Dictionary learning for M/EEG multidimensional data

Abstract : Signals obtained from magneto- or electroencephalography (M/EEG) are very noisy and inherently multi-dimensional, i.e. provide a vector of measurements at each single time instant. To cope with noise, researchers traditionally acquire measurements over multiple repetitions (trials) and average them to classify various patterns of activity. This is not optimal because of trial-to-trial variability (waveform variation, jitters). The jitter-adaptive dictionary learning method (JADL) has been developed to better handle for this variability (with a particular emphasis on jitters). JADL is a data-driven method that learns a dictionary (prototype pieces) from a set of signals, but is currently limited to a single channel, which restricts its capacity to work with very noisy data such as M/EEG. We propose an extension to the jitter-adaptive dictionary learning method, that is able to handle multidimensional measurements such as M/EEG.
Type de document :
Communication dans un congrès
International conference on basic and clinical multimodal imaging (BACI), Sep 2015, Utrecht, Netherlands
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

Contributeur : Christos Papageorgakis <>
Soumis le : lundi 14 décembre 2015 - 17:51:55
Dernière modification le : jeudi 11 janvier 2018 - 16:48:49
Document(s) archivé(s) le : vendredi 5 mai 2017 - 18:00:46


Dictionary learning for MEEG m...
Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité 4.0 International License


  • HAL Id : hal-01243284, version 1



Christos Papageorgakis, Sebastian Hitziger, Théodore Papadopoulo. Dictionary learning for M/EEG multidimensional data. International conference on basic and clinical multimodal imaging (BACI), Sep 2015, Utrecht, Netherlands. 〈hal-01243284〉



Consultations de la notice


Téléchargements de fichiers