lasts at most tdescent seconds.

Fig. 3 and 4 show two runs of TemperatureDescent() repeated 10 times, respectively on
data sets B4 and B10 of the Challenge (see parameter settings in Sect. 6.1). ’+’ points rep-
resent the temperature (left Y-axis), ’x’ points represent the cost of the current configuration
(right Y-axis). Note that on data set B4, the value of the current solution quickly falls in
local minimum and that whenever the temperature starts over from T0, it gives the function a
chance to look at other regions of the search space. Nevertheless, when applied on instances
such as data set B10, the SA move acceptance criteria slows down the decrease of the cost.

Therefore the following second HHSS is designed to cope with such instances.

FastMinimum()
The learning mechanism for selecting a move is designed as follows. The HHSS keeps an
average ratio of cost gain over time spent for past ten moves, according to the category of
moves (Shift or Swap). The category with the best ratio is first chosen for the next move.
Then, the candidate move is selected randomly in this category. If it improves the current
solution, it gets accepted; otherwise, it is rejected and in any case the ratio is updated. If the
current solution has not been improved during a time interval t f rozen, the HHSS stops and
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Fig. 4 TemperatureDescent() iterated on B10

the TemperatureDescent HHSS starts. Otherwise it goes on until the global computational
time is elapsed.

The SAHH overall framework is described by the pseudo-code given in Algorithm 4.

5 Implementation details

5.1 Communication restriction

Two threads are used to run on the two cores of the reference computer. In order to achieve
maximum benefit of these two threads, the code was designed with the aim of limiting
communication and synchronizations between the threads.
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Algorithm 4: SAHH algorithm
T0← InitialTemperature() ;
while time remains do

(BestCost,Sol)←current best solution over both threads;
FastMinimum(Sol)1 ; // during tdescent sec. or if no improvement during t f rozen,
if BestCost has not been improved then

TemperatureDescent(T0, Sol)1 ; // during tdescent or if no improvement during t f rozen,

1 FastMinimum and TemperatureDescent start from Sol

Only one shared variable must be accessed in mutual exclusion: the one which is used to
store the current best solution found by the threads. This variable is updated most often by
the SAHH executed on the second thread. To avoid excessive communication (that is time
consuming), in SAHH the frequency of updates is controlled by excluding exchanges during
at least t f rozen seconds.

The first thread updates this variable on major improvements only, and when the remain-
ing delay is becoming too short.

All the rest of the data is private to each thread and bound to it, or accessed in read-only
mode during the parallel execution.

5.2 Compact implementation of a partition of an integer set

For the purpose of the Challenge, the specification of the underlying hardware system states
that available memory is limited to 4GB. To this end, all data structures are designed to be
compact and to allow fast access during execution of the optimization algorithm.

Intermediate solutions are stored during the search. A solution is specified by a partition
of the set of processes into subsets of processes on each machine. A naive implementation
of this partition of processes may be highly memory consuming. For example, using an
assignment matrix of size |M ×|P| would use a lot of memory and induce a high running
time to extract the subset of processes assigned to some machine for large values of |P|.

A second naive implementation could use a linked list for each subset of processes
that are assigned to a given machine. Linked list implementation is more compact than the
assignment matrix since it uses only |P| nodes in total. However, such an implementation
would slow down the processor because of a very high cache miss rate (since nodes are not
allocated contiguously in the memory).

Moreover, creating a new solution starting from some current solution involves allocat-
ing and then copying the current solution. This duplication will be highly time-consuming
for both aforementioned naive implementations.

Our implementation of the partition of processes is also based on a linked list to store
the subset of processes assigned to a given machine. But in FMR, all these lists are stored in
one vector of size |P|. On top of that, we use a second vector of size |M | to keep track of
the entry point of each linked list.

In Fig. 5 we show a small example with 4 machines and 6 processes. In this example,
processes {5,0,2} are assigned to machine 0, no processes are assigned to machine 1, pro-
cesses {1,3} are assigned to machine 2 and process 4 is assigned to machine 3. Notation -1
represents the end of the list.

Our linked list is more compact than classical linked list implementations: we use vec-
tors of short int (size 2 Bytes) instead of pointers (size 8 bytes on a 64 bits system). When
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Fig. 5 Example of a compact implementation of a partition of a set

our data structure that partitions processes needs to be duplicated, less time is needed for
memory allocation and copy. As memory allocation is contiguous (there are 2 vectors), the
cache hit rate is highly improved: when the data structure is used at run-time, we achieve
better spatial locality in the cache.

6 Numerical results

6.1 Parameter settings

The different values of the parameters used in our FMR algorithm are the following ones:

– Parameter for the roulette wheel selection of the AVNS (sec. 4.4): r = 0.2
– Parameters for the simulated annealing (sec. 4.5):

– Time for finding the initial temperature: tinit = 30s
– Maximal number of moves to find the initial temperature: N f eas = 10000
– Time for each temperature descent: tdescent = 60s
– Time for finding a feasible move : tlookup = 5s
– Time for accepting a move : t f rozen = 10s

All the experiments were run on a computer with an Intel Core i7-2600 CPU at 3.40GHz.
We have arbitrarily chosen the default random seed to be 16. The list of algorithms on Thread
1 AlgoList1 is (Greedy, Shift, EjectionChain, AVNS) and AlgoList2 is (ExtendedBestShift,
EjectionChain, SAHH) for Thread 2.

6.2 Problem Sizes for MRP

In the Challenge, set sizes are limited to the following maximum values:

– Number of machines |M |= 5,000
– Number of resources |R|= 20
– Number of processes |P|= 50,000
– Number of services (of cardinality> 1) |S ′|= 5,000 (S ′ ⊂S ).
– Number of neighborhoods |N |= 1,000
– Number of dependencies |D |= 5,000
– Number of locations |L |= 1,000
– Number of balance costs |B|= 10
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All other integers are indices or 32-bits unsigned integers. As usual in the ROADEF/EURO
Challenge, three data sets have been provided:

– Data set A: |P| is limited to 1,000. This small data set is public and is used during the
qualification phase;

– Data set B: |P| varies from 5,000 to 50,000. This medium / large data set is public and
is used to evaluate proposed solvers;

– Data set X: |P| varies from 5,000 to 50,000. This medium / large data set is private and
is used to evaluate proposed solvers.

The score of a team for an instance is computed as the sum of normalized differences
between the final objective function obtained and the best among all participants3.

6.3 Numerical results on instances B et X for MRP

Tables 2 and 3 show details on instances used for the Challenge. For instances B and X, the
number of neighborhoods is always equal to 5 and the number of services containing at least
two processes (|S ′|) is 1000, except for B1, B2 and X1 and X2 (which are at 500). #DS
stands for the total number of dependencies among services. ”First” stands for the results of
the best team. ”Last” stands for the results of the last team among all those that were able to
complete the Challenge.

Note that our score is very close to the results of the best team except for two instances:
B1 and X1.

We also tried to increase the computing time to thirty minutes (with a maximum length
of ejection chain extended to fifty), and we then improved four of the best known results.

Table 2 Instances B

Instance B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
|P| 5000 5000 20000 20000 40000 40000 40000 50000 50000 50000
|M | 100 100 100 500 100 200 4000 100 1000 5000
|R| 12 12 6 6 6 6 6 3 3 3
|T | 4 0 2 0 2 0 0 1 0 0
|L | 10 10 10 50 10 50 50 10 100 100
|S | 2512 2462 15025 1732 35082 14680 15050 45030 4609 4896
#DS 4412 3617 16560 40485 14515 42081 43873 15145 43437 47260

Scores % Total
First 0.41 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.43
Our 7.32 0.04 0.08 0.00 0.00 0.00 0.12 0.21 0.06 0.01 7.85
Last 2.27 8.57 6.92 14.04 7.85 5.33 41.04 6.60 23.24 43.06 158.92

For the Challenge, 82 teams registered and the organizers decided to set the qualification
threshold to the best 30 teams selected on A instances. Our team was ranked 14 among 30
in the qualifying stage. The final ranking was computed on a score based on instances B &
X and our team was ranked among the top 20 teams. Note that the gap between our results
and the best team is mainly due to some under-performance for one of the 10 instances, both
for B and X instances (B1, X1).

3 For more detailed results and information see http://challenge.roadef.org/2012/en/results.
php
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Table 3 Instances X

Instance X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
|P| 5000 5000 20000 20000 40000 40000 40000 50000 50000 50000
|M | 100 100 100 500 100 200 4000 100 1000 5000
|R| 12 12 6 6 6 6 6 3 3 3
|T | 4 0 2 0 2 0 0 1 0 0
|L | 10 10 10 50 10 50 50 10 100 100
|S | 2529 2484 14928 1190 34872 14504 15273 44950 4871 4615
#DS 4164 3742 15201 38121 20560 39890 43726 12150 45457 47768

Scores % Total
First 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03
Our 4.65 0.25 0.08 0.00 0.00 0.00 0.29 0.00 0.02 0.01 5.31
Last 1.84 10.53 4.86 15.78 10.58 5.44 43.71 21.77 21.17 41.61 177.28

For 18 out of the 20 instances, the difference is very small : the total gap of 5.31 for
X is mainly due to one gap of 4.65 for instance X1 (average gap = 0.07 for the 9 other X
instances vs 0.003 for the Best average over 10), and the total gap of 7.85 for B is mainly
due to one gap of 7.32 for instance B1 (average gap = 0.06 for the 9 other X instances vs
0.04 for the best average over 10).

When instances become bigger and more complex to solve, our results become more
competitive. Our approach seems to be robust on the variability of the input instances since
we did not tune our code on the Challenge instances. This allows our approach to be effective
also on MRGAP as shown in Sect. 6.5. Before reporting results on the MRGAP, we conclude
on the Challenge problem by comparing our cooperative approach to running AVNS and
SAHH independently on the two threads without sharing solutions.

6.4 Comparison of independent vs cooperative scheme

We compared experimentally the results of independent threads, taking the best solution
of AVNS and SAHH only when the time is elapsed, versus our cooperative scheme. Each
instance B and X have been run 20 times with different seeds.

The result is given in Table 4. In some cases the two approaches give the same result,
which explains why the sum of the number of times the independent scheme is better (”Indep
#best”) and the number of times the cooperative scheme is better (”Coop #best”) is not equal
to 20. The ”Mean Indep (or coop) %Gap to best” is computed as follows: for each of the
20 runs, calculate the difference between the independent (resp. cooperative) solution value
and the Challenge best known value, divided by this best known value, and compute the
mean of these 20 ratios.

We can see that the cooperative scheme globally outperforms the independent one. More
precisely, the cooperative scheme finds a strictly better solution for 54 % of the cases (216
over 400 runs of the B and X instances) versus 28,5% for the independent scheme. Also, the
mean gap to the best known value is strictly better for the cooperative scheme for 10 of the 20
instances B and X, and equal for 9 of them. It is significantly better for 4 instances, whereas
the independent scheme is strictly better for only one instance (B3). As mentionned in the
introduction, these results confirm the benefits of cooperation on this particular problem.
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Table 4 Comparison between independent vs cooperative threads.

Inst.
Indep
#best
(/20)

Coop
#best
(/20)

Mean Indep
%Gap to

best

Mean Coop
%Gap to

best

B1 4 2 14.735 14.721
B2 10 10 0.116 0.113
B3 13 6 4.040 4.366
B4 2 17 0.001 0.001
B5 3 16 0.462 0.027
B6 11 9 0.000 0.000
B7 0 2 0.092 0.092
B8 0 16 2.367 2.365
B9 6 9 0.075 0.074

B10 7 13 0.001 0.001
X1 2 0 11.056 11.056
X2 4 16 1.386 1.308
X3 11 8 1526.252 1492.612
X4 2 16 0.001 0.001
X5 6 14 334.953 211.005
X6 6 12 0.000 0.000
X7 0 20 0.255 0.254
X8 8 12 186.258 178.847
X9 9 9 0.008 0.008

X10 10 9 0.000 0.000

Sum 114 216

6.5 Numerical results on the MRGAP

We have chosen to compare our code to the one of (Yagiura et al, 2004b), one of the best
known algorithms for the MRGAP problem, even if FMR was not specifically designed for
this problem. So we adapted our code at a minimum for the MRGAP problem and tried
it over C, D and E instances4. We would like to thank Prof Yagiura who kindly supplied
us with initial solutions as well (priv. comm.). These initial solutions were output by their
simpler and modified version of their algorithm ”TS-CS”, named ”TS-noCS” (that can be
found in Yagiura et al, 2004b).

In the results presented in Tables 5, 6 and 7, TS-CS stands for Tabu Search with Chained
Shift neighborhood. TS-WCSP stands for a general solver for the Weighted Constraint Sat-
isfaction Problem (see Nonobe and Ibaraki, 2001). The results show that globally our code
seems to be competitive with TS-WCSP and CPLEX as soon as instances become harder.
Since our code is really not specific for MRGAP, we think it is able to be a good start for
other generalized assignment-like problems.

7 Conclusion

We have presented in this paper our contribution to the Challenge Roadef 2012 on Machine
Reassignment. Our FMR method provides solution values that are very close to those of
the Challenge winner on almost all instances. Moreover, the same code with just a few

4 See http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/mrgap
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Table 5 MRGAP Instances C

|P| |M | |R| lb TS-CS FMR TS-WCSP CPLEX

100 5 1 1931 1931 1970 1933 1931
100 5 2 1933 1933 1995 1933 1933
100 5 4 1943 1943 1953 1944 1943
100 5 8 1950 1950 1989 1956 1950
100 10 1 1402 1402 1478 1402 1402
100 10 2 1409 1409 1425 1411 1409
100 10 4 1419 1419 1464 1419 1419
100 10 8 1435 1436 1503 1435 1435
100 20 1 1243 1245 1243 1245 1243
100 20 2 1250 1251 1252 1253 1250
100 20 4 1254 1257 1255 1258 1254
100 20 8 1267 1269 1268 1267 1272
200 5 1 3456 3456 3492 3460 3456
200 5 2 3461 3461 3500 3462 3461
200 5 4 3466 3466 3504 3469 3466
200 5 8 3473 3473 3532 3478 3474
200 10 1 2806 2807 2923 2811 2806
200 10 2 2811 2812 2866 2812 2812
200 10 4 2819 2821 2935 2823 2819
200 10 8 2833 2837 2929 2842 2842
200 20 1 2391 2393 2412 2394 2391
200 20 2 2397 2398 2412 2403 2398
200 20 4 2408 2409 2422 2415 2415
200 20 8 2415 2422 2428 2423 2419

Table 6 MRGAP Instances D

|P| |M | |R| lb TS-CS FMR TS-WCSP CPLEX

100 5 1 6353 6357 6620 6370 6358
100 5 2 6352 6359 6471 6380 6360
100 5 4 6362 6379 6524 6404 6386
100 5 8 6388 6425 6613 6500 6428
100 10 1 6342 6361 6415 6418 6381
100 10 2 6340 6378 6453 6411 6419
100 10 4 6361 6430 6476 6516 6468
100 10 8 6388 6478 6533 6679 6528
100 20 1 6177 6231 6289 6305 6280
100 20 2 6165 6261 6302 6389 6316
100 20 4 6182 6321 6339 6529 6406
100 20 8 6206 6482 6440 6736 6588
200 5 1 12741 12751 12951 12760 12750
200 5 2 12751 12766 13061 12778 12766
200 5 4 12745 12775 13027 12799 12762
200 5 8 12755 12805 12862 12844 12787
200 10 1 12426 12463 12592 12478 12457
200 10 2 12431 12477 12614 12533 12482
200 10 4 12432 12496 12640 12586 12532
200 10 8 12448 12571 12667 12812 12577
200 20 1 12230 12312 12466 12409 12393
200 20 2 12227 12332 12491 12442 12425
200 20 4 12237 12396 12539 12605 12472
200 20 8 12254 12485 12578 12918 12548
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Table 7 MRGAP Instances E

|P| |M | |R| lb TS-CS FMR TS-WCSP CPLEX

100 5 1 12681 12681 12716 12753 12681
100 5 2 12692 12692 12756 12727 12692
100 5 4 12810 12812 12934 12893 12810
100 5 8 12738 12738 12765 12876 12749
100 10 1 11577 11577 11656 11712 11584
100 10 2 11582 11587 11675 11665 11612
100 10 4 11636 11676 11759 11864 11753
100 10 8 11619 11701 11765 11836 11739
100 20 1 8436 8447 8543 8655 8565
100 20 2 10123 10150 10298 10471 10251
100 20 4 10794 11029 11135 11271 11443
100 20 8 11224 11610 11847 11957 12458
200 5 1 24930 24933 24966 25002 24930
200 5 2 24933 24936 25048 25024 24933
200 5 4 24990 24999 25110 25091 25003
200 5 8 24943 24950 25061 25090 24943
200 10 1 23307 23312 23351 23414 23321
200 10 2 23310 23317 23391 23538 23325
200 10 4 23344 23363 23412 23628 23543
200 10 8 23339 23412 23554 23714 23744
200 20 1 22379 22386 22510 22815 22457
200 20 2 22387 22408 22477 22834 22558
200 20 4 22395 22439 22574 22990 22782
200 20 8 22476 22614 22931 23057 23482

modifications performs well on a high proportion of instances of the MRGAP problem,
although it was not designed for this problem. Experimental results show that FMR is quite
robust and behaves better when instances become harder. Let us point out that, in spite of
strong operational Challenge constraints (time limitation, specific computer) having a real
impact on our algorithm, several ideas developed here can actually be used in a more general
context. In particular, the heuristics cooperation and communications issues are core to our
approach.

As noticed before, the time limitation given by the Challenge prevents us from using
directly mathematical programming here. Nevertheless, the latter approach could be used
to give some guidance on which regions are the most promising in the (huge) space of
solutions. This may be done by considering a simplified model or a relaxation that would
provide some structural information about good solutions.
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