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LARGE DIMENSIONAL ANALYSIS OF MARONNA’S M-ESTIMATOR WITH OUTLIERS

David Morales-Jimenez?, Romain Couillet†, Matthew R. McKay?

? Hong Kong University of Science and Technology, ECE Department
† Supélec, Telecommunication Department

ABSTRACT

Building on recent results in the random matrix analysis of ro-
bust estimators of scatter, we show that a certain class of such
estimators obtained from samples containing outliers behaves
similar to a well-known random matrix model in the limit-
ing regime where both the population and sample sizes grow
to infinity at the same speed. This result allows us to under-
stand the structure of such estimators when a certain fraction
of the samples is corrupted by outliers and, in particular, to
derive their asymptotic eigenvalue distributions. This analy-
sis is a first step towards an improved usage of robust estima-
tion methods under the presence of outliers when the number
of independent observations is not too large compared to the
size of the population.

Index Terms— Robust estimation, outliers, random ma-
trix theory.

1. INTRODUCTION

The growing momentum of big data applications along with
the recent advances in large random matrix theory have raised
a great interest for problems in statistical inference and sig-
nal processing under the assumption of similar population
and sample sizes. New source detection schemes have in
particular been proposed based on the works on the extreme
and isolated eigenvalues of large sample covariance matri-
ces. New subspace methods in large array processing have
also been derived that outperform traditional algorithms by
exploiting statistical inference methods on large random ma-
trices. Most of these signal processing methods fundamen-
tally rely on the structure of the sample covariance matrix
1
n

∑n
i=1 yiy

†
i formed from independent or linearly dependent

samples y1, . . . ,yn ∈ CN , which are by now well under-
stood objects. However, there are applications where, even
when n � N , the sample covariance matrix fails to provide
a good estimate of the population covariance, hence the need
for more robust methods. Robust scatter M-estimation tech-
niques are precisely used to better approximate population co-
variance (or scatter) matrices whenever (i) the distribution of
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the yi’s is heavier-tailed than Gaussian (e.g., elliptical data)
or (ii) the yi’s contain outliers [1, 2].

Given the usually quite involved implicit expression of
these robust estimators, it is not obvious to study their be-
havior but recent works have provided some first answers for
Gaussian or elliptical i.i.d. data, see e.g., [3] for Maronna’s
M-estimator, [4] for Tyler’s estimator, or [5] for a regularized
Tyler’s estimator. Robust regressors have also been investi-
gated in [6]. These works entailed the design of improved
detectors and estimators accounting for the impulsiveness of
data, see e.g., [7] for an application to portfolio optimization
in finance, [8] for subspace estimators in array processing,
or [9] for generalized likelihood ratio tests under elliptical
noise data.

However, these works have all assumed i.i.d. samples, be
they impulsive or not, arising from an analytically tractable
distribution (i.e., Gaussian or elliptical mostly). Very little is
however known concerning the impact of outliers on the ro-
bust estimators, although these estimators were originally de-
signed by Huber [1] for this very purpose of harnessing out-
liers. In this work, we consider robust scatter estimators of
the Maronna type (defined below) in the double asymptotic
regime where N,n → ∞ with N/n → c ∈ (0, 1), and char-
acterize their behavior when the set of data samples contains
deterministic and then random outliers. Our main finding is
to show that, under mild assumptions, the estimator behaves
for large N,n as a weighted version of the sample covariance
matrix with different weights for the model-fitting data (usu-
ally considered in majority) and for the outlying samples. An
analysis of these weights in the limiting case of few outliers
reveals the following take away messages: (i) the robust esti-
mators tend to reduce the importance of outliers with strong
norm, thus precluding the problem of arbitrary large bias, and
(ii-a) strong correlation in the model-fitting data induces in
general stronger outlier rejection but (ii-b) in a worst case sce-
nario, the impact of outliers may be increased, thus necessi-
tating a careful choice of estimator within the Maronna class,
and in particular estimators originally proposed by Huber.

In the remainder, we provide a precise statement of the
problem at hand before introducing our main results from
which we extract in rigorous terms the aforementioned mes-
sages.



2. PROBLEM STATEMENT

Consider Y ∈ CN×n to be a matrix composed in columns
of n stacked N -dimensional data vectors, with εnn of these
samples being outliers, i.e.,

Y =
[
y1, . . . ,y(1−εn)n,a1, . . . ,aεnn

]
(1)

where y1, . . . ,y(1−εn)n ∈ CN are random with yi =

C
1
2

Nxi, CN ∈ CN×N deterministic positive definite and
x1, . . . ,x(1−εn)n i.i.d. random with are i.i.d. zero mean and
unit variance entries,1 whereas a1, . . . ,aεnn ∈ CN are arbi-
trary deterministic vectors. We further denote cn , N/n and
shall consider the following growth regime.

Assumption 1 For eachN , CN � 0, lim supN ‖CN‖ <∞.

Assumption 2 As N,n → ∞, cn → c and εn → ε ∈ [0, 1)
with 0 < c < 1− ε.

Define Maronna’s M -estimator ĈN as the (almost surely
unique) solution to the equation in Z [10]

Z =
1

n

(1−εn)n∑
i=1

u

(
1

N
y†iZ

−1yi

)
yiy
†
i

+
1

n

εnn∑
i=1

u

(
1

N
a†iZ

−1ai

)
aia
†
i (2)

where u is defined on [0,∞), nonnegative, continuous and
non-increasing, and such that φ(x) = xu(x) is increasing and
bounded with limx→∞ φ(x) , φ∞. Moreover, 1 < φ∞ <
c−1(1− ε).

Following the works [3, 11], our main objective is to find
a large N,n random matrix equivalent for ĈN which is more
tractable and prone to analysis.

3. MAIN RESULTS

We are now in position to introduce our main result, a proof
sketch of which is provided in Appendix A. A complete proof
is available in an extended version of the present article.

Theorem 1 (Asymptotic Behavior) : Let Assumptions 1-2
hold and let ĈN be the a.s. unique solution to (2). Then,
as N,n→∞, ∥∥∥ĈN − ŜN

∥∥∥ a.s.−−→ 0 (3)

where

ŜN ,
1

n

(1−εn)n∑
i=1

v (γn)yiy
†
i +

1

n

εnn∑
i=1

v (αi,n)aia
†
i (4)

1We could have considered samples with elliptical-like distributions in-
stead but, in order not to confuse messages, we only characterize here the
behavior of Maronna’s estimator for light-tailed data versus outliers.

with γn and α1,n, . . . , αεnn,n the unique positive solutions to
the system of εnn+ 1 equations (i = 1, . . . , εnn)

γn =
1

N
trCN

(
(1− ε)v(γn)
1 + cv(γn)γn

CN +
1

n

εnn∑
i=1

v (αi,n)aia
†
i

)−1

αi,n =
1

N
a†i

 (1− ε)v(γn)
1 + cv(γn)γn

CN +
1

n

εnn∑
j 6=i

v (αj,n)aja
†
j

−1ai
(5)

and v(x) = u
(
g−1(x)

)
, g(x) = x/(1− cφ(x)).

This result characterizes the spectral behavior of ĈN for
large N,n. In particular, a corollary to Theorem 1 is that
maxi |λi(ĈN )−λi(ŜN )| a.s.−−→ 0, where λi(X) are the ordered
eigenvalues of the Hermitian matrix X.

Remark that the approximation matrix ŜN consists of two
terms: a normalized sample covariance matrix and a weighted
sum of the outlier outer products. These weights allow for
an automated balancing between model-fitting data and out-
liers. To get some insight on the properties of ĈN induced by
these weights, let us consider the single-outlier case where
εn = 1/n → 0. We easily obtain by a rank-one pertur-
bation argument that γn → γ, where γ is the solution to
γ = (1 + cv(γ)γ)/v(γ). It can be seen, using the defi-
nition of v, that γ = φ−1(1)/(1 − c) and that, as a con-
sequence, v(γ) = 1/φ−1(1) (which is the result originally
proved in [11] in the absence of outliers). As for α1,n, it is
given explicitly as

α1,n =
φ−1(1)

1− c
1

N
a†1C

−1
N a1.

As such, so long that 1
N a†1C

−1
N a1 ≥ 1, v(α1,n) ≤ v(γ) and

thus the impact of the outlier a1 will be all the more attenuated
that 1

N a†1C
−1
N a1 is large. However, if 1

N a†1C
−1
N a1 < 1, then

v(α1,n) ≥ v(γ) and the impact of a1 may be increased. As
such:

• to avoid increasing the effect of outliers, v(x) should
be set to a constant for all x ≤ φ−1(1)

1−c , or equivalently
u(x) is constant for x ≤ φ−1(1). A particular example
of such a choice is u(x) = min{1, (1 + t)/(t + x)}
for some t > 0, which is (almost) the original Huber
estimator from [1].2

• for CN close to the identity matrix, only the norm of a1
dictates its relative impact. It is thus expected that ma-
trices CN with a few dominant modes associated to a1
not aligned to its dominant eigenvectors shall provide
better rejection of outliers to ĈN . On the opposite, if
a1 were to be aligned to the dominant modes of CN ,
the outlier rejection will be compromised.

2Huber considered a t = 0 and a slightly more general form for the
estimator. But taking t = 0 is usually not enough to ensure the uniqueness
of the estimator as the solution of the implicit equation (2).



Other considerations are easily made. In particular, if
a1 = . . . = aεnn, then we easily see that, as εnn grows, the
outlier-rejection gain brought by the possibly large quadratic
form 1

N a†1Ĉ
−1
N a1 is quickly overrun so that, if ε > 0 and

lim supN
1
N a†1Ĉ

−1
N a1 <∞, the outliers will not be rejected.

However, beside these simple considerations, little can be an-
alytically said about Theorem 1.

Of interest though is the case where the ai’s are random
i.i.d., not following the same distribution as yi. This gives in
particular the following corollary.

Corollary 1 (Random Outliers) : Let Assumptions 1-2 hold
and let a1, . . . ,aεnn be random with ai = D

1
2

N x̂i, where
DN ∈ CN×N is the outlying population covariance matrix
and x̂1, . . . , x̂εnn are i.i.d. random with i.i.d. zero mean and
unit variance entries. Let us further assume that, for each N ,
DN � 0 and lim supN ‖DN‖ <∞. Then, as N,n→∞,∥∥∥ĈN − Ŝrnd

N

∥∥∥ a.s.−−→ 0 (6)

where

Ŝrnd
N ,

1

n

(1−εn)n∑
i=1

v (γn)yiy
†
i +

1

n

εnn∑
i=1

v (αn)aia
†
i , (7)

with γn and αn the unique positive solutions to

γn =
1

N
trCN

(
(1− ε)v(γn)
1 + cv(γn)γn

CN +
εv(αn)

1 + cv(αn)αn
DN

)−1
αn =

1

N
trDN

(
(1− ε)v(γn)
1 + cv(γn)γn

CN +
εv(αn)

1 + cv(αn)αn
DN

)−1
.

(8)

In this scenario, ĈN is equivalent to a weighted sum of
two sample covariance matrices for the model-fitting against
the outlier data. Again, it is interesting to study the regime
where ε = 0. In this regime, we again get that γn → γ
where v(γ) = 1/φ−1(1) as above and now αn → α explicitly
determined by

α =
φ−1(1)

1− c
1

N
trDNC−1N .

The factor of importance is then now the trace 1
N trDNC−1N

which, if large, induced a decay in the outlier importance,
and vice-versa. Note again that, for DN and CN of similar
trace, it is of key importance that CN be as distinct from IN
as possible for outlier rejection to be possible. Note also that,
when seen as functions of ε, γn(ε) → γ and αn(ε) → α
continuously with ε → 0, so that the predicted behavior for
ε = 0 is a good approximation of the behavior for all small
ε > 0.

4. NUMERICAL DISCUSSION

We now provide simulation results that shed some more light
to the conclusions drawn from Theorem 1 and Corollary 1.

Let us place ourselves first under the setting of Theorem 1.
Taking N = 100, n = 500, we assume [CN ]ij = .9|i−j| and
let εnn = 2 with a1 = 1, the vector of all-ones, and a2
such that [a2]k = exp(πık) (a steering vector at 30◦). In this
setting, 1

N a†1C
−1
N a1 ' 0.06 while 1

N a†2C
−1
N a2 ' 19. We

compare the results obtained for u1(x) = (1 + t)/(t + x)
against u2(x) = min{1, (1 + t)/(t+ x)} for t = .1 (and call
v1, v2 accordingly).

Numerically, we obtain

v1(γn) ' .992, v1(α1,n) ' 6.42, v1(α2,n) ' .006.

We thus observe a strong attenuation of the second outlier,
while the first outlier is strongly enhanced. Comparatively,

v2(γn) ' .984, v2(α1,n) = 1.00, v2(α2,n) ' .006.

Thus here Huber’s type estimator prevents, as it should, the
outlier a1 to be enhanced. This however induces a loss in the
closeness of v2(γn) to one.

We now consider the hypotheses of Corollary 1 with
[CN ]ij = .9|i−j|, N = 100, while DN = IN , c = .2. We
wish to compare the eigenvalue distribution of the sample
covariance 1

nYY† and that of ĈN against the outlier-free
sample covariance matrix 1

n

∑εnn
i=1 yiy

†
i . From our earlier

discussions, we wish ideally that the eigenvalue distribution
of the former two match as closely as possible that of the
latter. To avoid lengthy and imprecise Monte Carlo simula-
tions, we instead compare the theoretical limiting eigenvalue
distributions asN,n→∞ but for the limiting eigenvalue dis-
tribution of CN maintained to the that of CN when N = 100
(thus, we precisely compare the eigenvalue distributions of
the so-called deterministic equivalents for the various random
matrices under study). We take ε = 0.05, i.e., a 5% data
pollution by outliers. This is depicted in Figure 1, which
shows a tight match between ĈN and the target distribution,
while the sample covariance matrix is strongly affected in its
shifting much weight towards the purely-outlier distribution
that would be the well-known Marc̆enko–Pastur law (since
DN = IN ).

5. CONCLUSION

We have provided a large dimensional analysis for robust co-
variance estimators of the Maronna-type when the data set
contains outliers. We specifically showed that, under mild
assumptions, the Maronna estimator behaves as a weighted
version of the sample covariance matrix, where model-fitting
data versus outliers are weighted very differently. This anal-
ysis paves the way to an improved usage of robust estimators
of scatter in application contexts prone to outliers.
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Fig. 1. Limiting eigenvalue distributions. [CN ]ij = .9|i−j|,
DN = IN , ε = .05.

A. INTUITIVE DERIVATION OF THE RESULTS

Both intuitive and accurate proofs follow the ideas of [3]. We
provide here only the non-rigorous (although more insightful)
sketch of the proof.

We start from the solution to (2), ĈN , and define ĈN =

C
− 1

2

N ĈNC
− 1

2

N , which allows us to write

ĈN =
1

n

(1−εn)n∑
i=1

u

(
1

N
x†i Ĉ

−1
N xi

)
xix
†
i

+
1

n

εnn∑
i=1

u

(
1

N
ã†i Ĉ

−1
N ãi

)
ãiã
†
i (9)

where ãi = C
− 1

2

N ai. The intuitive idea is to approximate

the quadratic forms 1
N x†i Ĉ

−1
N xi and 1

N ã†i Ĉ
−1
N ãi by some de-

terministic quantities making use of standard random matrix
results. To that end, the main difficulty lies in the dependence
structure between ĈN and the vectors xi. However, follow-
ing the same steps as in [12, III.A], this dependence can be
‘weakened’ by rewriting (9) as

ĈN =
1

n

(1−εn)n∑
i=1

v (di)xix
†
i +

1

n

εnn∑
i=1

v (bi) ãiã
†
i (10)

with d1, . . . , d(1−εn)n and b1, . . . , bεnn the unique solutions
to the n equations

di =
1

N
x†i Ĉ

−1
(xi)

xi, i = 1, . . . , (1− εn)n

bi =
1

N
ã†i Ĉ

−1
(ai)

ãi, i = 1, . . . , εnn, (11)

where Ĉ(xi) and Ĉ(ai) are built from ĈN by removing the
outer product involving xi and ai, respectively. Note that

Ĉ(xi) and xi are not completely independent since Ĉ
−1
N (in

the argument of the u function for all samples) is built on
xi. This dependence, however, seems to be ‘weak’ since
xi is only one among a growing number n of xj vectors.
Approximating this ‘weak’ dependence by independence, we
can use trace and rank-one perturbation arguments (see, e.g.
[13, Lemma 3.1]) which suggest that

di =
1

N
x†i Ĉ

−1
(xi)

xi ≈
1

N
tr Ĉ

−1
N , d. (12)

From known large random matrix results (see, e.g., [14,
15]), we also expect d and bi to have deterministic equiva-
lents; assume this is true, i.e., there exist deterministic se-
quences {γn}∞n=1 and {αi,n}∞n=1 such that

|d− γn|
a.s.−−→ 0 (13)

|bi − αi,n|
a.s.−−→ 0, i = 1, . . . , εnn. (14)

We can then approximate

ĈN ≈
1

n

(1−εn)n∑
i=1

v (γn)xix
†
i +

1

n

εnn∑
i=1

v (αi,n) ãiã
†
i (15)

and, consequently,

d ≈ 1

N
tr

 1

n

(1−εn)n∑
i=1

v (γn)xix
†
i +

1

n

εnn∑
i=1

v (αi,n) ãiã
†
i

−1
(16)

bi ≈
1

N
ã†i

 1

n

(1−εn)n∑
j=1

v (γn)xjx
†
j +

1

n

εnn∑
j 6=i

v (αi,n) ãj ã
†
j

−1ãi.
(17)

with v(γn) now independent of xi, and recall that ãi’s are de-
terministic. Then, (16) and (17) are functionals of a general
class of random matrices whose deterministic equivalents are
known (see, e.g., [14, 15]). From a direct application of [14,
Thm. 1], we would then expect γn and αi,n, i = 1, . . . , εnn,
to be given by (5), the system of fixed-point equations in The-
orem 1. In fact, we can prove rigorously that such γn and αi,n
are well-defined and satisfy max1≤i≤(1−εn)n |di − γn|

a.s.−−→ 0

and max1≤i≤εnn |bi − αi,n|
a.s.−−→ 0. This uniform conver-

gence ensures that
∥∥∥ĈN − ŜN

∥∥∥ a.s.−−→ 0 where

ŜN =
1

n

(1−εn)n∑
i=1

v (γn)xix
†
i +

1

n

εnn∑
i=1

v (αi,n) ãiã
†
i . (18)

It is then immediate to see under Assumption 1 that this, along
with ĈN = C

1
2

N ĈNC
1
2

N , yields the result in Theorem 1.
For the case of random outliers, the result in Corollary 1

can be derived from Theorem 1 by using the same random
matrix arguments, i.e., trace and rank-one perturbation argu-
ments along with the deterministic equivalent from [14, Thm.
1], but now focused on the random outlying vectors ai.



B. REFERENCES

[1] P. J. Huber, “Robust estimation of a location parameter,”
The Annals of Mathematical Statistics, vol. 35, no. 1, pp.
73–101, 1964.

[2] R. A. Maronna, “Robust M -estimators of multivari-
ate location and scatter,” The Annals of Statistics,
vol. 4, no. 1, pp. 51–67, 1976. [Online]. Available:
http://dx.doi.org/10.1214/aos/1176343347

[3] R. Couillet, F. Pascal, and J. W. Silverstein, “The
random matrix regime of maronna’s M-estimator
with elliptically distributed samples,” arXiv preprint
arXiv:1311.7034, 2013.

[4] T. Zhang, X. Cheng, and A. Singer, “Marchenko-
Pastur Law for Tyler’s and Maronna’s M-estimators,”
http://arxiv.org/abs/1401.3424, 2014.

[5] R. Couillet and M. McKay, “Large dimensional analysis
and optimization of robust shrinkage covariance matrix
estimators,” Journal of Multivariate Analysis, vol. 131,
pp. 99–120, 2014.

[6] N. El Karoui, “Asymptotic behavior of unregular-
ized and ridge-regularized high-dimensional robust re-
gression estimators: rigorous results,” arXiv preprint
arXiv:1311.2445, 2013.

[7] L. Yang, R. Couillet, and M. McKay, “Minimum vari-
ance portfolio optimization with robust shrinkage co-
variance estimation,” in Proc. IEEE Asilomar Con-
ference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, 2014.

[8] R. Couillet, “Robust spiked random matrices and
a robust g-music estimator,” submitted to Journal

of Multivariate Analysis, 2014. [Online]. Available:
http://arxiv.org/pdf/1404.7685

[9] R. Couillet, A. Kammoun, and F. Pascal, “Second order
statistics of robust estimators of scatter. Application to
GLRT detection for elliptical signals,” 2014.

[10] J. T. Kent and D. E. Tyler, “Redescending m-estimates
of multivariate location and scatter,” The Annals of
Statistics, pp. 2102–2119, 1991.

[11] R. Couillet, F. Pascal, and J. W. Silver-
stein, “Robust Estimates of Covariance Matrices
in the Large Dimensional Regime,” IEEE Trans.
on Information Theory, 2013. [Online]. Available:
http://arxiv.org/abs/1204.5320

[12] R. Couillet and F. Pascal, “Robust M-estimator of scatter
for large elliptical samples,” IEEE Worshop on Statisti-
cal Signal Processing (SSP’14), Gold Coast (Australia),
2014.

[13] J. W. Silverstein and Z. Bai, “On the empirical distribu-
tion of eigenvalues of a class of large dimensional ran-
dom matrices,” Journal of Multivariate analysis, vol. 54,
no. 2, pp. 175–192, 1995.

[14] F. Rubio and X. Mestre, “Spectral convergence for a
general class of random matrices,” Statistics & Proba-
bility Letters, vol. 81, no. 5, pp. 592–602, 2011.

[15] S. Wagner, R. Couillet, M. Debbah, and D. T. Slock,
“Large system analysis of linear precoding in corre-
lated MISO broadcast channels under limited feedback,”
IEEE Transactions on Information Theory, vol. 58,

no. 7, pp. 4509–4537, Jul. 2012.


