Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations

Abstract : We discuss numerical aspects related to a new class of nonlinear Stochastic Differential Equations in the sense of McKean, which are supposed to represent non conservative nonlinear Partial Differential equations (PDEs). We propose an original interacting particle system for which we discuss the propagation of chaos. We consider a time-discretized approximation of this particle system to which we associate a random function which is proved to converge to a solution of a regularized version of a nonlinear PDE.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-01241704
Contributeur : Francesco Russo <>
Soumis le : mardi 2 août 2016 - 15:55:20
Dernière modification le : jeudi 16 novembre 2017 - 17:15:02
Document(s) archivé(s) le : jeudi 3 novembre 2016 - 17:41:38

Fichiers

NonConservativePDEPart2Revised...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01241704, version 2
  • ARXIV : 1608.00832

Collections

Citation

Anthony Le Cavil, Nadia Oudjane, Francesco Russo. Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations. 2016. 〈hal-01241704v2〉

Partager

Métriques

Consultations de la notice

182

Téléchargements de fichiers

76