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ABSTRACT
The problem of reducing the energy consumption of em-
bedded processors is of paramount importance for mobile
devices powered by batteries. Many of these devices em-
bed heterogeneous processors like the ARM bitLITTLE for
adapting to the performance requirements and energy con-
sumption profiles of modern applications. However, be-
fore proposing algorithms for optimally managing the energy
consumption of a device, it is necessary to build a realistic
model of the performance and power profile of an applica-
tion.

In this paper we address this problem by proposing a sim-
ple model for the execution time of soft real-time applica-
tions and the energy consumption of the hardware platform.
We also propose a simple benchmarking methodology for
obtaining the parameters of the model from measures. We
identify in the memory access pattern of software tasks a key
factor that influences both the performance and the energy
consumption. We then show how to apply our methodology
on the ODROID development board, and we present some
preliminary results of our study. We conclude the paper by
discussing current research and future directions.

1. INTRODUCTION
Many modern electronics embedded devices are powered

by batteries, hence it is of paramount importance to reduce
their power consumption as much it is possible, so to prolong
their autonomy.

There are two contrasting objectives: reducing the en-
ergy consumption of the device (for lowering the “cost” of
recharging but also for reducing heating and prolonging the
autonomy of battery powered embedded systems), while at
the same time optimising the Quality of Service provided to
the user. Many of the applications running on model smart-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

phones and tablets have soft real-time requirements, because
the quality of service experienced by the users depends on
the response time of the computations. For example, users
want to watch audio/video content streamed from Internet
at the maximum quality on their tablets while at the same
time prolonging the duration of the battery. A delayed vi-
sualisation of some video frames, or even worse, the delayed
decoding of an audio sample, may greatly compromise the
user experience.

In order to propose efficient techniques for optimising the
energy consumption of a complex device consisting of het-
erogeneous computing cores without compromising the re-
sponse time of the running applications, it is of foremost
importance to build a model of the system. Therefore, we
need to identify the main factors that impact on the energy
consumption and on the response time of an application.

The complexity of the problem forces us to make a choice
between accuracy and complexity. An exact model of the
hardware/software architecture would have the same com-
plexity as the hardware/software architecture itself, and so
it would be of no use in practice. We need then to abstract
away the many details and focus on the main parameters
that can influence energy consumption and execution time.

This paper is a first step toward a model of the energy
consumption and of the execution time of a task running on
a ARM big/LITTLE architecture. For the hardware archi-
tecture, our model considers a few parameters as the type of
the processor being used (big or LITTLE), the operating fre-
quency, and the memory architecture (size of the cache). For
the execution time of a soft real-time task we consider the
number of cache misses, the processor on which it is running
and the operating frequency. We show how to compute the
model parameters with a set of measurement, and we show
that our model captures the behaviour of the application in
a sufficiently precise manner.

The proposed model will be used in the future to build
scheduling and allocation algorithms that aim at minimising
energy consumption without compromising on the Quality
of Service.

2. RELATED WORK
In the research literature, many works have focused on

measuring execution time of executing tasks, both in the
real-time scheduling domain and in High Performance Com-



puting (HPC). However, not so many papers focus on bench-
marking both execution time and energy consumption in
mobile embedded systems.

Erich et al., in [1], proposed an approach for designing
benchmarks for scientific computing. They focused basi-
cally on task granularity, and on temporal and spatial lo-
cality. The main result of their investigation is that one of
the most important factors influencing task performances is
the memory access. However, they only addressed big pro-
cessors (like Intel Xeon Phi, . . .) designed for HPC, and did
not consider low-power embedded processors, nor heteroge-
neous architectures. In particular, here we are interested in
the trade-off between power consumption and performance.

Kambel et al.[2] investigate benchmarking for mobile phones.
They assume that classic benchmarking methodologies are
not suitable for the target devices. However, their work fo-
cuses on a subset of applications, notably application heavily
relying on GUI interaction, and low-intensive computation
applications (e-mail clients, chats, etc.), where the emphasis
is on networking.

Gal-On and Levy [3] discussed the effectiveness of current
benchmarks for modern processors. They focus on paral-
lelism, heterogeneity, memory access impacts and on per-
formances. The report does not present any experiments
and discusses in a general way the possible impact of these
aspects.

In the area of Real-Time scheduling, benchmarking is fo-
cused on worst-case execution time rather then on perfor-
mance and energy consumption. In addition, benchmarks
are used to compare scheduling and worst-case execution
time algorithms, rather than on build a model of the task
behaviour. Here instead we are interested in average exe-
cution time and its relationship to average memory access
patterns, and how this influence the power consumption of
the architecture.

3. SYSTEM MODEL AND ASSUMPTIONS
The objective of this paper is to build a model of the exe-

cution time and of the energy consumption of soft real-time
task executing on a heterogeneous multi-core architecture.
In this section we describe the model of a soft real-time task
and of the hardware architecture.

A soft real-time task is a software process executing pe-
riodically. An example of C code that uses the POSIX RT
API for implementing a periodic real-time task is reported
in Figure 1.

From a mathematical point of view, a periodic real-time
task is a sequence of jobs Ji = (ai, ci, di). Each job corre-
sponds to the execution of the code denoted as periodic code
in the figure. The arrival time ai is the activation time of
the job (corresponding to the values of variable next); the
computation time ci corresponds to the execution time of
the jobs, that is the processing time necessary to complete
the periodic code; di is the job’s deadline that is the absolute
time within which the job should complete its execution in
order to satisfy the performance requirements of the user.

Per a periodic task, we have that ai = ai−1 + T , where T
is the task’s period. Very often the job deadline is equal to
the next arrival time of the job (each job should complete
before the next one is activated). Hence di = ai+Ti = ai+1.

The execution time of a job depends on many factors:
1) the number of hardware instructions to be executed, 2)
how many clock cycles per each instruction 3) the operating

void *task(void * arg) {

struct timespec_t next;

// initialization

clock_gettime(CLOCK_REALTIME, &next);

while (1) {

// * periodic code *

// suspend until next period

timespec_addto(next, period);

clock_nanosleep(CLOCK_REALTIME, 0, &next, 0);

}

}

Figure 1: Pseudo-code of a soft-real time periodic task

frequency of the processor and of the main memory.
In turn, 1) depends on the input data and on the internal

state of the task; 2) depends on the hardware architecture
and its internal state. Notably, the pipeline state and the
cache state may have a great influence on the execution time
of the task. Typically, we can control the processor operat-
ing frequency, to a certain extent. In particular, it is possible
to set the frequency so to reduce energy consumption with-
out degrading too much the performance of the task. For
example, under the assumption that the system executes one
single task, and that we have an exact model of the execu-
tion time of a job, we could set the processor frequency so
that ci = di−ai = T , that is the task finishes always exactly
at its deadline.

This technique is called Dynamic Voltage and Frequency
Scaling (DVFS), and will be described in the following. Un-
fortunately, it is impossible to have a precise model of the
execution time of a task, so we have to derive approximate
models.

In the following, we restrict our attention to tasks with
a weak dependence from input and state variables; in other
words, we assume that the number of processor instructions
to execute in each jobs is approximately constant. The vari-
ability due to input data and state variables is very depen-
dent on the application class, and it will be the focus of
future works.

In the next section we describe the hardware architecture
used for our experiments, and a set of benchmarks for mea-
suring execution time and power consumption of a specific
task.

3.1 Odroid architecture description
The ODROID XU3 [4] board (Figure (2)) is compound

of a samsung Exynos 5422, a Mali GPU, a RAM mem-
ory and I/O peripherals. The Samsung Exynos 5422 is an
ARM big.LITTLE multicore architecture. It is composed
of 8 cores: 4 big cores (ARM cortex A15 ) and 4 LITTLE
cores (ARM Cortex A7 ). The ODROID XU3 board embeds
4 power sensors: a sensor for big cores, a sensor for little
cores, a sensor for the GPU and the last one for the memory.
An external energy sensor (Odroid SmartPower) is plugged
to the power supply of the board in order to measure the
overall power consumption.

Each core of the Exynos 5422 has a private L1 cache of
2 × 32Kb. Little cores share 512Kb of L2 cache. Big cores
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Figure 2: ODROID XU3 board architecture

share 2Mb of L2 cache. Both big and little cores share a
RAM memory of 2Gb.

The frequency of little cores can be calibrated homoge-
neously from 200Mhz to 1400Mhz in discrete steps of 100Mhz
(13 modes). Respectively, the frequency of big cores can be
calibrated from 200Mhz to 2000Mhz, in discrete steps of
100Mhz (19 modes). In this paper, core operational fre-
quency and state are set offline and do not change dynam-
ically. Therefore, for the moment we are not interested in
the core state and frequency changing costs.

3.2 Odroid bench design
In order to build a simple task and architecture models,

we implemented a simple bench of periodic matrix multi-
plication of size S × S. The matrix multiplication example
allows us to change the data size and can be easily par-
allelized. Also, the matrix multiplication implementation
allows us to control the spatial and temporal locality which
make the cache behaviour easily predictable. To measure
the power consumption, we used 3 out of the 4 available
embedded sensors: the big cores sensor; the little cores sen-
sor; the memory sensor. The external power sensor allows
us to have an external view on the power consumption of all
components of the ODROID board.

The thread has a higher priority than all other threads
in the system. In Figures 3, 5, 6, 7, 8, 10, the task is im-
plemented in one periodic thread locked on a big core or
a little core using POSIX thread affinity. The frequencies
are set using the CPUFreq tool. Each experiment is run 500
times, the presented results are the average values. After
each experimentation, L1 and L2 caches are reset.

3.3 Benchmark results
Figure 3 presents the average execution time of the thread

locked on a big core (red squares) and on a little core (blue
circles) as a function of the frequency. When big and lit-
tle cores operate at the same frequency, big cores perform
approximately 3 times faster than little cores. This can be
explained by the more complex architecture of ARM A15
compared to ARM A7 (Figure (4)), a big core executes in
average more instructions than a little core per one cycle.

Figure 5 presents the average power consumption of big
(red squares) and little (blue circles) cores as functions of
the frequency. A little core consumes 3− 5 times less power
than a big core operating at the same frequency. This is due
may be to the complex architecture of big cores compared
to little cores.

Figure 6 presents the average consumed energy of one
instance of matrix multiplication thread (the cumulative
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Figure 3: Execution Time with different frequencies on big
and little cores
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Figure 5: Power consumed by frequency: Big vs little cores

power by one instance of the thread) for big (red squares)
and little (blue circles) cores as functions of the frequency
respectivly. Even if it finishes the executions in a shorter
time, a big core still consumes more energy than a little one
that operates on the same frequency. Even more, a big core
set on the lowest frequency (200Mhz) still consumes more
than a little core set at the maximum frequency (1400Mhz).

Figures 8 and 7 present power consumption of the whole
Odroid Board as function of frequency. The power consump-
tion of all componenets except the big and little cores is
constant.

Figure (9) presents the power consumption ratio of big
(red squares) and little (blue circle) cores as functions of
frequency. When the frequency is low, the board consumes
(40-60) times more than little cores, and (6-9) more than
little core. However, this ratio decreases substantially when
frequency is high (only 8 time for little cores and 1.7 for big
cores).

Figure (10) presents the memory power consumption as
function of the frequency. The memory consumption is
higher When the thread is locked on a little core than when
the same thread is locked on a big core. This is probably
due to the fact that Little cores have only 1

4
of big core L2

cache, Then, more cache-misses occur causing more energy
consumption. This assumption can not be verified because
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Figure 6: Big and little cores energy consumption

the current linux version of ARM exynos 5422 is still does
not support the hardware calls to read the cache-misse reg-
isters.

4. ARCHITECTURE MODELING
To flexibly model heterogeneous architectures as big.LITTLE,

we introduce the concept of core group. A multicore archi-
tectureA ofm cores is compound ofG core group. All cores
(Pj) of the same group Gg have the same micro-architecture
and frequency characteristics (minimal frequency (fgmin), max-
imal frequency (fgmax), operating frequency (fgop)). Each
group has a set of discrete frequencies modes and its own
energy calculation coefficients (discussed in Section 4.1).

Cores are indexed alternatively, core j belongs to the group
g = (j%G). For a processor with 4 cores and 2 groups,
cores 0, 2 belong to group 0 and cores 1, 3 belong to group 1.
We choose this representation to allow to compute the core
group just by having its index j. Moreover, by using the
concept of core group we can address homogeneous archi-
tecture (e.g. SMP) by setting the number of groups G = 1,
and heterogeneous architectures like ARM big.LITTLE ar-
chitecture by setting the number of groups to 2 or more.

A = {Gg, g ∈ {1 . . . G}}
Gg = ({Pj , (j mod G) = g, j < m}, fmin, fmax, fop),

g ∈ {1 . . . G}

4.1 Energy model
Increasing a core’s frequency involves switching its tran-

500 1,000 1,500 2,000
0

2

4

6

Frequency
P

ow
er

(w
)

Internal

External

Figure 7: Little Core power consumption: Internal vs Ex-
ternal measures

sistors more rapidly, and transistors that are switched more
rapidly dissipate more power. The power dissipated due to
switching is called dynamic power. In order to reduce dy-
namic power, we calibrate the operating frequency for big
and little cores.

Even transistors that aren’t switching will still leak cur-
rent during idle periods. This leakage current constantly
dissipates power. The amount of power dissipated per unit
of area due to leakage current is called static power. In order
to reduce the static power consumption, we have the ability
to set the cores in a deep state power using the ARM Wait
For Interrupt and Wait For Event hardware instructions.

The overall power consumption is the sum of the dy-
namic and static power (total power consumption).Jing Mie
et al. [5] defined the dynamic power dissipated by a CMOS
circuit as the product of a constant coefficient ξ that de-
pends on the technology, by the square of the voltage, and
by the frequency.

E = ξ × V 2 × f (1)

They also defined the frequency as the ratio of the dif-
ference between the actual voltage V and VTh raised to the
power of a, where Vth is the threshold voltage by the prod-
uct of a constant K and the logic depth Ld. a and K are
constants that depend on the technology.

f =
(V − VTh)a

K × Ld
(2)

By combining the two equations, the dynamic power E
can be expressed as the product of a constant Const by the



500 1,000 1,500 2,000
0

2

4

6

Frequency

P
ow

er
(w

)

Internal

External

Figure 8: Big Core power consumption: Internal vs External
measures
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cores power consumption

frequency f power λ (3).

E(f) = Const× fλ (3)

In order to evaluate the total power consumption in the
rest of this work, we used a polynomial regression (we used
the online regression tool available at http://www.xuru.org/
rt/PR.asp) of the power values measured for big and little
cores (described in Figure (5) as a function of variable fre-
quency. Figure (11) presents the results of the polynomial
regression of degree 3 for big cores (asterisks) and little cores
(squares).

Figure (11) shows that the match between the values and
the regression curve for both big and little cores is rather
satisfactory. The regression polynomial in Equation (4) is
for little cores and the one of Equation (5) is for big cores.

Power(f)l = 0.07477f3 + 0.045706f + 0.008425 (4)

Power(f)b = 1.0561341f3 + 1.376928f2 + 2.452f + 1.0216
(5)

5. TASK MODEL

500 1,000 1,500 2,000
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Frequency

P
ow

er
(w

)

Big Cores

Little Cores

Figure 10: Memory power consumption: Big VS Little cores

We assume that the execution time C of a thread depends
on the micro-architecture of the core group on which the
thread is allocated and on its operating frequency. Thus,
to model the execution time of a task we obviously need to
compute model coefficients for every core group, in our case
for big and LITTLE cores.

Only a part of the execution time depends on the core
operating frequency. For example, when a thread suspends
itself waiting for operating on external devices, the suspen-
sion time depends on the response time of the external device
which may not be linked to the core operating frequency. As
an relevant example, consider the time to access main mem-
ory in case of a cache miss: the response time depends on
the bus contention (due to other cores/devices) and on the
response time of the memory circuitry.

The component of the execution time that directly de-
pends on the frequency is denoted by ct(f), whereas the
part that does not depends on the frequency is denoted by
it. For simplicity, in this paper we consider this second part
as a constant which only depends on the thread average
characteristics (e.g. number of memory requests and aver-
age number of cache misses). Thus, the execution time of a
thread on a core of frequency f is modelled by a semi-linear

0.5 1 1.5 2
0

1

2

3

4

Frequency

P
ow

er
(w

)

Regression-Little

Real-Little

Regression-Big

Real-Big

Figure 11: Regression and real values for big and little power
consumption: cores consumption
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function (Equation 6)

Cg(f) =
ct · fmax × fmax

f
+ it (6)

To estimate the two components of the execution time,
we measure the thread execution time under different con-
ditions (different inputs, differents matrix sizes, frequencies,
groups). Figure 12 presents a non-linear regression of the
execution time values (Figure 3) as function of frequency
for matrix multiplication of size 300x300. Equation (7)
presents the semi-linear function of the regression for little
cores (resp. Equation 8 for big cores).

Cl =
4.27

f
+ 0.32 (7)

Cb =
1.45

f
+ 0.07 (8)

We observe that, in this specific case the it time for little
cores is 4 time bigger than the it time of little cores.

We assume that the it component of the execution time
depends on the number of cache misses experienced by the
task, which in turns depends not only on the size of the task
data set, but also on the interference by the other threads
in the system. However, we cannot currently measure the
number of cache misses experienced by a task on the bigLIT-
TLE processor: due to a software error in the Linux device
driver for the ODROID platform, we cannot currently col-
lect this precious data. We are currently actively working
at solving the problem, and we hope to report experiments
directly linking the number of cache misses to the execution
time of the thread.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented some preliminary results of a

study for modelling the execution time and the power con-
sumption of soft real-time tasks running on a heterogeneous
processor architecture, namely the bigLITTLE architecture.

We have shown how to compute the parameters of the
power consumption model of the architecture, and how to
model the execution time of a thread as a function of the
core frequency and the memory access. We found that the
number of cache misses has a big impact on the execution
time and hence on the power consumption of the memory.

In the future we plan to carefully investigate the relation-
ship between data set size, number of cache misses, execu-
tion time and power consumption. In fact, accessing main

memory slows down the task and increases the energy con-
sumed by the main memory itself; moreover DVFS tech-
niques do not influence the component of the execution time
due to main memory access.

It is clear that this kind of study is preliminary to the
proposition of power management heuristics. In addition,
we are currently studying the use of machine learning tech-
niques to identify the parameters of a task at run-time.
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