G. Burel, Embedding Deduction Modulo into a Prover, CSL 2010, pp.155-169, 2010.
DOI : 10.1007/978-3-642-15205-4_15

G. Burel, Experimenting with Deduction Modulo, Lecture Notes in Artificial Intelligence, vol.43, issue.4, pp.162-176, 2011.
DOI : 10.1007/978-3-642-02959-2_10

URL : https://hal.archives-ouvertes.fr/hal-01125858

B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Information and Computation, vol.85, issue.1, pp.12-75, 1990.
DOI : 10.1016/0890-5401(90)90043-H

URL : https://hal.archives-ouvertes.fr/hal-00353765

G. Dowek, Polarized Resolution Modulo, TCS 2010, pp.182-196, 2010.
DOI : 10.1007/978-3-642-15240-5_14

URL : https://hal.archives-ouvertes.fr/hal-01054460

G. Dowek, T. Hardin, and C. Kirchner, Theorem Proving Modulo, Journal of Automated Reasoning, vol.31, issue.1, pp.33-72, 2003.
DOI : 10.1023/A:1027357912519

URL : https://hal.archives-ouvertes.fr/hal-01199506

G. Dowek and Y. Jiang, Axiomatizing Truth in a Finite Model (2013), https://who. rocq.inria.fr/Gilles

J. A. Navarro-pérez, Encoding and Solving Problems in Effectively Propositional Logic, 2007.

R. Reiter, Two Results on Ordering for Resolution with Merging and Linear Format, Journal of the ACM, vol.18, issue.4, pp.630-646, 1971.
DOI : 10.1145/321662.321678

J. A. Robinson, Automatic Deduction with Hyper-Resolution, Journal of Symbolic Logic, vol.39, issue.1, pp.189-190, 1974.
DOI : 10.1007/978-3-642-81952-0_27

J. A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle, Journal of the ACM (JACM), vol.12, issue.1, pp.23-41, 1965.
DOI : 10.1007/978-3-642-81952-0_26

J. R. Slagle and L. M. Norton, Experiment with an automatic theorem-prover having partial ordering inference rules, Communications of the ACM, vol.16, issue.11, pp.682-688, 1973.
DOI : 10.1145/355611.362538