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Abstract—In this paper, we address the problem of joint
diagonalization by congruence (i.e. the canonical polyadic decom-
position of semi-symmetric 3rd order tensors) subject to arbitrary
convex constraints. Sufficient conditions for the existence of a
solution are given. An efficient algorithm based on the Alternating
Direction Method of Multipliers (ADMM) is then designed.
ADMM provides an elegant approach for handling the additional
constraint terms, while taking advantage of the structure of the
objective function. Numerical tests on simulated matrices show
the benefits of the proposed method for low signal to noise
ratios. Simulations in the context of nuclear magnetic resonance
spectroscopy are also provided.

I. INTRODUCTION

For more than one decade, the Joint Diagonalization by
Congruence (JDC) problem (i.e. the canonical polyadic de-
composition of semi-symmetric 3rd order tensors) has attracted
much attention in the signal processing community [2]. The
problem can be simply formulated as follows:

Problem 1. (JDC problem) Given K symmetric matricesC(k)

in RN×N , find a joint transformation matrix A ∈ RN×P and
K diagonal matrices D(k) in RP×P such that

(∀k ∈ {1, . . . ,K}) C(k) = AD(k)AT. (1)

The JDC problem has been mostly handled as an optimization
problem. Depending on the optimization criterion, various
strategies can be devised to solve it [2]. A popular approach
is to employ a direct-fit cost function measuring the squared
difference between the K given matrices C(k) and their
assumed model (1) as a function of the joint transformation
matrix A and the K diagonal matrices D(k). This criterion is
expressed as:

Ψ1

(
A,(D(k))1≤k≤K

)
= 1

2

∑K
k=1||C

(k)−AD(k)AT||2F. (2)

Although efficient algorithms have been developed to solve
the corresponding optimization problem [2], [21], they may
fail to deliver reliable estimates especially when the K ob-
served matrices C(k) are corrupted by some noise (e.g. esti-
mation errors, outliers, ...), the dimensionality of the problem
is high (i.e. N or P are large), or K is small (which may
make the problem underdetermined). In the general context of

inverse problems, a classical way of circumventing this prob-
lem consists in adding constraints on the sought parameters.
To be meaningful such constraints should reflect some prior
information or desirable property concerning the JDC problem.
It turns out that in a number of cases of practical interest such
prior information is available. The objective of this paper is
therefore to recast the JDC problem as a Joint Diagonalization
by Congruence under Constraints (JD2C) problem which is
formulated as follows:

Problem 2. (JD2C problem) Given K matrices C(k) in
R
N×N , find a matrix A and K matrices D(k) minimizing

Ψ1 in (2) subject to the following constraints:

(i) A ∈ A;
(ii) (∀k ∈ {1, . . . ,K}) D(k) ∈ D;

where A is a nonempty closed subset of RN×P and D is a
nonempty closed subset of the space of diagonal matrices of
R
P×P .

As an example, the set A can be equal to [Amin, Amax]N×P

with (Amin, Amax) ∈ R
2 and Amin ≤ Amax. Then, the

nonnegativity constraint can be viewed as a limit case when
Amin = 0 and Amax → +∞. Its use in the context of
Nonnegative JDC (NJDC) was investigated through derivative-
based [4], [5], alternating least squares [5], [19] and Jacobi-
like [20] optimization algorithms. Regarding the choice of D,
because of the imposed diagonal structure for the matrices
(D(k))1≤k≤K , this set must have the form D = Diag(V),
where V is a nonempty closed convex subset of RP . Various
choices for V can be envisaged such as V = [Dmin, Dmax]P

with (Dmin, Dmax) ∈ R2 and Dmin ≤ Dmax.

The aim of this paper is twofold. First we give sufficient
conditions for the existence of a solution to the JD2C problem.
Secondly, we show how to compute efficiently this solution
based on the Alternating Direction Method of Multipliers
(ADMM) [1]. Contrarily to Problem 2, in the algorithmic part,
it will be assumed that A and D are convex sets. Numerical
experiments on simulated matrices show the good performance
of the proposed method, especially in the case of degeneracies
such as for low Signal-to-Noise Ratio (SNR) values. Eventu-
ally, the behavior of the proposed method is illustrated in the
context of blind separation of Nuclear Magnetic Resonance



Spectroscopy (NMRS) signals.

II. EXISTENCE OF A SOLUTION TO THE JD2C PROBLEM

Although our purpose in this paper is mainly to focus on
algorithmic issues, an important question is to know whether
the existence of a solution to Problem 2 is guaranteed. We now
state sufficient conditions for the existence of such a solution:

Proposition 1. Assume that one of the following conditions is
satisfied:

(i) there exist a matrix A ∈ A and a set of K matrices
D(k) ∈ DK such that (1) is satisfied;

(ii) A and D are bounded;
(iii) A = [0,+∞[N×P and D = Diag([0,+∞[P );
(iv) A is a subset of the cone of full column rank matrices

of RN×P and D is a subset of Diag(RP ) which
contains the null matrix.

Then, the JD2C problem admits a solution.

A proof of this proposition will be provided in an extended
version of this paper. Now let us assume that at least one
of the conditions (i)-(iv) is fulfilled. Our objective in the
remainder of this paper is then to design an algorithm based
on ADMM. As we will show, ADMM provides a suitable
approach for handling the additional constraint terms, while
taking advantage of the structure of the objective function.

III. THE JD2CADMM ALGORITHM

A. The alternating direction method of multipliers

Lagrange multiplier techniques constitute powerful opti-
mization tools [16]. ADMM [1] is a splitting method which
combines a dual ascent step [11] with proximal steps [7]
ensuring good convergence properties. By duality arguments,
ADMM is also strongly related to the Douglas-Rachford
method, another famous optimization algorithm [6], [10]. In
its common use, ADMM aims at solving structured convex
problems of the form:

minimize
x∈H,y∈G

f(x) + g(y) subject to Px−Qy = c (3)

where f : H →] − ∞,+∞[ and g : G →] − ∞,+∞[ are
two lower-semicontinuous convex functions with nonempty
domains, P : H → K and Q : G → K are two bounded linear
operators, c ∈ K, and H, G, and K are three real Hilbert
spaces. Let us assume that the above minimization problem
admits a solution and that P ∗P and Q∗Q are isomorphisms,
where P ∗ and Q∗ are the adjoint operator of P and Q, re-
spectively. The augmented Lagrangian function corresponding
to (3) is formed as follows, for every (x,y,λ) ∈ H×G×K:

Lρ(x,y,λ) = f(x) + g(y) + 〈λ | Px−Qy − c〉K
+ρ

2 ||Px−Qy − c||
2
K

(4)

where λ is a Lagrangian multiplier vector, ρ ∈]0,+∞[ is a
penalty parameter, 〈· | ·〉K is the scalar product of K and ‖·‖K
the associated norm. The ADMM algorithm includes an x-
minimization step, a y-minimization step, and a dual variable
update step. In the convex case, the convergence of ADMM is
guaranteed under mild qualification conditions (see [1], [7]
and the references therein). The fact that P ∗P and Q∗Q

are isomorphisms plays a prevalent role in the convergence
proof by ensuring the strong convexity of Lρ( ·,y,λ ) and
Lρ(x, ·,λ ), for every x ∈ H, y ∈ G, and λ ∈ K.

Works have been devoted to more general scenarios con-
cerning the minimization of a sum of more than two functions,
i.e.:

minimize
(x1,...,xJ )∈
H1×...×HJ

J∑
j=1

fj(xj) subject to
J∑
i=1

Qjxj = c (5)

where, for every j ∈ {1, . . . , J}, fj : Hj →] − ∞,+∞]
is a lower-semicontinuous convex function with a nonempty
domain, Qj : Hj → K is a bounded linear operator such that
Q∗jQj is an isomorphism, and Hj is a real Hilbert space.
The augmented Lagrangian function then reads, for every
(x1, . . . ,xJ ,λ) ∈ H1 × . . .×HJ ×K:

Lρ(x1, . . . ,xJ ,λ) =
∑J
j=1 fj(xj)

+〈λ |
∑J
i=1Qjxj−c〉K + ρ

2 ||
∑J
i=1Qjxj−c||2K.

(6)

A natural extension of the standard ADMM thus corresponds
to the following operations performed at iteration n:

x1,n+1 = argmin
x′1∈H1

Lρ(x
′
1,xn,2, . . . ,xn,J ,λn )

...
xJ,n+1 =argmin

x′J∈HJ

Lρ(xn+1,1, . . . ,xn+1,J−1,x
′
J ,λn )

λn+1 = λn + ρ(
∑J
i=1Qjxj,n+1 − c ).

(7)

It was however proved recently in [3] that this algorithm may
fail to converge and it was proposed in [18] a randomized ver-
sion of it, which was shown to converge in expectation under
some technical assumptions. Note that the use of such kind of
randomized block-coordinate fixed point algorithms was inves-
tigated in [8] where almost sure convergence properties were
established. Basically, the randomized form of ADMM is sim-
ilar to (7) but, instead of updating the components according
to their index order 1, . . . , J , they are updated following the
order σn(1), . . . , σn(J), where σn : {1, . . . , J} → {1, . . . , J}
is a permutation which is randomly chosen at each iteration
n. Finally, it can be noticed that another technique for dealing
with criteria split in a sum of more than two functions is to
resort to parallelized versions of ADMM [12], [15].

B. Algorithm derivation

In order to facilitate the derivation of an efficient alternating
scheme for the direct-fit cost function (2), we introduce aux-
iliary variables A(1) ∈ RN×P , A(2) ∈ RN×P , U ∈ RN×P ,
and (D̃(k))1≤k≤K ∈

(
Diag(RP )

)K
. Then, the JD2C problem

can be reformulated as the following minimization problem:

minimize
(D(k),D̃

(k)
)1≤k≤K,

A(1),A(2),U

Ψ2

(
A(1),A(2),U , (D(k), D̃(k))1≤k≤K

)

subject to

{
A(i) = U , i ∈ {1, 2}
D(k) = D̃(k), k ∈ {1, . . . ,K}

(8)

with:

Ψ2

(
A(1),A(2),U , (D(k), D̃(k))1≤k≤K

)
= ιA(U)

+
∑K
k=1 ιD(D̃(k)) + 1

2

∑K
k=1 ||C

(k) −A(1)D(k)(A(2))T||2F
(9)



where ιA (resp. ιD) is the indicator function of set A (resp.
D). The indicator of a set S of a Hilbert space H is defined
as (∀x ∈ H) ιS(x) = 0 if x ∈ S, and +∞ otherwise.
It is noteworthy that the minimization problem (8) can be
rewritten similarly to (5) where J = 5 and the matrices
(QT

jQj)1≤j≤5 correspond to isomorphisms. The augmented
Lagrangian function associated with (8) is given by

Lρ1,ρ2,δ
(
(A(i),Π(i))1≤i≤2,U, (D

(k), D̃(k),Λ(k))1≤k≤K
)

=∑K
k=1

(
tr
(
Λ(k)(D(k) − D̃(k))

)
+ δ

2 ||D
(k) − D̃(k)||2F

)
+
∑2
i=1

(
tr
(
Π(i)(A(i)−U)T

)
+ ρi

2 ||A
(i) −U ||2F

)
+Ψ2

(
A(1),A(2),U , (D(k), D̃(k))1≤k≤K

)
(10)

where Π(1) ∈ R
N×P , Π(2) ∈ R

N×P and the K matrices
Λ(k) ∈ Diag(RP ) are Lagrangian multipliers, and where ρ1 ∈
]0,+∞[, ρ2 ∈]0,+∞[, and δ ∈]0,+∞[ are penalty parameters
for the linear equality constraints given in (8).

An ADMM-like algorithm for solving (8) is obtained by
successively minimizing the augmented Lagrangian function
(10) with respect to A(1), A(2), U , (D(k))1≤k≤K , and
(D̃(k))1≤k≤K , one variable at a time while setting the others
to their most recent values, as described in (7). Then, the mul-
tipliers Π(1)

n , Π(2)
n , and (Λ(k)

n )1≤k≤K , where n ∈ N denotes
the iteration number, are updated at each iteration. By using
(9) and (10), it turns out that the alternating minimizations of
(10) have the following closed form solutions:

A
(i)
n+1 =

(∑K
k=1C

(k)A
(3−i)
n+i−1D

(k)
n + ρiUn −Π(i)

n

)
(∑K

k=1D
(k)
n (A

(3−i)
n+i−1)TA

(3−i)
n+i−1D

(k)
n + ρiIP

)−1
, i ∈ {1, 2}

Un+1 =PA
(

1
ρ1+ρ2

(
ρ1A

(1)
n+1+ρ2A

(2)
n+1+Π(1)

n +Π(2)
n

))
D

(k)
n+1 =Diag

((
(A

(1)
n+1�A

(2)
n+1)T(A

(1)
n+1�A

(2)
n+1)+δIP 2

)−1
(
(A

(1)
n+1�A

(2)
n+1)T vec(C(k))+vec (δD̃(k)

n−Λ(k)
n )
))

D̃(k)
n+1 = PD(D

(k)
n+1 + δ−1Λ(k)

n )
(11)

where � and PS denote the Hadamard product operator and
the projection onto a convex set S, respectively. Eventually,
the resulting iterations have to be implemented using the
Randomized Update Strategy (RUS) proposed in [18] in order
to improve the convergence of the algorithm.

Although our JD2CADMM algorithm is closely related to the
block-coordinate version of ADMM described in Section III-A,
it does not constitute an instance of this algorithm or parallel
versions of it. Indeed, the direct-fit cost term corresponds
to a non-separable function of the variables A(1)

n , A(2)
n and

(D(k)
n )1≤k≤K . However, by updating incrementally the vari-

ables A(1)
n , A(2)

n and (D(k)
n )1≤k≤K at iteration n, the mini-

mization of the Lagragian function is made tractable. Another
difficulty is that, unlike most of the existing works concerning
block-coordinate forms of ADMM, the problem we address is
nonconvex. Note that a related strategy was adopted in [14]
for computing the canonical polyadic decomposition of un-
symmetric nonnegative multi-way arrays, but without the RUS
described in [8], [18]. Besides, an interesting feature of our
algorithm is that the updates of the variables (D(k)

n )1≤k≤K ,
(D̃(k)

n )1≤k≤K , or (Λ(k)
n )1≤k≤K can be performed in a parallel

(a) Error D(A, Â) evolution (b) CPU time evolution

Fig. 1. Performance evolution versus SNR.

manner. This may be useful for providing fast implementations
of JD2CADMM on multicore architectures.

IV. NUMERICAL RESULTS

In this section, we restrict our attention to the nonnegative
case when A = [0,+∞[N×P and D = Diag(RP ). Our
JD3CADMM algorithm, renamed NJDCADMM in such a context,
is compared with several state-of-the-art (nonnegative) JDC
methods and Blind Source Separation (BSS) algorithms. More
specifically, two versions of NJDCADMM are studied: one based
on the classical ADMM method [1] and another one using
ADMM with the Randomization of the Updates described in
Section III-A [8], [18], named NJDCADMM and NJDCRU-ADMM,
respectively. The performance is measured in terms of the error
between the true joint transformation A and its estimate Â,
as well as the source signals S and their estimate Ŝ when
the BSS context is considered. So the scale and permutation
invariant distance D defined in [19, section III] is chosen as
the performance measure. Moreover, 200 independent Monte
Carlo trials are used to compute the average distance D. All
the algorithms stop either when the relative error of the cor-
responding criterion between two successive iterations is less
than 10−4 or when the number of iterations exceeds 500. In the
following experiments, all the algorithms are initialized with
the same random matrices drawn from a uniform distribution.
All the simulations are implemented in Matlab v7.14 and run
on Intel Dual-Core 2.0GHz CPU with 8Gb memory.

A. Simulated JDC model

In this first test, the behavior of NJDCADMM and
NJDCRU-ADMM are evaluated and compared with the classical
JDC method named ACDC [21] and two NJDC algorithms,
namely LM+

sym [4] and ACDC+
LU [19]. The synthetic matrix set

C is generated randomly according to (1) with N = 8, P = 5
and K = 4. A is drawn from the standard uniform distribution
while the diagonal elements of D(k) are drawn independently
from the standard normal distribution. Each resulting target
matrix C

(k)
N is perturbed by a random symmetric1 "noise"

matrix as follows:

C
(k)
N = C(k) + σ

(k)
N N(k)N(k)T (12)

where σN is a scalar controlling the noise level and N(k) is
drawn from a standard normal distribution. Then the SNR is
defined as SNR=−20 log10(σ

(k)
N ‖N(k)N(k)T‖F /‖C(k)‖F ).

1In most of the applications, the matrices to be jointly diagonalized are slices
of cumulants estimated from the data, which involves a symmetric noise.



TABLE I. AVERAGE ESTIMATING ERRORS AND CPU TIME OF FIVE
METHODS FOR BSS OF NMRS DATA

NJDCRU-ADMM ACDC+
LU CoM2 SOBI NNLS

D(A, Â) 0.0007 0.0007 0.0043 0.0480 0.0137

D(ST, ŜT) 0.0175 0.0175 0.0304 0.0677 0.0383

CPU time (s) 0.0924 0.3251 0.0147 0.1178 5.0233

Figure 1(a) depicts the average error D(A, Â) at the
output of the five algorithms as a function of the SNR,
which varies from −20 to 30 dB. It appears that NJDCADMM,
NJDCRU-ADMM and LM+

sym give the smallest estimation errors
for every SNR value. On the one hand, the use of nonnegative
constraints allows us to outperform ACDC for very low SNR
values. On the other hand, NJDCADMM, NJDCRU-ADMM and
LM+

sym outperform ACDC+
LU for high SNR values allowing

them to compete with ACDC. However, as displayed in
figure 1(b), LM+

sym is more time consuming than NJDCADMM
and NJDCRU-ADMM. Note that the use of the randomization
step allows NJDCRU-ADMM to be less time consuming than
NJDCADMM. To sum up, for most of the SNR values (especially
for low values), NJDCRU-ADMM yields the best compromise
between estimation accuracy and computation time.

B. BSS application on NMRS data

We now illustrate the ability of NJDCRU-ADMM to per-
form a Semi-Nonnegative Independent Component Analysis
(SeNICA) of NMRS signals [20] through the NJDC of a
set of Fourth Order (FO) cumulant matrix slices. The latter
approach is compared with two ICA methods, namely CoM2
[9] and SOBI [2], [9], a nonnegative matrix factorization
algorithm based on alternating NonNegativity Least Squares
(NNLS) [13] and a SeNICA approach based on ACDC+

LU.
More specifically, two source metabolites, namely Choline
(Cho) and Myo-inositol (Ins), are generated by means of
Lorenzian functions with fixed parameters for a realistic rep-
resentation [20]. It is assumed that the static mixing model
X = AS +B is valid, where B is a matrix realization of an
additive zero-mean white Gaussian noise vector process such
that the SNR=−20 log10(‖B‖F /‖AS‖F ) is equal to 10 dB.
200 matrices X ∈ R20×1000 are created with A generated as
in Section IV-A. The subset C ⊂ R20×20×20 is then built by
computing 20 linear combinations from the 400 available FO
cumulant matrix slices. Table I shows the average estimation
errors D(A, Â), D(ST, ŜT) and the CPU time at the output of
the five methods. It appears that the SeNICA approach using
NJDCRU-ADMM offers the best compromise between estimation
accuracy and computation time.

V. CONCLUSION

In this paper, we gave sufficient conditions for the existence
of a solution to the JDC problem subject to constraints. We also
provided an ADMM-based framework allowing us to compute
such a solution and to handle any kind of convex constraints.
For example, we can impose lower and upper bounds of the
sought values or impose that the values belong to some unit
simplex, if these contraints make sense in some contexts.
Numerical tests have shown the benefits of the proposed
JD2CADMM method in the presence of modeling errors. In our
future work, we plan to investigate theoretical convergence
properties of the proposed algorithm.
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