On the reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid

Abstract : We consider the geometrical inverse problem consisting in recovering an unknown obstacle in a viscous incompressible fluid by measurement of the Cauchy force on a part of the exterior boundary. We deal with the case where the fluid equations are the non stationary Stokes system and using the enclosure method, we can recover the convex hull of the obstacle and the distance from a point to the obstacle. With the same method, we can obtain the same result in the case of a linear fluid--structure system composed by a rigid body and a viscous incompressible fluid. We also tackle the corresponding nonlinear systems: the Navier--Stokes system and a fluid--structure system with free boundary. Using complex spherical waves, we obtain some information on the distance from a point to the obstacle.
Type de document :
Article dans une revue
Journal of Inverse and Ill-posed Problems, De Gruyter, 2017, 25 (1), 〈10.1515/jiip-2014-0056〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01241112
Contributeur : Takéo Takahashi <>
Soumis le : mercredi 9 décembre 2015 - 22:50:22
Dernière modification le : mercredi 13 février 2019 - 18:30:03
Document(s) archivé(s) le : samedi 29 avril 2017 - 09:51:26

Fichier

SanMartinSchwindtTakahashi-v2....
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jorge San Martin, Erica Schwindt, Takéo Takahashi. On the reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid. Journal of Inverse and Ill-posed Problems, De Gruyter, 2017, 25 (1), 〈10.1515/jiip-2014-0056〉. 〈hal-01241112〉

Partager

Métriques

Consultations de la notice

424

Téléchargements de fichiers

122