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Introduction

A fundamental problem in theoretical neurosciences is the inverse problem of source localization, which aims
at locating the sources of the electric activity of the functioning human brain using measurements usually
acquired by non-invasive imaging techniques, such as the electroencephalography (EEG). EEG measures
the e�ect of the electric activity of active brain regions through values of the electric potential furnished by
a set of electrodes placed at the surface of the scalp [3] and serves for clinical (location of epilepsy foci) and
functional brain investigation. The inverse source localization problem in EEG is inuenced by the electric
conductivities of the several head tissues and mostly by the conductivity of the skull. The human skull is
a bony tissue consisting of compact and spongy bone compartments, whose shape and size vary over the
age and the individual's anatomy making di�cult to accurately model the skull conductivity.

1. Physical formulation

Under thequasi-static approximation for the EEG case,Maxwell's equations implies:

r � E = 0 and r � J = 0

for the electric �eldsE and the current densityJ. The �rst, deduce thatE = �r U, while dividing the current
densityJ into the ohmic current� E and the source current (also called primary current)JP as: J = � E+ JP

leads to our general model for the electric potentialU in terms of conductivityPoisson equation with source
term in divergence form:

r �
�
� (r)r U

�
= r � JP(r) := S (r) in R3

where� (r) 2 R be the real valued (isotropic assumption) conductivity of the medium at locationr.

Modeling the primary currentJP as the result of the superposition ofQ pointwise dipolar sources, leads to:

r �
�
� r U

�
=

QX

q=1

pq � r � Cq in R3 ; Cq 2 R3

wherepq is the moment of the source and� Cq is the Dirac distribution with mass atCq.

r � grad; r� � div; r� � curl

3. Data, boundary conditions and expansions

We solve the conductivity estimation problem from the available EEGpartial boundary data:
�

U2 = gEEG, pointwise values onS2 at electrode locations
@nU2 = 0, no current ux outside the head

while the source term is assumed to be alreadyestimated , with the solutionU0 in 
 0, being expressed as
the convolution of the source termS (r) with thefundamental solution (Green formula):

U0(r) =
QX

q=1

< pq; r � Cq >
4�� 0jr � Cqj3

The source activityU0 and theEEG data gEEG are expanded onspherical harmonics basis:

U0(r) =
X

k;m

� kmr � (k+1) Ykm(�; � ) ; r 2 
 0 n f Cqg

gEEG =
X

k;m

gkmYkm(�; � ), wherek 2 Z+ , m 2 Z, and � k � m � k

with the later beingtransmitted over the spheresS1, S0 with theboundary conditions :
(

Ui � 1 = Ui onSi

� i � 1@nUi � 1 = � i@nUi onSi

5. Computational algorithm and improvements

We performednumerical analysis of the inverse conductivity estimation problem, usingmeasurements
andsources activities expanded on spherical harmonics basis (gkm; bkm) simulated by the FindSources3D
(FS3D [4]) software, while our simulations were performed in MATLAB.

The EEG data are subject toambient noise and measurements errors, while the estimation of the
sources isnot perfect . In our simulation, the inverse conductivity estimation problem issensitive to such
perturbations , forcing us to decrease the tolerance of our reconstruction algorithm totol = 5e� 2. As a
result a signi�cant amount of spherical harmonic coe�cients is rejected, but the conductivity is still quitewell
estimated with a small number of them.

Numerical conductivity estimation results are shown in Fig. 1, 2, 3, where the mean value�� est of the estimated
� est;k is the one to be compared with the actual conductivity value� act.

Fig.1: � km from transmittedgkm.

Fig.3: � km from transmittedgkm, with noise.

Fig.2: � km from recovered sources by FS3D.

Fig.4: Conductivity estimation errors for the three
used source terms.

2. Mathematical formulation: Simpli�ed model

We consider the inverseskull conductivity estimation problem usingpartial boundary EEG data , in
the preliminary case of anhomogeneousskull conductivity. This is a version of the many inverse conductivity
issues still under study nowadays [1]. The following problem is thus examined:

I In a three layerspherical head model
I Made of three concentric nested

spheres, each of them modelling the
scalp 
2, skull 
 1 and brain 
0 tissues

I The head is assumed to bepiecewise
homogeneous: each of the three layers
is supposed to have a constant conduc-
tivity
� �

�

 i

= � i ; 0 < � 1 < min(� 0; � 2)

I The sourcesCq are modelled asdipolar

sourcesJP =
QP

q=1
pq� Cq ; Cq 2 
 0

In each domain 
i , the electric potential satis�es the following equations:
�

� 0� U = r � JP in 
 0

� U = 0 in 
 1 and 
 2

with U0, U1, U2 being the solution in 
i .
We also assume that the conductivities of the brain� 0 and the scalp� 2 areknown (currently� 0 = � 2), while
the conductivity to be recovered is the one of theintermediate spherical layer , the skull � 1.

4. Uniqueness properties and reconstruction algorithm

Linear algebra computations allow us to establishuniqueness propertiesand areconstruction algorithm

for the skull conductivity� 1. The data transmission
�

Ui

@nUi

�
from a spherical interfaceSi to

�
Ui+1

@nUi+1

�
of a

neighbouring spherical interfaceSi+1 can be expressed by the following general matrix equation.

Tk(r ; � ) =

"
1 0

0 �

# "
rk r � (k+1)

krk� 1 � (k + 1)r � (k+2)

#

=

"
1 0

0 �

#

Tk(r)

As det(Tk) = � (2k + 1)� r � 2 6= 0 the inverse transmission matrixT � 1
k (r ; � ) is also de�ned. Computing

the data transmission over the several spherical interfaces the spherical harmonics coe�cients of the EEG
measurementsgkm can be linked to the spherical harmonic coe�cients of the source term� km as:

� km � [0; 1]T � 1
k (r0; � 0)Tk(r0; � 1)T � 1

k (r1; � 1)Tk(r1; � 2)T � 1
k (r2; � 2)

�
gkm

0

�
= 0

Solving this equation in terms of� 1, leads to apolynomial equation P(� 1) = 0 of deg(P� 1) = 2 in � 1,
with dependences:P = Pk;r0;r1;r2;� 0;� 2.

Let � estk be the one of the two roots of the polynomialP(� 1) for the kth spherical harmonic basis. The
unique admissiblesolution � 1k, is the solution which satis�es the constraint 0< � estk < min(� 0; � 2) and
makejPj achieving its minimal value (jPj = 0), up to a tolerance valuetol.

As thereconstruction of the conductivity� 1 does not depend on the spherical harmonics indexm, in order
to increase therobustness of ourreconstruction algorithm , the followingnormalization is applied over
the di�erent spherical harmonics indexk:8

><

>:

gk =
P

m
gkm

�� km

� k =
P

m
� km

�� km =
P

m
j� kmj2

6. Further work

I Stability properties and error estimates of the inverse problem.
I Robustness analysis of the recovery algorithm and dependence on the number of sources.
I Simultaneous recovery of source term and skull conductivity. First, step with known quantity of

sourcesQ and locationsCq.
I Inuence of the known parameters of the problem on the estimation.
I Modeling the spongiosa layer and estimating its conductivity.
I Comparison of results with more realistic head models and spongiosa layer: joint work in progress.
I Conductivity estimations using additional magnetoencephalography data.
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