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The Kolmogorov Law of turbulence
What can rigorously be proved ? Part II

Roger Lewandowski and Benoît Pinier∗

Abstract

We recall what are the different known solutions for the incompressible Navier-
Stokes Equations, in order to fix a suitable functional setting for the probabilistic frame
that we use to derive turbulence models, in particular to define the mean velocity and
pressure fields, the Reynolds stress and eddy viscosities. Homogeneity and isotropy
are discussed within this framework and we give a mathematical proof of the famous
−5/3 Kolmogorov law, which is discussed in a numerical simulation performed in a
numerical box with a non trivial topography on the ground.
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1 Introduction

We focus in this paper on the law of the −5/3, which attracted a lot of attention from the
fluid mechanics community these last decades, since it is a basis for many turbulence mod-
els, such as Large Eddy Simulation models (see for instance in [20, 21, 44, 50]). Although
it is usually known as the Kolmogorov law, it seems that it appears for the first time in a
paper by Onsager [42] in 1949, and not in the serie of papers published by Kolmogorov in
1941 (see in [56]), where the author focuses on the 2/3’s law, by introducing the essential
scales related to homogeneous and isotropic turbulent flows (see formula (4.13) below). In
this major contribution to the field, Kolmogorov opened the way for the derivation of laws
based on similarity principles such as the −5/3’s law (see also in [11, 32]).
Roughly speaking, the −5/3’s law states that in some inertial range [k1, k2], the energy
density of the flow E(k) behaves like Ctek−5/3, where k denotes the current wave number
(see figure 1 below and the specific law (4.20)).

Log(k)

Log(E)

Slope = −5/3

k1 k2

Figure 1: Energy spectrum Log-Log curve

This paper is divided in a theoretical part and a numerical part, in which we aim at:

i) carrefully express what is the appropriate similarity assumption that must satisfy an
homogeneous and istropic turbulent flow in order to derive the −5/3’s law (assump-
tions 4.1 and 4.2 below),

ii) to theoretically derive the −5/3 law from the similarity assumption (see Theorem 4.2
below),

iii) to discuss the numerical validity of such a law from a numerical simulation in a test
case, using the software BENFLOW 1.0, developed at the Institute of Mathematical
Research of Rennes.
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Before processing items i) and ii), we discuss on different results about the Navier-Stokes
equations (2.1) (NSE in what follows), that are one of the main tools in fluid mechanics,
as well as the Reynolds stress (3.7) derived by taking the expectation of the NSE, once
the appropriate probabilistic frame is specified. We then define the density energy E(k),
which is the energy of the flow in the sphere {k = |k|} in the Fourier space. Furthermore,
we introduce the concept of dimensional bases in order to properly set Assumptions 4.1
and 4.2.
The numerical simulation takes place in a computational box with a non trivial topography
(see figure 3), by using the mean NSE (3.6), the k − E model (3.14), and appropriate
boundary conditions supposed to model the dynamics of the atmospheric boundary layer.
Atmospheric boundary layer modeling is a modern challenge because of its significance in
climate change issues. We find in the literature many simulations carried out in different
configurations, such as for example the case of a flat ground [1, 5, 13, 45], the case of stable
or convective boundary layers [38, 59], urban simulations where building are modeled by
parallelipipeds [39], wind farms [46], realistic configurations including mountains [37, 58].
Of course, this flows is not homogeneous nor isotropic. However, the simulations shows that
the curve of log10(E(k)) exhibits an inertial range over 4 decades, in which the regression
straight line has a slope equal to −2.1424 6= −5/3 (see figure 6), suggesting that the −5/3’s
law is not satisfied in this case.

2 About the 3D Navier Stokes equations

2.1 Framework

Let Ω ⊆ IR3 be a C1 bounded convex smooth domain, Γ its boundary, T ∈ IR+ (enventually
T = +∞), and Q = [0, T ]×Ω. The velocity of the flow is denoted by v, its pressure by p.
The incompressible Navier Stokes equation satisfied by (v, p) (NSE in the remainder) are
as follows:

(2.1)


∂tv + (v · ∇)v −∇ · (2νDv) +∇p = f in Q, (i)

∇ · v = 0 in Q, (ii)
v = 0 on Γ, (iii)
v = v0 at t = 0, (iv)

where v0 is any divergence free vector fields such that v0 · n|Γ = 0, ν > 0 denotes the
kinematic viscosity, that we suppose constant for the simplicity, f is any external force
(such as the gravity for example), Dv denotes the deformation tensor, ∇· the divergence
operator and (v · ∇)v is the nonlinear transport term, specifically

Dv =
1

2

(
∇v +∇vt

)
, ∇v = (∂jvi)1≤ij≤3, v = (v1, v2, v3), ∂i =

∂

∂xi
,

∇ · v = ∂ivi,

[(v · ∇)v]i = vj∂jvi,

by using the Einstein summation convention. We recall that it is easily deduced from the
incompressibilty condition (see [11]):

(v · ∇)v = ∇ · (v ⊗ v), v ⊗ v = (vivj)1≤i,j≤3,

∇ · (2νDv) = ν∆v.

In the following, we will consider the functional spaces

(2.2) W = {v ∈ H1
0 (Ω)3,∇ · v = 0} ↪→ V = {v ∈ L2(Ω)3, v · n|Γ = 0,∇ · v = 0},
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Throughout the paper, we assume v0 ∈ V.

2.2 Strong solutions to the NSE

Let P be the orthogonal projection L2(Ω)3 ↪→ V, A and F the operators

Av = −νP∆v, Fv = P ((v · ∇)v).

By applying P to (2.1.i) in noting that P (∇p) = 0, we are led to the following initial value
problem

(2.3)


dv

dt
= −Av + Fv + P f(t), (i)

v(0) = v0, (ii)

where t→ v(t) and t→ f(t) are considered as functions valued in W and V respectively.

Definition 2.1. We say that v = v(t) is a strong solution to the NSE in a time interval
[0, T ?] if dv/dt and Av exist and are continuous in [0, T ?] and (2.3.i) is satisfied there.

Remark 2.1. In definition 2.1, the pressure is not involved. It can be reconstructed by the
following equation

(2.4) ∆p = −∇ · ((v · ∇)v) +∇ · f ,

derived from equation (2.1.i) by taking its divergence.

The existence of a strong solution is proved in Fujita-Kato [18]. It is subject to regularity
conditions regarding the initial data v0 and the source f . The result is stated as follows.

Theorem 2.1. We assume

i) v0 ∈ V ∩H1/2(Ω)3,

ii) f is Hölder continuous in [0, T ].

Then there exists T ? = T ?(ν, ||v0||1/2,2,Ω, ||f ||C0,α(Ω)) such that the NSE admits a unique
strong solution v = v(t). Moreover, if f = f(t,x) is Hölder continuous in Q = [0, T ?]×Ω,
then v(t,x), ∇v(t,x), ∆v(t,x) and ∂v(t,x)/∂t are Hölder continous in ]0, T ?[×Ω.

Remark 2.2. The strong solution is solution of the equation

(2.5) v(t) = e−tAv0 −
∫ t

0
e−(t−s)AF (v(s))ds+

∫ t

0
e−(t−s)AP f(s)ds,

which is approached by the sequence (vn)n∈IN expressed by

(2.6) vn(t) = e−tAv0 −
∫ t

0
e−(t−s)AF (vn−1(s))ds+

∫ t

0
e−(t−s)AP f(s)ds,

The reader is referred to [9, 12, 28] for more details concerning the question of strong
solutions.
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2.3 Turbulent solutions

Definition 2.2. We say that v is a turbulent solution of NSE (2.1) in [0, T ] if

i) v ∈ L2([0, T ],W) ∩ L∞([0, T ], L2(Ω)),

ii) ∂tv ∈ L4/3([0, T ],W′) = [L4([0, T ],W)]′ (by writing ∂t =
∂

∂t
for the simplicity),

iii) lim
t→0
||v(·, t)− v0(·)||0,2,Ω = 0,

iv) ∀w ∈ L4([0, T ],W),∫ T

0
< ∂tv,w > dt+

∫ T

0

∫
Ω

(v⊗v) : ∇w dxdt+

∫ T

0

∫
Ω
∇v : ∇w dxdt =

∫ T

0
< f ,w > dt,

where for u ∈W, F ∈W′, < F,u > denotes the duality pairing between F and u,

v) v satisfies the energy inequality at each t > 0,

1

2

∫
Ω
|v(t,x)|2dx + ν

∫ t

0

∫
Ω
|∇v(t′,x)|2dxdt′ ≤

∫ t

0
< f ,v > dt′.

Remark 2.3. Once again, the pressure is not involved in this formulation. It this frame,
it is recovered by the De Rham Theorem (see for instance in [55]).

The existence of a turbulent solution was first proved by Leray [29] in the whole space,
then by Hopf [22] in the case of a bounded domain with the no slip boundary condition,
which is the case under conderation here. This existence result can be stated as follows.

Theorem 2.2. Assume that v0 ∈ V, f ∈ L4/3([0, T ],W′). Then the NSE (2.1) has a
turbulent solution.

Remark 2.4. The turbulent solution is global in time, which means that it may be extended
to t ∈ [0,∞[ depending on a suitable assumption on f . However it is not known whether it
is unique or not. Moreover, it is not known if the energy inequality is an equality.

The reader is also referred to [14, 16, 36, 55] for further results on turbulent (also weak)
solutions of the NSE.

3 Mean Navier-Stokes Equations

3.1 Reynolds decomposition

Based on strong or turbulent solutions, it is known that it is possible to set a probabilistic
framework in which we can decompose the velocity v and the pressure as a the sum of the
statistical mean and a fluctuation, namely

(3.1) v = v + v′, p = p+ p′.

More generally, any tensor field ψ related to the flow can be decomposed as

(3.2) ψ = ψ + ψ′.
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The statistical filter is linear and subject to satisfy the Reynolds rules:

∂tψ = ∂tψ,(3.3)
∇ψ = ∇ψ,(3.4)

as well as

(3.5) ψ = ψ leading to ψ′ = 0.

We have studied in [11] different examples of such filters. Historically, such a decomposition
was first considered in works by Stokes [53], Boussinesq [6], Reynolds [49], Prandtl [47], in
the case of the « long time average »(see also in [31]). Later on, Taylor [54], Kolmogorov [25]
and Onsager [42] have considered such decompositions when the fields related to the flow
are considered as random variables, which was one of the starting point for the development
of modern probability theory.

3.2 Reynolds Stress and closure equations

We take the mean of the NSE (2.1) by using (3.3), (3.4) and (3.5). We find out the following
system:

(3.6)


∂tv + (v · ∇)v − ν∆v +∇p = −∇ · σ(r) + f in Q,

∇ · v = 0 in Q,
v = 0 on Γ,
v = v0 at t = 0,

where

(3.7) σ(r) = v′ ⊗ v′

is the Reynolds stress. The big deal in turbulence modeling is to express σ(r) in terms of
averaged quantities. The most popular model is derived from the Boussinesq assumption
which consists in writing:

(3.8) σ(r) = −νtDv +
2

3
k Id,

where

i) k =
1

2
trσ(r) =

1

2
|v′|2 is the turbulent kinetic energy (TKE),

ii) νt is an eddy viscosity.

In order to close the system, the eddy viscosity remains to be modeled. To do so, many
options are avaible (see in [4, 10, 11, 24, 26, 30, 40, 50]).
One of the most popular model is the Smagorinsky’s model (see for instance in [20, 21, 24,
34, 44, 48, 50, 51, 52]), in which

(3.9) νt = Csδ
2|Dv|,

where Cs ≈ 0.1 or 0.2 is an universal dimensionless constant, and δ a characteristic scale,
ideally the size of the smallest eddies in the flow the model is supposed to catch. This
model is the fundation of the wide class of Large Eddy Simulation models. The reader will
find various mathematical results concerning the Smagorinsky’s model in [3, 11, 24, 35, 43].
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We next mention the so-called TKE model, given by

(3.10) νt = Ck`
√
k,

which gives accurate results for the simulation of realistic flows (see for instance [33]). In
model (3.10), ` denotes the Prandtl mixing length, Ck is a dimensionless constant that
must be fixed according to experimental data. In practice, ` is taken to be equal to the
local mesh size in a numerical simulation, and k is computed by using the closure equation
(see in [11, 40])

(3.11) ∂tk + v · ∇k −∇ · (νt∇k) = νt|Dv|2 − k
√
k

`
.

The reader will find a bunch of mathematical result concerning the coupling of the TKE
equation to the mean NSE in [7, 8, 11, 19, 27, 30].

Finally, we mention the famous k − E model that is used for the numerical simulations
carried out in Section 5. In this model, E denotes the turbulent dissipation

(3.12) E = 2ν|Dv′|2,

and dimensional analysis leads to write

(3.13) νt = Cµ
k2

E
.

The coupled system used to compute k and E is the following (see [11, 40] for the derivation
of these equations):

(3.14)

 ∂tk + v · ∇k −∇ · (νt∇k) = νt|Dv|2 − E .

∂tE + v · ∇E −∇ · (νt∇E ) = cηk|Dv|2 − cE
E 2

k
,

where Cν = 0.09, cE = 1.92 and cη = 1.44 are dimensionless constants.

4 Law of the −5/3
The idea behind the law of the −5/3 for homogeneous and isotropic turbulence is that in
the « inertial range », the energy density E = E(k) at a given point (t,x) is driven by the
dissipation E . In this section, we properly define the energy density E for homogeneous
and isotropic turbulent flows. We then set the frame of the dimensional bases and the
similarity principle in order to rigorously derive the law of the −5/3.

Remark 4.1. For homogeneous and isotropic turbulence, one can show the identity E =
2ν|Dv′|2 = 2ν|Dv|2 (see in [11]).

4.1 Energy density of the flow

Roughly speaking, homogeneity and isotropy means that the correlations in the flows are
invariant under translations and isometries (see in [2, 11, 32]), which we assume throughout
this section, as well as the stationarity of the mean flow for simplicity. Let

(4.1) IE =
1

2
|v|2,

be the total mean kinetic energy at a given point x ∈ Ω, which we not specify in what
follows.
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Theorem 4.1. There exists a measurable function E = E(k), defined over IR+, the integral
of which over IR+ is finite, and such that

(4.2) IE =

∫ ∞
0

E(k)dk.

Proof. Let IB2 be the two order correlation tensor expressed by:

(4.3) IB2 = IB2(r) = (vi(x)vj(x + r))1≤i,j≤3 = (Bij(r))1≤i,j≤3,

which only depend on r by the homogeneity assumption, nor on t because of the stationarity
assumption. It is worth noting that

(4.4) IE =
1

2
trIB2(0).

Let ÎB2 denotes the Fourier transform of IB expressed by

(4.5) ∀k ∈ IR3, ÎB2(k) =
1

(2π)3

∫
IR3

IB2(r)e−ik·rdr,

We deduce from the Plancherel formula,

(4.6) ∀ r ∈ IR3, IB2(r) =
1

(2π)3

∫
IR3

ÎB2(k)eik·rdk,

which makes sense for both types of solutions to the NSE, strong or turbulent (see the
section 2). It is easily checked that the isotrpoy of IB2 in r yields the isotropy of ÎB2 in
k. Therefore, according to Theorem 5.1 in [11] we deduce the existence of two real valued
functions B̃d and B̃n of class C1 such that 1

(4.7) ∀k ∈ IR3, |k| = k, ÎB2(k) = (B̃d(k)− B̃n(k))
k⊗ k

k2
+ B̃n(k)I3.

Using formula (4.7) yields

(4.8) B̂ii(k) = B̃d(k) + 2B̃n(k),

which combined with Fubini’s Theorem, (4.4) and (4.6), leads to

(4.9)
∫

IR3

B̂ii(k) dk =

∫ ∞
0

(∫
|k|=k

B̂ii(k)dσ

)
dk =

∫ ∞
0

4πk2(B̃d(k) + 2B̃n(k)) dk,

by noting dσ the standard measure over the sphere {|k| = k}. This proves the result,
where E(k) is given by

(4.10) E(k) =

(
k

2π

)2

(B̃d(k) + 2B̃n(k)).

Remark 4.2. From the physical point of view, E(k) is the amount of kinetic energy in
the sphere Sk = {|k| = k}. As such, it is expected that E ≥ 0 in IR, and we deduce from
(4.2) that E ∈ L1(IR+). Unfortunately, we are not able to prove that E ≥ 0 from formula
(4.10), which remains an open problem.

1k already denotes the TKE, and from now also the wavenumber, k = |k|. This is commonly used in
turbulence modeling, although it might sometimes be confusing.
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4.2 Dimensional bases

Only length and time are involved in this frame, since we do not consider heat transfers
and the fluid is incompressible. Therefore, any field ψ related to the flow has a dimension
[ψ] encoded as:

(4.11) [ψ] = (length)d`(ψ)(time)dτ (ψ),

which we express through the couple

(4.12) D(ψ) = (d`(ψ), dτ (ψ)) ∈ Q2.

Definition 4.1. A length-time basis is a couple b = (λ, τ), where λ is a given constant
length and τ a constant time.

Definition 4.2. Let ψ = ψ(t,x) (constant, scalar, vector, tensor...) be defined on Q =
[0, T ]× Ω. Let ψb be the dimensionless field defined by:

ψb(t
′,x′) = λ−d`(ψ)τ−dτ (ψ)ψ(τt′, λx′),

where
(t′,x′) ∈ Qb =

[
0,
T

τ

]
× 1

λ
Ω,

is dimensionless. We say that ψb = ψb(t
′,x′) is the b-dimensionless field deduced from ψ.

4.3 Kolmogorov scales

Let us consider the length-time basis b0 = (λ0, τ0), given by

(4.13) λ0 = ν
3
4 E −

1
4 , τ0 = ν

1
2 E −

1
2 ,

where E is the dissipation defined by (3.12) (see also Remark 4.1). The scale λ0 is kown
as the Kolmogorov scale. The important point here is that

(4.14) Eb0 = νb0 = 1.

Moreover, for all wave number k, and because

(4.15) D(E) = (3,−2),

we get

(4.16) E(k) = λ3
0τ
−2
0 Eb0(λ0k) = ν

5
4 E

1
4Eb0(λ0k),

by using (4.13). We must determine the universal profil Eb0 .

4.4 Proof of the −5/3’s law

The law of the −5/3 is based on two assumptions about the flow:

i) the separation of the scales (assumption 4.1 below),

ii) the similarity assumption (assumption 4.2 below).
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Assumption 4.1. Let ` be the Prandtl mixing length. Then

(4.17) λ0 << `.

Assumption 4.2. There exists an interval

[k1, k2] ⊂
[

2π

`
,
2π

λ0

]
s.t. k1 << k2 and on [λ0k1, λ0k2],

(4.18) ∀ b1 = (λ1, τ1), b2 = (λ2, τ2) s.t. Eb1 = Eb2 , then Eb1 = Eb2 .

Theorem 4.2. Scale separation and similarity assumptions 4.1 and 4.2 yield the existence
of a constant C such that

(4.19) ∀ k′ ∈ [λ0k1, λ0k2] = Jr, Eb0(k′) = C(k′)−
5
3 .

Corollary 4.1. The energy spectrum satisfies the −5/3 law

(4.20) ∀ k ∈ [k1, k2], E(k) = CE
2
3k−

5
3 ,

where C is a dimensionless constant.

Proof. Let
b(α) = (α3λ0, α

2τ0).

As
Eb(α) = 1 = Eb0 ,

the similarity assumption yields

∀ k′ ∈ Jr, ∀α > 0, Eb(α)(k
′) = Eb0(k′),

which leads to the functional equation,

∀ k′ ∈ Jr, ∀α > 0,
1

α5
Eb0(k′) = Eb0(α3k′),

whose unique solution is given by

∀ k′ ∈ Jr, Eb0(k′) = C(k′)−
5
3 , C =

(
k1

λ0

) 5
3

E0

(
k1

λ0

)
,

hence the result. Corollary 4.1 is a direct consequence of (4.16) combined with (4.19).

Remark 4.3. It can be shown that the law of −5/3 yields the Smagorinsky’s model (3.9)
(see in [11]).
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5 Numerical experiments

5.1 Simulation setting

The computational domain Ω is a box, the size Lx × Ly × Lz of which is equal to
(1024m, 512m, 200m) (see figure 3). The number of nodes is (256, 128, 64). The bot-
tom of the box, plotted in figure 3, has a non trivial topography modeled by gaussian
smooth domes, the height of which being equal to 50 m. We perform the simulation with
ν = 2.10−5m2s−1, which yields a Reynolds number equal to 9.107. We use the mean NSE
with the Boussinesq assumption, coupled to the k−E model, namely the PDE system (3.6)-
(3.8)-(3.13)-(3.14). We specify in what follows the boundary conditions, by considering the
following decomposition of Γ = ∂Ω:

Γ = Γt ∪ Γf ∪ Γb ∪ Γg ∪ Γi ∪ Γo,

where

• Γt is the top of the box,

• Γf is the front face,

• Γb is the back face,

• Γg is the bottom of the box (the ground),

• Γi is the inlet,

• Γo is the outlet.

The condition on Γi is prescribed by the Monin Obukhov similitude law [41]:

(5.1) v(x, y, z, t)|Γi =

(
u?
κ

ln

(
z + z0

z0

)
, 0, 0

)t
,

where κ = 0.4 is the Von Karman constant, z denotes the distance from the ground level,
the aerodynamic roughness length z0 is equal to 0.1m, the friction velocity is expressd by:

(5.2) u? = κUref

[
ln

(
Href + z0

z0

)]−1

,

by taking Uref = 36ms−1 and Href = 200m. The turbulent kinetic energy and turbulent
dissipation are setted by

(5.3)

 k|Γi = u
1/2
? C

−1/2
ν ,

E |Γi =
u3
?

κ(z + z0)
.

On Γb, velocity, TKE and turbulent dissipation are subject to verify the no slip and ho-
mogeneous boundary conditions,

(5.4)


v|Γg = (0, 0, 0)t,
k|Γg = 0,
E |Γg = 0.
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On the top and lateral boundaries, we put

(5.5)


v · n = 0 on Γt ∪ Γb ∪ Γf ,
∇k · n = 0 on Γt ∪ Γb ∪ Γf ,
∇E · n = 0 on Γt ∪ Γb ∪ Γf .

Finally a null gradient condition is prescribed at the outlet Γo

(5.6)


∇(v · n) = 0 on Γo,
∇k · n = 0 on Γo,
∇E · n = 0 on Γo.

Remark 5.1. The PDE system (3.6)-(3.8)-(3.13)-(3.14) with the boundary conditions
(5.1)-(5.3)-(5.4)-(5.5)-(5.6) yields a very hard mathematical problem. The existence and
the uniqueness of a solution is a difficult issue, whether for global weak solutions or local
time strong solutions.

5.2 Results

The numerical scheme we use for the simulation is based on the standard finite volume
method (FVM) in space, and a Euler method for the time discretization. For the simplicity,
we will not write here this technical part of the work. The reader will find comprehensive
presentations of the FVM in [15, 17, 23, 57].
The simulation reaches a statistical equilibrium in about 180 physical seconds, which is the
time at which the results are displayed. In figures 4 and 5, are plotted the values of the
stramwise and spanwise components of the velocity at z = 50m, which corresponds to the
dome height.
In Figure 6, we have plotted the energy spectrum of the flow at (x, y, z) = (500, 200, 50)
using a log-log scale, together with a straight line whose slope is equal to −5/3 = −1, 666....
and the regression straight line of log10(E(k)), whose slope is about equal to −2.1424. The
results call for the following comments.

i) The simulation reveals a certain reliability of the code, which suggests the convergence
of the numerical method. However, the mathematical convergence of the sheme re-
mains an open question, closely related to the question of the existence of solutions
mentionned in Remark 5.1.

ii) The curve log10(E(k)) is an irregular curve which substancially differs from a straight
line, so that we cannot conclude that numerically E(k) behaves like Ctekα in some
interval [k1, k2]. Moreover, there is a gap between the slope of the regression straight
line of the curve and −5/3. However, something that looks like an inertial range can
be identified between k = 10−5m−1 and k = 10−1m−1. This departure from the −5/3
law asks for the following comments and questions.

• The case under consideration yields a turbulence which is not homogeneous nor
isotropic, which may explain the slope equal to −2.1424 we found.

• This simulation does not validate the Kolmogorov law or any law like E(k) ≈
Ctekα. We cannot infer that such a law holds or not. Many parameters may
generate the oscillations we observe in the curve log10(E(k)), such as any eventual
numerical dissipation, a wrong choice of the constants in the k − E model which
also may be not accurate, the boundary conditions we used and which may be
questionable.
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Figure 2: Computational Box
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Figure 3: View of the ground.

Figure 4: Streamwise direction of the flow at the z = 50m cutplane.
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Figure 5: Spanwise direction at the z = 50m cutplane
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Figure 6: Energy spectrum at the point (x, y, z) = (500, 200, 50)

20


	Introduction
	About the 3D Navier Stokes equations
	Framework
	Strong solutions to the NSE
	Turbulent solutions

	Mean Navier-Stokes Equations
	Reynolds decomposition
	Reynolds Stress and closure equations

	Law of the -5/3
	Energy density of the flow
	Dimensional bases
	Kolmogorov scales
	Proof of the -5/3's law

	Numerical experiments
	Simulation setting
	Results


