Technical history of discrete logarithms in small characteristic finite fields : The road from subexponential to quasi-polynomial complexity

Antoine Joux 1, 2, * Cécile Pierrot 2, 3
* Auteur correspondant
2 ALMASTY - ALgorithms for coMmunicAtion SecuriTY
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : Due to its use in cryptographic protocols such as the Diffie–Hellman key exchange, the discrete logarithm problem attracted a considerable amount of attention in the past 40 years. In this paper, we summarize the key technical ideas and their evolution for the case of discrete logarithms in small characteristic finite fields. This road leads from the original belief that this problem was hard enough for cryptographic purpose to the current state of the art where the algorithms are so efficient and practical that the problem can no longer be considered for cryptographic use.
Type de document :
Article dans une revue
Designs, Codes and Cryptography, Springer Verlag, 2016, 78 (1), pp.73-85. 〈10.1007/s10623-015-0147-6〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01243676
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mardi 15 décembre 2015 - 11:49:29
Dernière modification le : mercredi 28 novembre 2018 - 01:26:42
Document(s) archivé(s) le : samedi 29 avril 2017 - 14:14:40

Fichier

Joux_2015_Technical_history.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Antoine Joux, Cécile Pierrot. Technical history of discrete logarithms in small characteristic finite fields : The road from subexponential to quasi-polynomial complexity. Designs, Codes and Cryptography, Springer Verlag, 2016, 78 (1), pp.73-85. 〈10.1007/s10623-015-0147-6〉. 〈hal-01243676〉

Partager

Métriques

Consultations de la notice

212

Téléchargements de fichiers

215