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Abstract—A secure location-based service requires that a
mobile user certifies his position before gaining access to a
resource. Currently, most of the existing solutions addressing this
issue assume a trusted third party that can vouch for the position
claimed by a user. However, as computation and communication
capacities become ubiquitous with the large scale adoption of
smartphones by individuals, we propose to leverage on these
resources to solve this issue in a collaborative and private manner.
More precisely, we introduce PROPS, for PRivacy-preserving
10cation Proof System, which allows users to generate proofs
of location in a private and distributed way using neighboring
nodes as witnesses. PROPS provides security properties such as
unforgeability and non-transferability of the proofs, as well as
resistance to classical localization attacks.

I. INTRODUCTION

A Location-Based Service (LBS) takes advantage of the
position of its users to deliver a service tailored to their current
or past geolocated context. In practice, the position that a user
transmits to an LBS is often computed determined by his own
device. Thus, a malicious user can lie about his position by
having his device transmitting a location of his choice. This
type of attack can have a severe impact on applications such
as real-time traffic monitoring, location-based access control,
discount tied to the visit of a particular shop or local electronic
election, to name a few.

To counter this threat, an LBS should require its users to
prove their actual or past position before granting them access
to resources. This notion has been formalized through the
concept of location proof (LP), which is a digital certificate
attesting the position of a user at a specific moment in time. A
location proof architecture is a trusted architecture that users
can interact with to acquire LPs in a secure manner.

However, relying on a dedicated architecture to certify the
position of users raises important privacy concerns. First,
the location privacy of users can be breached due to their
regular interactions with the infrastructure (traceability issue).
Another issue is for a malicious user to collect proof on
behalf of another user with whom he colludes. This problem
is known as the terrorist fraud in the literature of distance-
bounding protocols. Furthermore, since often a LP is actually
mainly a timestamped signature of a position, there is no
mean for a user to change the granularity of the position
endorsed by a LP without risking to tamper with its integrity.
This property would be particularly interesting with respect
to data minimization as it would enable a user to reveal
only the granularity of his position (street, district, town, ...)
needed by the LBS to ensure its functionality. Finally, in most
of the current architectures [16], [27], [24], LPs are stored

on centralized servers (although sometimes encrypted [19])
resulting in users losing control of their own location data.
As a result, their location privacy might be compromised by
hackers or simply abused by the LBS provider. In addition, the
replication of storage servers is classically used to ensure the
reliability of the system, but this increases at the same time
both the risk of leakage and the deployment cost.

Contributions. In this paper, we introduce PROPS, a PRiva-
cy-preserving 10cation Proof System, that addresses the above
mentioned challenges. More precisely, our contributions are
the following.

e We give a complete description of properties that are
required to build a secure and privacy-preserving location
proof architecture.

o We describe a distributed and collaborative location proof
architecture preserving the privacy of users without rely-
ing on trusted or semi-trusted parties contrary to previous
works. Our solution is based on the notion of location
proof share (LPS), which denotes a timestamped digital
signature of the position of a user generated by a nearby
user. A collection of LPSs is then used to generate
a LP that can reveal the user’s position at particular
granularity to a service. By relying on zero-knowledge
proofs, our solution allows a user to prove that he is the
legitimate owner of a LPwithout disclosing his identity.
In addition, the proposed architecture is resistant against
to classical attacks against location proof architectures.

e We provide an implementation of PROPS on a mobile
platform and analyze its performances.

The outline of this paper is as follows. First in Section II,
we describe the entities participating to the location proof
architecture, the concept of location proof, the system assump-
tions as well as the adversary models we consider. Then in
Section III, we define the privacy and security requirements
that a location proof architecture should fulfill before briefly
presenting the building blocks upon which PROPS is con-
structed in Section IV. Afterwards, we present the different
phases of PROPS in Section V, before analyzing its security
and privacy in Section VI and reviewing the implementation
and its performance in Section VII. Finally, in Section VIII,
we compare PROPS with existing location proof architectures
before concluding.

II. LOCATION PROOF SPECIFICATION

In this section, we present the concept of location proof, the
different actors of our architecture, the system assumptions as
well as the adversary models that we consider.



A. Location Proofs and Interacting Entities

Definition 1: (Location proof — LP) A location proof is a
digital certificate attesting the position of a user at a specific
time.

Definition 2: (Location proof share — LPS) A location
proof share is a piece of information issued by a user attesting
of the position of another user at a certain time.

A LP is generated from a collection of LPSs, and can be
manipulated to disclose the location information at different
levels of granularity.

A user corresponds to an entity using the location proof
system. It typically refers to both the device carried out by
an individual and the individual himself. A user can take one
or several of the following roles: prover, witness or verifier.
Figure 1 gives an overview of interactions between users.

A prover is a mobile user of the system that periodically
collects LPs. In contrast to some previous works, we do not
assume that the prover is required to know in advance the LBS
he will interact with when collecting LPs. The prover stores
all LPs collected on a personal device (e.g., his smartphone)
under his control to use them at a later time.

A witness is located in the vicinity of a prover and accepts
to participate to the generation of a LPS for this prover. The
identity of a witness must be kept secret from the other users
of the system, with the exception of the Anonymity Lifter
(defined later).

A verifier checks the validity of the position claimed by
a prover through a LP. This role can be played by publicly
known entities (e.g., bank, store, social networking site, police
authority, LBS provider...) or another user.

The Certification Authority (CA) is a trusted third party re-
sponsible for issuing the credentials to newly registered users.
These credentials can be considered as being the “identity” of
these users. This authority is only used to register new users
and is not involved in the generation of LP.

The Anonymity Lifter (AL) is a trusted third party that has
the capacity to lift the anonymity of a particular user when
needed (for instance upon request from a judge).
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Fig. 1. Global overview and data flow of PROPS.

B. System Assumptions

Within the architecture of PROPS, we make the following
system assumptions.
Positioning capability. Users are mobile entities capable of
positioning themselves into space. For instance, a user might
be able to localize himself by using his GPS or through the
help of a dedicated positioning infrastructure. We assume the
imprecision of the location computed to be negligible.
Synchronized clocks. Each user possesses a local clock on
his device that is synchronized with the clocks of other users.
Thus, when two users communicate together, they rely on the
same time referential. In practice, users can use the clocks of
their GPS or GSM device.
Anonymous communication channel. Provers can broadcast
message to neighboring witnesses without disclosing identify-
ing information (e.g., MAC or IP addresses).

C. Adversary Models

When reasoning about the security and privacy of the
architecture, we will consider the following types of adversary.
Each of these adversaries is assumed to be computationally-
bounded (i.e., he cannot break the cryptographic assumptions
on which the security of cryptographic primitives rest).
Local eavesdropper. This adversary has the capacity to wire-
tap on the communications exchanged between users in his
vicinity. His main objective is to break their anonymity.
Malicious prover. A malicious prover aims at obtaining LPs
without physically being present at a location. For instance, he
can try to modify the time and position information endorsed
in a LPS already issued by a witness, or lie to a verifier about
the position enclosed in a LP.

Malicious verifier. A malicious verifier may want to extract
the identity of the prover out of one of his LP, to breach his
location privacy by obtaining more precise information than
the one disclosed by the prover or even impersonate him in
front of another verifier by pretending to be the owner of the
LP.

Malicious witness. This witness may fool an honest prover by
endorsing a different spatio-temporal information than the one
requested by the prover or collude with a prover by generating
more than one LPS for him.

Collusion of users. The main type of collusion attack against
location proof systems is known in the literature as collusion
P-P [25], terrorist fraud [13] or wormhole attack. This attack
involves a prover A at position P4, a prover B located at
position Pp and a witness W in the vicinity of B. A and B
collude to obtain a LPS from W attesting that A is at Pg.

III. PROPERTIES OF LOCATION PROOF SYSTEMS

In this section, we describe the fundamental properties
that a secure and private location proof system should fulfill.
These properties extend the seven design goals governing the
construction of a location proof architecture as proposed by
Luo and Hengartner [19].

Correctness. A LP presented by a user and generated gen-
uinely in a collaborative manner with honest witnesses should



always be considered accepted by an honest verifier provided
that LP is authentic (completeness property). A malicious
prover should not be able to generate a proof for a location
in which he has never been (spatial and temporal soundness
property). This property has to remain valid despite possible
attacks such as the distance fraud [2] or the mafia fraud [13]
(i.e., man-in-the-middle attack).

Proof of ownership and non-transferability. There should
be a strong binding between one LP and the identity of its
owner (proof of ownership property), while still preserving
the anonymity of the entities that participated in its creation.
The non-transferability property, implicitly resulting from the
previous, states that only the genuine owner of a LP should be
able to convince a verifier of its correctness. This property is
generally enforced by ensuring that the transfer of a LP would
also require the transfer of the identity (i.e., the credentials
obtained from the CA) to another user. This notion was first
introduced in [19]. In the case of PROPS, we extend this
definition to encompass the collusion P — P by stating that a
user should not be able to collect a LP on behalf on the users
with whom he colludes. As pointed out later in the state of
the art section, this attack can easily be mounted against the
system proposed by Luo and Hengartner [19].

Authenticity and unforgeability. The location information
endorsed by a LPS must not be modifiable by an adversary.
Within the context of PROPS, a location proof is generated
using LPSs collected from witnesses. The trust that a verifier
has on a particular LP is proportional to the number of LPSs
forming this proof. A malicious witness may collaborate with
a prover to grant him more than one LPSs for his position, thus
cheating the system by inflating the level of trust provided by
a particular proof. Therefore, even if m malicious witnesses
collude together, they should not be able to generate a LP that
seems to have been created by more than m users.

Prover location privacy. A LPS should protect the location
privacy of a prover, by ensuring that the location information
does not appear in clear but also that the adversary cannot
deduce it indirectly from the knowledge of the LPS alone.
Witness location privacy. A LPS should not reveal any infor-
mation about the witnesses involved in its generation. Indeed
while it is obvious that witnesses are in the communication
range of the prover during the proof gathering, the LPS itself
should not reveal more fine-grained location information about
witnesses and their identities.

Anonymity and unlinkability of prover and witnesses. In
order to ensure a high level of privacy, the prover and the
witnesses participating to the creation of a location proof must
remain anonymous both during the generation of the proof but
also when this proof is used. Thus, the proof gathering process
as well as the LP itself should not leak any information that can
be used to identify or track the participants involved. More-
over, it must be impossible to decide if two LPs are associated
to the same prover or if two LPSs have been generated by the
same witness during two different LP requests. However, the
triple {witness, prover and LPS} should be uniquely identified
to prevent possible frauds (to be detailed later).

Location sovereignty. A user should keep the sovereignty
on his location data by storing his LPs on his own personal
device rather than on a centralized server. By doing so, he
can selects the ones that he wants to show to a verifier
without exchanging further information with the infrastructure.
In addition, each user of the system should have the ability to
control the granularity of the location information revealed by
a LP without invalidating the authenticity of the underlying
LPSs.

IV. BUILDING BLOCKS

In this section, we review the building blocks that we use,
and we provide some intuition of how we combine them to
build PROPS.

A. Unique Group Signature

Group signature schemes has been introduced by Chaum
and van Heyst to provide anonymity to the signer of a
message [10]. Such signature scheme relies on a single public
verification key for the group but a different private key for
each signer (i.e., member of the group). Each member of the
group can issue a signature on a message using his private
key and the authenticity of the signature is checked using the
group verification key. Thus, for any computationally-bounded
adversary, it is impossible to identify the actual signer of a
message. The main operations of a group signature scheme
with optional anonymity lifting are the following ones.

o Init(1*). This procedure generates the parameters of the
group (A is a security parameter). It outputs the following
keys: gpk the public verification key of the group signa-
ture, ok the opening key needed to lift the anonymity of
a user and ¢k the issuing key needed to dynamically add
user to the group of signers.

o Join(user;,ik). This procedure takes as input the issuing
key ik and a user’s identity user;. At the end of the pro-
cedure, user; receives gskli], his private group signature
key and becomes officially a member of the group.

» GroupSign(m, gsk[i]). This procedure takes as input a
message m and a signature key gsk[i], and then produces
a group signature o; of the message m.

« GroupVerif(m, o;, gpk). This operation enables to check
the authenticity of a group signature. It requires as input
the group verification key gpk, a message m and a
group signature on this message o;. GroupVerif returns
either accept or reject depending on the validity of the
signature.

o LiftAnonymity(m, o;, ok). This procedure retrieves the
identity of a particular signer from a signature o;. This
operation takes as input a message m, a group signature
on this message o;, the opening key ok and produces as
output the identity user; of the signer.

As explained above, group signature schemes are designed to
ensure the anonymity to a signer of the message and multiple-
show unlinkability. Indeed, it is impossible to distinguish if
two signatures originate from the same member.



In the context of location proof system, we would like to
avoid potential abuses such as the unforgeability property and
the possibility for one witness to provide more than one LPS
per request of a prover. This issue can be solved by relying
on unique group signature scheme [14]. More precisely in
a unique group signature scheme, if a signer produces two
signatures on the same message (i.e., two LPSs for the same
location information), then there exists an efficient algorithm
to detect this:

« Detect(m, o, 0’). This procedure is a detection algorithm
that can tell if two signatures o and ¢’ are signatures on
the same message m by the same user. If this situation
occurs, this procedure returns true while otherwise it
returns false.

Unique group signature scheme can be implemented for
instance using CL-signature proposed by Camenisch and
Lysyankaya [6]. This efficient group signature scheme relies
on bilinear maps and its security is solely based on the LRSW
assumptions [20]. We refer the reader to [8], [5], [6] for more
details about the possibilities offered by this framework and
the implementation of this group signature.

B. Commitment

A commitment scheme [11], [17] is a cryptographic prim-
itive enabling a prover to hide a value of his choice such
that he can decide later to reveal it. In a nutshell, a commit-
ment scheme consists of two algorithms. First, the Commit
algorithm takes as input a value m and a random string
r, and then outputs a commitment C'. Second, the opening
algorithm VerifyCommit takes as input C, m and 7, and then
outputs accept if C = Commit(m,r) and reject otherwise.
A cryptographically secure commitment scheme is hiding in
the sense that it is computationally hard to infer m given
C and binding meaning that it is hard to find m % m
such that C' = Commit(m/,r). In the rest of the paper, all
the commitments used refer to Pedersen commitment [21].
The Pedersen commitment works in the following manner.
Given a group G of prime order g with generators g and £,
a commitment to x € Z, is formed by choosing a random
r € Zg and setting the commitment C' = ¢® x h". This
commitment scheme is information-theoretically hiding, and
is binding under the discrete logarithm assumption, which is
actually directly implied by the LRSW assumption [6].

C. Zero-knowledge Proof

A Zero-knowledge proof [15] is a protocol (interactive or
non-interactive) that enables a prover to convince a verifier
that he possesses a proof of the veracity of a mathematical
statement without leaking any information about the proof
itself. Using the notation of Camenisch and Stadler [7], a zero-
knowledge protocol can be written as ZKProof{(w) : F(w) =
1}, in which F' denotes a mathematical statement (a language)
and w represents a proof of this statement. Zero-knowledge
proof can be used to prove various properties such as the
knowledge of a discrete logarithm or of quadratic residues [1],
[23], [5]. Over the years, zero-knowledge proofs have been

widely used to develop anonymous credentials systems. The
most popular of these systems include the Direct Anonymous
Attestation (DAA) protocol [3], the identity mixer anonymous
credential system [9], [8] and the CL-signature [5], [6]. In
our context, we are interested in a zero-knowledge proof to
convince that two Pedersen commitments are commitments to
the same value. We call this procedure EqualityCommitment,
and it is ran interactively between the prover and a witness.
In the following, we give the intuition of how this procedure
works. Without loss of generality, consider C; = g* x h"™
and Cy = g x h™ the commitments that the prover needs to
convince that they correspond the same value x. The prover
picks randomly p1,p2 € Z,; and computes w = g x hP?
before sending it to the witness. The witness chooses a
challenge e € Z, and forwards it to the prover. Then, the
prover sends back s; = p; +e X x,82 = p2 + e X r; and
s3 = patexre. If g° xh®? = wx (Y and g°' xh*3 = wx CY,
then the procedure EqualityCommitment returns accept and
the witness accepts the proof, otherwise it returns reject and
the witness rejects the proof.

D. Proximity Testing

In PROPS, we assume the availability of a proximity testing
procedure that is used by a prover to convince a witness that he
is close to him. The success of this procedure is a prerequisite
to the issuance of a LPS using a valid pseudonym. In practice
in PROPS, the pseudonym is a commitment over the long term
secret of the prover. C';. We construct such a proximity testing
procedure from distance-bounding (DB) protocols originally
introduced by Brands and Chaum [2]. DB protocols existing
in the literature such as the one from Bussard and Bagga [4]
can easily be adapted for our needs but our architecture is
actually agnostic to the DB protocol used. In the following,
we describe the execution of the proximity testing procedure
that is inspired from the Bussard-Bagga protocol.

The proximity testing procedure consists of three phases.
The first phase is the preparation one, in which the prover
encrypts his private key Sy with a random symmetric key &
and gets the corresponding encrypted message e. Then, the
prover commits individually to each bit of e and k, which
results in two sequences of bit commitments Ry and R;. This
phase can be performed offline by the prover to save time.

During the second phase, the prover sends Ry and R; to
the witness, which then starts a multi-round fast-bit-exchange
with the prover. In each round i, the witness sends a challenge
bit b; € {0,1}, to which the prover replies with the i-th
bit of R,. Since the witness never learns both bit values,
he will also never learn the secret Sy. After the multi-round
fast-bit-exchange, the witness verifies the corresponding bit
commitments of Ry and R; (only for the received bits) by
asking the prover to provide the opening information for these
commitments.

During the third phase, the values Ry and R; are used by
the witness to derive a pseudonym C'5. Finally, the prover
convinces the witness that C'y and C; correspond to Pedersen
commitments on the same value through a zero-knowledge



proof [5]. For more details about how the pseudonym C5 is
constructed, we refer the reader to [4].

In contrast to the original protocol from [4] and its im-
plementation in STAMP [25], the witness and the verifier
do not need to have a public key to authenticate the prover.
Instead the authentication is performed using pseudonyms and
zero-knowledge proofs to preserve the privacy of the prover.
Revealing the values k£ and e to a colluder also disclose the
long-term secret of the prover, thus ensuring that the proximity
testing procedure is resistant to terrorist frauds.

Thereafter, we denote the proximity testing procedure by
ProximityTesting(d, C1), in which ¢ represents the distance
threshold used to verify the proximity of the prover and C is
the current pseudonym used by the prover at the initialization
of the protocol.

E. Hash Chains

As mentioned previously, the user of a location proof system
should have the possibility to reveal different granularities of
the positions contained in the LPSs he collected. Zuo and co-
authors propose to solve this problem by the use of multiple
encryption. More precisely when creating an LPS, each wit-
ness generates five different granularities of the location of the
prover. The granularities are then encrypted with different keys
using a symmetric encryption algorithm such as AES. The
encrypted values are then endorsed by the witness and put in
the LPS. When a prover reveals his location up to a particular
granularity to a verifier, he simply sends the decryption key
corresponding to the granularity he wishes to disclose (this
method is used for instance in STAMP). We choose to rely
on another approach, proposed originally by Lenzini, Maw
and Pang [18], to encode location information using hash
chains thus minimizing the size of a LPS. In this approach, the
digits of a GPS coordinates are hidden into hash chains. Then,
revealing the leftmost digits can generate a new granularity
of the position. Without loss of generality, we assume that
each GPS coordinates pos, such as latitude and longitude, is
represented by d digits in decimal (i.e., x; = z;%x; ¥~ .. a;h).

The hash chain is composed of the following operations.

» Hide(pos, seed). This procedure is run by the prover and
takes as input his precise position pos, a secret string seed
and outputs K,,,, which is the encoding of pos under the
secret string seed. In practice, K, is the last value of a
hash chain and corresponds to the information that will be
certified by the witness and included in the LPS instead
of pos.

« Reveal(pos, p, seed). This procedure is called by the
prover in order to partially reveal his position at granu-
larity p of his choice. Reveal takes as input the previous
position pos, a granularity p such that p < d and the
same secret seed used to encode pos with the algorithm
Hide(pos, seed) and outputs the pair (Ly,s, auZpes) in
which L, represents the position pos revealed up to
the granularity p and auxp,s is an auxiliary information
needed to prove that L,o0s is well formed.

o Check(K pos, aupos, Lpos). This procedure is used by
the verifier to check that the pair (Ly,s, autpos) revealed
by the prover corresponds to the location information
contained in K,,,,. This procedure takes as input K,
auTp,s and Ly,s and returns accept if the location
information claimed by the prover is verified, and reject
otherwise.

To encode the temporal information, the prover format
the current time into five values (i.e., {2),...,zs}) that
correspond to the time (hh:mm:ss), period of the day (morning,
afternoon or night), day, month and year. Then, he also relies
on a hash chain to encode the temporal information in the
LPS. The uncertainty of the position revealed depends of the
number of digits hidden by the function Hide has illustrated
in Table I. A GPS coordinate relies on seven digits for the
precision, thus the prover can hide a maximum of six digits.

Number of hidden digits 1 2 3 4 5 6
Radius in meters 0,1 1,3 13 136 | 1369 | 13 701
TABLE 1

RADIUS OF UNCERTAINTY WITH RESPECT TO THE HIDDEN DIGITS.
V. A PRIVACY-PRESERVING LOCATION PROOF SYSTEM

Thereafter, we describe the four different phases of PROPS,
namely Initialization, Join,LocationProofGathering and Lo-
cationProofVerification. We use the notation 4GS to refer
to unique group signature scheme and CLS to denote a
CL-signature scheme (cf. Section IV), while /\f:1 fi(z) is
used as a shortcut to fi(x) A ... A fr(z) in which f; is a
boolean function and A represents the logic operator AND.
The symmetric encryption is denoted by Encrypt(e, k45), in
which the bullet represents the data to be encrypted and k4p
the key used.

A. Initialization

During the initialization phase, the CA is responsible for
setting up the parameters of the location proof system. More
precisely, the CA calls UGS.Init(1*), which corresponds
to the initialization procedure of a unique group signature.
This procedure generates the credentials (sk, ik, ok, gpk) and
(Skcert, Pkeert) @ private/public key compatible with a CL-
signature. The public parameters of the system are defined
as pk = (gpk, pkeert). The CA keeps ik secret and will use
it to register new users to the system while ok is sent to the
Anonymity Lifter (AL) in order to be able to lift the anonymity
of a user if needed.

B. Join

When a user; joins the system, he runs this procedure
together with the CA in order to get his credentials. More
precisely, the CA adds the user; to the group by running
UGS Join(user;,ik). The CA also generates a random string
s, compatible with zero-knowledge proofs and computes a
signature cert,, = CLS.SigN(sy, Skcer/) on this random string.
As a result, the user; receives his credentials, which consist
of gsk[i] his private group signature key, s,, his secret random
string and cert,, a CL-signature [5] over s,, done using skcert.



(1)

The CL-signature will be used by a prover to demonstrate the
possession of a signature without revealing the signature itself.

C. LocationProofGathering

When a prover wants to obtain a proof of his current loca-
tion, he runs this procedure in collaboration with neighboring
users (i.e., witnesses) to obtain LPSs. After collecting at least
k LPSs from different witnesses, the prover can generate a

LP (c¢f. Section V-C).
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Fig. 2. The location proof gathering phase.

The location proof gathering protocol between a prover and
a witness is summarized in Figures 2 and 3. This protocol
consists of the following phases.

Session initialization. The gathering process starts with an
initialization phase in which the prover P generates random
values key and c; and uses them to compute the following
values:

o K, = hide(pos,key) and Kyime = hide(time, key),
which corresponds to the encryption of pos and time
under key. P also computes N4, a random share for a
Diffie-Hellman key agreement protocol.

e (Cy = Commit(Sy,rand;), which corresponds to the
commitment of his secret string s,, under rand; .

Then, P anonymously broadcasts (¢f. Section II-B) a LPS
request to neighboring users and wait for their responses:

P — x: {LPSReq = m|og,p(m), m = pos|time|C1|Kpos| Ktime|Na}

The request LP.SReq contains the following information: the
concatenation of pos, the current position of the user (which
also contains the current time), C; a commitment acting as a
pseudonym, K, the encoding of the prover’s position, Ky,
the encoding of the current time, N4 the share of the Diffie-
Hellman key agreement and finally o, p(m) a group signature
to authenticate the request.

Processing of the request. Upon reception of LPSReq, a
witness W checks the validity of the group signature o p(m)
and that pos and time correspond to the current geolocated
context. This verification is done by verifying that pos falls in
the circle of radius § centered at the position of the witness
and that time corresponds to the actual time (cf. Section II-B).
If these verifications succeed, the witness W computes the
following values:

e Np arandom share of a Diffie-Hellman key agreement,
which is then combined with a in order to generate a

session key kap. This session key kyp will then be
used to encrypt all subsequent communications between
P and W by relying on a symmetric cryptosystem, thus
ensuring the confidentiality and integrity of communica-
tions (cf. Section III).
e R a fresh challenge for the zero-knowledge proof.
Afterwards, the witness W notifies the prover that he accepts
to continue the generation process:

(2) W — P :{LPSReply = Encrypt((K,os|R),kaB)|Np}

The re;{(uest LPS Reply contains the value of Np in clear, the
value K,,, and a challenge I encrypted as an acknowledge-
ment to the previous phase. At the reception of LPSReply,
P can reconstruct the session key k4 p using Np and retrieves
the challenge R of the zero-knowledge proof. P replies to W
with the following zero-knowledge proof:

(3) P — W : {ZK = Encrypt((ZKProof g (C1 well formed)|Kpos|key), kar)}

The message Z K contains a zero-knowledge proof that the
pseudonym C'; is a valid commitment over a value Sy certified
by the CA. It also contains the value key to convince the
witness that K,,s and Ky, are valid encoding of pos and
time.

ZKProof{(certs, , Su,randy) : C1} < ZKProof{(certs,, Sv) :
VerifyCommit(C1, Sy, rand;) =1 A
CLS VerifySign(Su, certs,, , pkeerr) = 1}

In order to ensure the freshness of the proof, the zero-
knowledge proof will also depend on R, the nonce generated
by the witness at the previous step. This is made possible by
the use of zero-knowledge proofs based on CL-signatures.

Zero
Knowledge
Proof

,,,,,,,,,,, +>|Signature
scheme

I

]
Proximity Testing i
T

1
Cc2 Equatlityctommi | S
( men Kpos, Ktime
c1
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Hash
chains

’ Commitment

Fig. 3. Overview of the gathering procedure.
Proximity testing. Afterwards, P starts the proximity testing
protocol with .

(4) P s W : {ProximityTesting(d, C1)}

This protocol consists in a sequence of fast bit exchanges
between the prover and the witness. More precisely, the
witness selects a bit b € {0,1} and sends it to the prover.
Then, the prover replies with a response r. W records the
time needed by the prover to produce the response to each
of the challenges. These timings are used to estimate the
proximity of the prover and this process is repeated several



times in order to increase the robustness of the proximity
testing protocol. If the timings are close enough to §, then
the ProximityTesting(d, C) procedure outputs accept, while
otherwise it outputs reject.

At this point, W is convinced that P is in his proximity.
However, he also needs to be convinced that P has not cheated
during the running of ProximityTesting. To achieve this, W
constructs a commitment C5 using the responses received
during the proximity testing. More precisely provided that
the proximity testing was ran correctly, C'y is a commitment
on the identity Sy of the prover under a new random string
rands only known by the prover Co = Commit(s,,, rands).
Afterwards, P sends to W a zero-knowledge proof that the
value committed value in C; and Cs are equal.

LPS  generation. Finally, W  creates a LPS
s = {C1|Kps|Kiime} and a signature ow(s) =
UGS .GroupSign(s, gskw ). P receives from W:

(5) W — P :{Encrypt(LPS,kap)}, LPS = slow(s)

Afterwards, the prover locally stores the LPSs collected
from surrounding witness, the associated variables (the en-
coding keykey) and the current spatio-temporal context (time
and pos).

D. Location Proof Verification

The proof verification phase described in Figure 4 enables a
prover to convince a verifier that he was at a specific location at
a particular moment in time. The verification process requires a
proof of ownership by the current prover and also a check from
the verifier that the location proof contains LPSs from different
witnesses. If this last verification fails, then the verifier will
forward the evidences of the fraudulent LPS to the AL who
has the capacity to reveal the identity of the cheater using the
opening key ok.

Without loss of generality, consider that the prover has
collected k£ LPSs before sending a LP verification request to
a verifier. A LP is generated as follows:

P -V :LP =slow,(9)|...|low,(5)|atuZpos|Lpos|atxiime| Ltime

in which L., (resp.Lime) represents the granularity of the
position (respectively the time) to be revealed. The values
aUTpos and auTime are used to check that these granularities
are conformed with the values K, and Ky, of LP.
These values are computed using the function Reveal (cf.
Section IV-E).

Once he has received the LP , the verifier V runs sequen-
tially the following verifications steps.

1) First, V  checks for each LPS o;(s) in
certificate whether UGS.GroupVerif(s, o;(s), gpk)
returns accept. More precisely, the function

UGS .GroupVerif(s, o;(s), gpk) verifies the validity of
the group signature of each of the k LPSs o;(s):

k

/\ UGS GroupVerif(s, 0i(s), gpk)) = true.

=1

2) Then, the verifier validates the uniqueness of the LPS in
LP by verifying that all these LPSs have been generated
by different witnesses:

k k
/\ /\ UGS Detect(s,0i(s),0;(s))) = false.
i=1j=i+1

3) Next, V anonymously authenticates the prover P as
the legal owner of LP by running a zero-knowledge
proof protocol with him. At the end of this step, V is
convinced that P knows the secret Sy used to generate
the pseudonym C} and that this secret has been certified
by the CA.

4) Finally, V uses the K,,s and Ky, contained within
LP to evaluate the validity of the spatio-temporal infor-
matin (Lpos, Liime) claimed by the prover:

Check(K pos, U pos, Lpos) N\CheCk(K ime, aUZtime, Liime)-

yyyyyy

Fig. 4. Overview of the verification procedure.

VI. SECURITY AND PRIVACY ANALYSIS

In this section, we analyze how PROPS fulfils the security
and privacy properties described in Section III.

Correctness. The completeness property is trivial. Once
an LPS is received by the prover, he can verify that the
spatio-temporal information contained within it is valid. The
spatial and temporal soundness are ensured because revealing
a geolocated context that does not match the one contained in
the LP will be detected during the Step 4 of the verification
process. Thus, a malicious prover cannot alter the integrity of
a LPS and fool the verifier by claiming a different location
than the one contained in the LPS. In the following, we give
more details about how PROPS ensures the spatial soundness
property (cf. Section III) by proving its resistance to the
distance fraud and mafia fraud.

Resistance to distance fraud. In a distance fraud, a malicious
prover tries to convince an honest witness that he is closer
than in reality. By assumption in PROPS, the distance fraud is
prevented by the use of the Proximity Testing(d, C;) protocol.
Resistance to mafia fraud. Let P be an honest prover located
at position L, and W an honest witness located at position
L, such that dist(L,, L,,) > d. Consider W and P, which
are two different colluding users or the same malicious user
playing two different roles. In the mafia fraud, the objective
of an adversary is to replay a session that involved a honest
prover P to fool W and make him believe that P is closer
than he really is. Thus, two sessions need to be run, the first
one involving W and P with the objective to get commitments



from P followed by a second one performed between P and
W in which the commitments of the first protocol are replayed
in order to obtain a location share on behalf of P. In the second
session P will need to compute a fresh zero-knowledge proof
using r from W to prove knowledge of the identity s, of P,
which is impossible without the knowledge of s,,.

Proof of ownership and non-transferability. During the
verification phase, the verifier checks that the current prover
is effectively the legitimate owner of the LP by running a
zero-knowledge protocol over the pseudonym C; included
in the proof. Within PROPS, the non-transferability property
is equivalent to the resistance to the collusion P — P. The
resilience to the collusion P — P follows directly from the
resilience to the terrorist fraud of the DB protocol used.

Unforgeability. The unforgeability is ensured partially by

the uniqueness property provided by unique group signature,
which prevents the adversary controlling a collusion of m
malicious users to gather enough LPSs as long as the size
of the collusion is less than the number of shares needed (i.e.,
k > m).
Resistance to distance hijacking. In a distance hijacking attack,
a malicious user M tries to hijack the gathering session of
an honest prover P. More precisely, M waits until P has
successfully proved that he is in the vicinity of an honest
witness W and then hijacks P’s session to collect its LPS.
However in PROPS, a witness verifies that the entity who
ran ProximityTesting(d, Cy), is the same as the one that
computes the commitment C;. Therefore, such an attack will
be detected by W and the gathering process will be aborted
before the malicious prover receives the LPS, thus avoiding
the possibility of hijacking.

Anonymity and unlinkability of prover and witnesses.
Due to the use of commitments and zero-knowledge proofs
in PROPS, users can remain anonymous in the system as
long as they behave honestly. Furthermore, the prover creates
periodically nonces to generate new pseudonyms. Therefore,
the pseudonyms are unlinkable provided the nonces are chosen
at random and independently. Moreover due to the hiding
property of the commitments, the pseudonyms do not disclose
any information that can be used to trace back to the identity
of the prover. In addition, the anonymity and unlinkability of
witnesses are ensured by the use of group signature. Finally,
the use of a zero-knowledge proof enables the prover to
anonymously authenticate himself to the verifier as the owner
of a LP.

Witness location privacy. When establishing a LP, a
witness never discloses his exact position but rather checks
that the position claimed by the prover is in the vicinity using
the proximity testing protocol. Therefore, a local eavesdropper
can only infer that the witness is in the proximity of the prover
but does not learn his exact position.

Prover location privacy and authenticity. The location
information is first encoded into the hash chains before being
endorsed by the witness. This information cannot be modified
later by the prover and it does not appear in clear in the LP.

Location sovereignty. Within PROPS, the LPs gathered by

a user are saved locally on his device in contrast with other
schemes in which the proofs are stored and controlled by
remote servers. Finally, due to the use of hash chains the
prover can decide the granularity of the information he wants
to disclose (cf. Section IV-E).

VII. PROOF-OF-CONCEPT IMPLEMENTATION

In this section, we briefly report on the current proof-of-
concept implementation of PROPS. Our main objective is to
demonstrate that the architecture of PROPS can be imple-
mented with currently available technology. Our implementa-
tion relies on Idemix! 2.3.4, a Java library containing advanced
cryptographic primitives such as CL-signatures, commitment
schemes and zero-knowledge proofs (cf. Section IV). More-
over, we have implemented unique group signatures relying
on the concept of domain pseudonym offered by Idemix. In
a nutshell, a domain pseudonym can be used to link all the
group signatures performed by a user within the same domain.
Within the context of PROPS, we set the domain to the value
r included in the location proof, thus allowing a verifier to
check if several signatures have been issued by the same user
on a specific domain (i.e., LP).

We implemented a Java prototype client application on
Android. Our experiments are carried out on two devices: (1)
a Samsung Galaxy Note 2 equipped with a Quad Core 1.6
GHz processor, 2GB of RAM, a GPS and running Android
OS 4.1.2, acting as a prover, and (2) a Google Nexus 7 (2012
version) equipped with a Nvidia Tegra processor and 1 GB of
RAM acting as a witness. The measurements that we report
for each phase have been computed by averaging over 10
independent trials. In our testbed, the witness listens to the
network until he receives a location proof request from a
nearby prover. As a result, the witness decides whether he
accepts to serve the request or not. If the request is accepted,
the witness sends an acknowledgement back to the prover.
This process is denoted as the initialization phase in Figure 5.
After the initialization phase, the witness check that the
prover possesses a valid credential from the CA on the value
that is contained in the commitment (authentication phase).
Afterwards, the prover and the witness executes the proof
creation phase. Finally, we also test the proof sending phase
in which the witness sends the location share to the prover.
During our experiments, we have measured the computational
time (also an indicator of power consumption) and storage that
are needed to run our current implementation PROPS on real
smartphone devices.

From a memory point of view, each LPS has a size of
3444 bytes, which is higher compared to those of previous
works. However, PROPS provides stronger privacy and security
guarantees. The running time of the whole gathering phase
conducted by a witness is on average of 2.98 £ 0.02 seconds.

For the verification phase, we have designed a realistic
scenario in which a prover wants to show a LP to a remote LBS
server. The server we used run on an Intel i5-2435M dual-core

Thttp://www.zurich.ibm.com/security/idemix/
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Fig. 5. Cost of the different phases of the proof generation for the witness.

processor at 2.4 Ghz with 4 GB of 1333 Mhz DDR3 SDRAM
running OSX 10.8.3. The average time needed to verify one
LPS is around 0.66 & 0.03 seconds for the verifier.

VIII. RELATED WORK

Location proof architectures can broadly be categorized into
two classes depending on whether a user collects a LP (1)
through a bipartite interaction with a trusted node belonging
to the infrastructure or (2) through a collaborative protocol
performed with several other (untrusted) users.

Bipartite gathering approach. In the bipartite gathering
approach a user cannot request a proof for his location until
he is close to a reference trusted node, such as an Access
Point (AP). When this situation occurs, a protocol is run
between the user and the reference node in order to generate a
location proof. For instance, Waters and Felten [26] introduced
a system relying on distance-bounding to compute the latency
between a prover and his nearest AP. Then, this latency is
inserted in a proof that can be checked by a given verifier.
One of the limit of this system is that an adversary can collect
LPs on behalf of malicious users, thus leading to terrorist
fraud. Saroiu and Wolman [22] proposed a system in which
periodically broadcasted beacons are used to validate the
proximity of a prover to an AP. From a privacy point of view,
one of the main issue of this protocol is that a prover needs to
publicly reveal his identity during the gathering process. More
recently, Luo and Hengartner [19] have designed a scheme
in which intermediate proofs generated by APs need to be
validated by a trusted third party. This protocol can detect
cheating attempts in which a prover has acquired at the same
time two LPs from access points located at different places.
In addition as for PROPS, a user can decide on the granularity
of the revealed location information.

Cooperative gathering approach. In the cooperative gath-
ering approach, users directly collaborate together in order
to generate LPs. For instance, Zhu and Cao designed AP-
PLAUS [27], in which neighboring mobile devices communi-
cate via Bluetooth to cooperatively generate LPs, before for-
warding updates of their current positions to a location proof
server responsible for storing these proofs, while periodically
changing their pseudonyms. Graham and Gray [16] proposed
a protocol based on the use of distance-bounding protocols
in which a central server monitors the whereabouts of all the
users which is in direct opposition with the preservation of the
location privacy of users of such system. Talasila, Curtmola
and Borcea introduced LINK [24], a system in which each user

is assigned a trust score reflecting his behavior in the system.
LINK can thwart attacks from colluding users in which the
same witnesses always certified the position of a prover but
LINK have not integrated any privacy issues in its design.
Davis, Chen and Franklin introduced an alibi system [12]. An
alibi is a certificate providing evidences of an individual’s past
location, which can be critical in proving his innocence with
respect to an event occurring in a location in which he was
not present. In this system, the identity of the alibi owner
is concealed at the time of the creation of the alibi. In this
architecture, both the prover and the witnesses have to reveal
their identities when the alibi needs to be shown to a judge.

Recently, Wang and co-authors propose STAMP [25], which
is a location proof system in which co-located mobile devices
mutually generate LPS for each other using bluetooth or
WiFi in ad-hoc mode. In the same spirit as PROPS, a prover
convince a verifier of his location by showing several LPSs.
STAMP ensures the authenticity of LPS (i.e, a prover cannot
modify the data included in a LPS once generated), the non-
transferability, and the anonymity of prover and witnesses
generating the proof. Users have also the possibility to choose
the granularity to reveal to a verifier. However, in contrast
to PROPS, the LPSs are encrypted under the CA public key,
thus the prover cannot check himself the validity of location
information endorsed by the witness. During the verification
stage, the verifier needs to contact the CA to validate a LP.
The collusion detection algorithm is an entropy-based trust
evaluation approach like the one used in APPLAUS. STAMP
incorporates the Bussard-Bagga distance-bounding protocol
as a countermeasure to wormhole attacks. The authors also
provide a prototype implementation on the Android platform
with an averaging running time of 8 seconds.

Table VIII summarizes the security and privacy properties
(cf. Section IIT) enforced by the aforementioned systems and
PRroOPS. In terms of notation, a checked cell means that the
protocol ensures this property while a blank cell indicates the
opposite. Note that while PROPS has been designed to meet all
these security and privacy properties, it cannot defend against
a collusion of malicious users whose size is unbounded. In
contrast, APPLAUS [27] and LINK [24] overcome this issue
by storing all LPs on a central server. By doing so, they can
maintain a log of the witnesses used by each prover and use it
to detect a possible collusion (i.e, a particular prover is always
in contact with the same witnesses while there are other users
that are located at the same place). While we have striven to
include this security property when designing PROPS, it does
not appear to be trivial to implement it without relying on a
trusted third party to store the proofs, which would be in direct
opposition with the spirit of PROPS, including in particular the
location sovereignty property.

IX. CONCLUSION

In this paper, we introduced PROPS, a novel privacy-
preserving location proof system based on a collaborative
architecture. The main strengths of this location proof system
are the following: (1) the LP collected by a prover are under his
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control and does not reveal any information about his identity,
(2) the prover has the ability to remain anonymous even when
presenting a proof to a verifier, (3) the privacy of users is
preserved with respect to a man-in-the-middle adversary, (4)
a verifier can detect abuses of a malicious user that tries to
produce fake LPs, and finally (5) the prover can selective
disclose the spatial and temporal information to the granularity
of his choice. We also demonstrate the security of PROPS
to standard attacks such as collusion P — Plterrorist fraud,
distance fraud, mafia fraud and replay attack.

In the future, we would like to extend PROPS to deal with
the collusion W — P in which a witness systematically reports
false LPS for a colluder even though one or both of them are
not at the location claimed in the LPS. Indeed, unless trusted
infrastructures are deployed at each possible location, it seems
quite difficult to detect that a particular LPS is a result of
such a collusion [24], [25], [27]. A line of research that we
would like to pursue in the future is the use of anonymous
peer-to-peer reputation system as a countermeasure to frauds
in this mobile environment. Finally, another research avenue
is the design of a secure multiparty computation version of
the protocol involving a joint interaction with the prover and
multiple witnesses rather than relying on pairwise interactions
between the prover and each witness.
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