Dictionary learning for M/EEG multidimensional data
Christos Papageorgakis, Sebastian Hitziger, Théodore Papadopoulo

To cite this version:
Christos Papageorgakis, Sebastian Hitziger, Théodore Papadopoulo. Dictionary learning for M/EEG multidimensional data. International conference on basic and clinical multimodal imaging (BACI), Sep 2015, Utrecht, Netherlands. hal-01243284

HAL Id: hal-01243284
https://hal.archives-ouvertes.fr/hal-01243284
Submitted on 14 Dec 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Dictionary learning for M/EEG multidimensional data

Christos Papageorgakis1,2, Sebastian Hitziger1, Théodore Papadopoulos1
1Inria Sophia Antipolis - Méditerranée, France
2Université Côte d’Azur, France

Sept. 1-5, 2015

1. Jitter-adaptive dictionary learning model (JADL)

JADL is a dictionary learning framework

- There is no need for knowing the latency and phase of atoms.
- Atoms learned by JADL are defined on the entire signal domain.
- Hypothesis:
 - The set of signals of interest can be separated by a dictionary.
- In addition to the above assumption, JADL is able to handle small changes over time.

The algorithm solving the JADL problem, is based on an implementation in [2]

- Is still able to account for different jitters across trials.
- The algorithm solving the JADL problem is based on an implementation in [2]

2. Our modified JADL model

We propose an extension to the jitter-adaptive dictionary learning method, that:

- Is able to handle multidimensional measurements such as M/EEG.
- Detects jumps over all the channels, leading to a compressed dictionary
- Compensate for small
- Not having to select a “best” channel (as with the JADL method) is both a user simplification and allows

3. Synthetic data generation

- Create a dictionary of \(K = 3 \) synthetic atoms.
- Generate an extended dictionary of 9 signals.
 - Introducing random jitters (from the set \(\mathcal{J} \) of size \(S = 100 \) contiguous allowed shifts)
 - Select 3 source groups, each of them containing 3 neighboring sources.
 - Each source group is associated to shifted versions of the same atom.
- Combine the generated signals with a lead field matrix \(C \) computed from real EEG measurements [3].
 - \(\mathbf{d} = \mathbf{C} \cdot \mathbf{x} \)
 - \(\mathbf{d} \in \mathbb{R}^{M \times N} \) is the measurement matrix either MEG or EEG, \(C \in \mathbb{R}^{M \times N} \) is the sources matrix, \(K \) and \(N \) are the numbers of channels, sources and time samples respectively.
- Perform the above procedure for \(M \) trials.
 - Introducing new random jitters to the dictionary of \(K = 3 \) synthetic atoms.
 - Generated clean M/EEG measurements of \(C = 6 \) channels, \(M = 200 \) trials and \(N = 515 \) time samples.

4. Results on lead field synthetic data

A comparison between the original and our multi-dimensional JADL model

- Both algorithms are executed with the same signals, initial random dictionary and latency parameters.
- The multi-channel algorithm is executed using all the channels from the input data, while the single-channel algorithm is executed several times, each time using a different channel.

The results of our multi-channel algorithm show:

- A very good fit of the learned dictionary to the generated one.
- A good fit also in the case where the signals were contaminated by noise.

5. Results on real data

The multi-dimensional approach is tested using real MEG and EEG data:

- \(C = 200 \) channels,
- \(M = 63 \) trials,
- \(N = 541 \) time samples,
- contaminated by ambient noise.

Input parameters:

- \(S = 103 \) contiguous allowed shifts,
- \(K = 3 \) atoms.

6. Conclusions

- The method shows superior performance and less noisy estimated waveforms compared to the original single-channel JADL framework, both on synthetic and real data.
- It is more robust to various levels of noise.
- Using the JADL framework allows one to deal with signal variations such as jitters which is difficult to do with standard methods such as PCA or ICA.
- Not having to select a “best” channel (as with the JADL method) is both a user simplification and allows the exploitation of all the available information for M/EEG trial by trial signal decomposition. This thus provides better estimations of waveforms in the dictionary.

References