Spectral action in noncommutative geometry: An example
B Iochum

To cite this version:
Spectral action in noncommutative geometry: An example

B. Iochum1,2
1Centre de Physique Théorique, CNRS–Luminy, Case 907,13288 Marseille Cedex 9 FRANCE
2Also at Université de Provence
E-mail: iochum@cpt.univ-mrs.fr

Abstract. This is a report on a joint work \cite{12} with D. Essouabri, C. Levy and A. Sitarz.

The spectral action on noncommutative torus is obtained, using a Chamseddine–Connes formula via computations of zeta functions. The importance of a Diophantine condition is outlined as far as the difficulties to go beyond. Some results on holomorphic continuation of series of holomorphic functions are presented.

1. Introduction

The spectral action introduced by Chamseddine–Connes plays an important role (see \cite{3} and Chamseddine’s contribution to this proceedings) in noncommutative geometry. More precisely, given a spectral triple \((A, \mathcal{H}, \mathcal{D})\) where \(A\) is an algebra acting on the Hilbert space \(\mathcal{H}\) and \(\mathcal{D}\) is a Dirac-like operator (see \cite{9,21}), they proposed a physical action depending only on the spectrum of the covariant Dirac operator

\[
\mathcal{D}_A := \mathcal{D} + \tilde{A}, \quad \tilde{A} := A + \epsilon JAJ^{-1}
\]

where \(A\) is a one-form represented on \(\mathcal{H}\), so has the decomposition \(A = \sum a_i[D, b_i]\), with \(a_i, b_i \in A\), \(J\) is a real structure on the triple corresponding to charge conjugation and \(\epsilon \in \{1, -1\}\) depending on the dimension of this triple and comes from the commutation relation

\[
JD = \epsilon D J.
\]

This action is defined by

\[
\mathcal{S}(\mathcal{D}_A, \Phi, \Lambda) := \text{Tr} \left(\Phi(\mathcal{D}_A/\Lambda) \right)
\]

where \(\Phi\) is any even positive cut-off function which could be think as a step function. This means that \(\Phi\) counts the spectral values of \(|\mathcal{D}_A|\) less than the mass scale \(\Lambda\).

Even if the spectral action on NC-tori has been computed for operators of the form \(\mathcal{D} + A\) in \cite{16} and for \(\mathcal{D}_A\) in \cite{18}, it is interesting to show that this can be also directly obtained from

3 Unité Mixte de Recherche (UMR 6207) du CNRS et des Universités Aix-Marseille I, Aix-Marseille II et de l’Université du Sud Toulon-Var. Laboratoire affilié à la FRUMAM – FR 229

CPT-P27-2007
the Chamseddine–Connes analysis of [4]. Actually,
\[
S(D_A, \Phi, \Lambda) = \sum_{0 < k \in Sd^+} \Phi_k \Lambda^k \int |D_A|^{-k} + \Phi(0) \zeta_{D_A}(0) + O(\Lambda^{-1})
\]
(4)
where \(D_A = D_A + P_A\), \(P_A\) is the projection on \(\text{Ker} \, D_A\), \(\Phi_k = \frac{1}{2} \int_0^\infty \Phi(t) t^{k/2-1} \, dt\) and \(Sd^+\) is the strictly positive part of the dimension spectrum of \((A, H, D)\). As we will see, \(Sd^+ = \{1, 2, \cdots, n\}\) and \(\zeta_{D_A}(s) = \zeta_D(s)\). Moreover, the constant term \(\zeta_{D_A}(0)\) in (4) can be computed from unperturbed spectral action since it has been proved in [4] that
\[
\zeta_{D+A}(0) - \zeta_D(0) = \sum_{q=1}^n \frac{(-1)^q}{q} \int (AD^{-1})^q,
\]
(5)
using \(\zeta_X(s) = \text{Tr}(|X|^{-s})\). We show that this formula can be extended to non invertible Dirac operators and non invertible perturbations.

All results on spectral action are quite important in physics, especially in quantum field theory and particle physics, where one adds to the effective action some counterterms explicitly given by (5), see for instance [2–4, 6, 14, 16, 18, 20, 22, 25–28].

2. How to compute \(\text{Tr}(\Phi(D_A/\Lambda))\)?

2.1. Heat kernel approach

Constraints on \(\Phi\): Actually, the step functions is not allowed due to Gibbs’ phenomenon. So, we can
- use the distributional approach investigated in [13],
- or follow [23] and assume that \(\Phi \in C^\infty(\mathbb{R}^+)\) is a Laplace transform of \(\hat{\psi}\) in the Schwartz space \(S(\mathbb{R}^+) = \{g \in S(\mathbb{R}) : g(x) = 0, x \leq 0\}\). So \(\Phi\) has analytic extension on the right complex plane and \(\Phi(z) = (-1)^m \int_0^\infty e^{-tz} t^m \hat{\psi}(t) \, dt, \Re(z) > 0\) where \(m := \lfloor \frac{n}{2} \rfloor\). In this case, the following is well established
\[
\text{Tr}(\Phi(D/\Lambda)) = \sum_{k=0}^d \Phi_k a_k \Lambda^{d-k} + O(\Lambda^{-1})
\]
(6)
where \(a_k\) are the Seeley–De Witt coefficients (see [19]) and when \(n = 2m\) is even, \(\Phi_{2k}\) has the more familiar form:
\[
\Phi_{2k} = \begin{cases}
\frac{1}{(m-k)} \int_0^\infty \Phi(t) t^{m-1-k} \, dt, & \text{for } k = 0, \cdots, m-1, \\
(-1)^k \Phi(k-m)(0), & \text{for } k = m, \cdots, n.
\end{cases}
\]
For \(n\) odd, the coefficients \(\Phi_{2k}\) have less explicit forms because they involve fractional derivatives of \(\Phi\).

2.2. Pseudodifferential operators and Zeta functions approach

One can enter in the field either via the heat kernel as before or via zeta functions or Dixmier traces.
Consider first the commutative case where \(A \in C^\infty(M)\) for a manifold \(M\). When \(P \in \Psi DO\) is a pseudodifferential operator of order \(q\)
\[
\zeta_P(s) = \text{Tr}(P|D|^{-s})
\]
is holomorphic for \(\Re(s) > q + d\), with at most poles at integers \(k \leq q + d\).
The leading residue is
\[\text{Res}_{s=d+q} \zeta(P) = c_1 \text{Tr}_{Dix}(P) = c_2 \int_{S^*}(M) \sigma_P \]

(see Guillemin, Wodzicki, . . . , where in general \(D^2 = \Delta \) is the scalar Laplacian.)

Here is the interest of the abstract setting introduced in [10, 11] where subleading residues are equally obtained: Given a spectral triple \((A, \mathcal{H}, D)\) of dimension \(d\), which makes sense since \(a\) is a 1-form, \(A\) and \(JAJ^{-1}\) are in \(\mathcal{D}(A)\) and moreover \(\mathcal{D}(A) \subseteq \bigcup_{p \in \mathbb{N}_0} OP^p\). Since \(|D| \in \mathcal{D}(A)\) by definition and \(P_0\) is a pseudodifferential operator, for any \(p \in \mathbb{Z}\), \(|D|^p\) is a pseudodifferential operator (in \(\mathcal{O}(\mathcal{H})\)).

Remark 2.2. It is rather difficult to compute zeta functions, even when it is a Dixmier-trace. However, it is proved in [1] that for any \(0 \leq T \in \mathcal{B}^c(\mathcal{H})\) such that \(T^s \in \mathcal{L}^1(\mathcal{H})\) for all \(s > 1\), then, if \(l = \lim_{s \to 0} \epsilon \text{Tr}(T^{1+c})\) exists, \(T\) is Dixmier-traceable and \(\text{Tr}_{Dix}(T) = l\).
Remark 2.3. When \(D \) (or \(D_A \)) are not invertible, one uses in noncommutative integrals \(D \) (or \(D_A \)) defined by \(D = D + P_0 \) (or \(D_A = D_A + P_A \)), where the \(P \)'s are projections on the kernel of the operator. Since \(D \) has a compact resolvent, \(D_A \) has also a compact resolvent and these projections are finite-rank operators.

Note that \(P_A \in OP^{-\infty} \), so is a smoothing operator.

For the kernels, there is a difference between \(D_A \) and \(D + A \): for the noncommutative torus, the inclusion \(\text{Ker} D \subseteq \text{Ker} D + A \) is not satisfied since \(A \) does not preserve \(\text{Ker} D \) contrarily to \(\tilde{A} \).

Using (6), one obtains (4). Moreover, relation (5) proved in [4], can be extended to

Proposition 2.4. For any selfadjoint one-form \(A \), the constant term in \(A \) in (6) is

\[
\zeta_{D_A}(0) - \zeta_D(0) = - \int \log(1 + \tilde{A}D^{-1}) = \sum_{q=1}^{n} \frac{(-1)^q}{q} \int (\tilde{A}D^{-1})^q.
\]

(7)

3. The noncommutative torus

3.1. Notations

Let \(A_\Theta := C^\infty(T_n^m) \) be the smooth noncommutative \(n \)-torus associated to a non-zero skew-symmetric deformation matrix \(\Theta \in M_n(\mathbb{R}) \) (see [7], [24]): \(C^\infty(T_n^m) \) is generated by \(n \) unitaries \(u_i, i = 1, \ldots, n \) subject to the relations \(u_i u_j = e^{i\Theta_{ij}} u_j u_i \), and with Schwartz coefficients: an element \(a \in A_\Theta \) can be written as \(a = \sum_{k \in \mathbb{Z}^n} a_k U_k \), where \(\{a_k\} \in S(\mathbb{Z}^n) \) with the Weyl elements defined by \(U_k := e^{-\frac{1}{2} i \chi \cdot k} u_1^{k_1} \cdots u_n^{k_n}, k \in \mathbb{Z}^n \). Previous relation on the \(u \)'s reads

\[
U_k U_q = e^{-\frac{1}{2} i \chi \cdot q} U_{k+q}, \quad \text{and} \quad U_k U_q = e^{-i \chi \cdot q} U_q U_k
\]

(8)

where \(\chi \) is the matrix restriction of \(\Theta \) to its upper triangular part. Thus unitary operators \(U_k \) satisfy \(U_k^* = U_{-k} \) and \([U_k, U_l] = -2i \sin(\frac{1}{2} k \cdot \Theta l) U_{k+l} \).

Let \(\tau \) be the trace on \(A_\Theta \) defined by \(\tau(\sum_{k \in \mathbb{Z}^n} a_k U_k) := a_0 \) and \(H_\tau \) be the GNS Hilbert space obtained by completion of \(A_\Theta \) with respect of the norm induced by the scalar product \(\langle a, b \rangle := \tau(a^* b) \). On \(H_\tau = \{ \sum_{k \in \mathbb{Z}^n} a_k U_k : \{a_k\} \in l^2(\mathbb{Z}^n) \} \), we have the left and right regular representations of \(A_\Theta \) by bounded operators, denoted respectively by \(L(\cdot) \) and \(R(\cdot) \).

Let also \(\delta_\mu, \mu \in \{1, \ldots, n\} \), be the \(n \) (pairwise commuting) canonical derivations, defined by

\[
\delta_\mu(U_k) := ik_\mu U_k.
\]

(9)

\(A_\Theta \) acts on \(H := H_\tau \otimes C^{2m} \) where \(m = [\frac{n}{2}] \), the square integrable sections of the trivial spin bundle over \(T^n \): each element of \(A_\Theta \) is represented on \(H \) as \(L(a) \otimes 1_{2m} \).

The Tomita conjugation \(J_0(a) := a^* \) satisfies \([J_0, \delta_\mu] = 0 \) and we define \(J := J_0 \otimes C_0 \) where \(C_0 \) is an operator on \(C^{2m} \). The Dirac operator is then given by the selfadjoint extension of

\[
D := -i \delta_\mu \otimes \gamma^\mu,
\]

where we use hermitian Dirac matrices \(\gamma \). This implies \(C_0 \gamma^\alpha = -\varepsilon \gamma^\alpha C_0 \), and \(D U_k \otimes e_i = k_\mu U_k \otimes \gamma^\mu e_i \), where \(\{e_i\} \) is the canonical basis of \(C^{2m} \). Moreover, \(C_0^2 = \pm 1_{2m} \) depending on the parity of \(m \). Finally, one introduces the chirality (which in the even case is \(\chi := id \otimes (-i)^m \gamma^1 \cdots \gamma^n \)) and this yields that \((A_\Theta, H, D, J, \chi) \) satisfies all axioms of a spectral triple, see [9, 21].

For every unitary \(u \in A \), \(uu^* = u^* u = U_0 \), the perturbed Dirac operator \(V_\alpha \hat{D} V_\alpha^* \) by the unitary \(V_\alpha := (L(u) \otimes 1_{2m})J(L(u) \otimes 1_{2m})J^{-1} \), must satisfy condition (2).

This yields the necessity of a symmetrized covariant Dirac operator: \(D_A := D + A + \varepsilon J A J^{-1} \) since \(V_\alpha \hat{D} V_\alpha^* = D_{L(u) \otimes 1_{2m}}[D,L(u^*) \otimes 1_{2m}] \); in fact, for \(a \in A_\Theta \), using \(J_0 L(a)J_0^{-1} = R(a^*) \), we get

\[
\varepsilon J(L(a) \otimes \gamma^\alpha)J^{-1} = -R(a^*) \otimes \gamma^\alpha.
\]
This induces some covariance property for the Dirac operator: one checks that for all $k \in \mathbb{Z}^n$,

$$L(U_k) \otimes 1_{2^m} [D, L(U_k^*) \otimes 1_{2^m}] = 1 \otimes (-k_\mu \gamma^\mu),$$

so with $C_0 \gamma^\alpha = -\varepsilon \gamma^\alpha C_0$, we get $U_k[D, U_k^*] + \varepsilon JU_k[D, U_k^*]J^{-1} = 0$ and

$$V_U D V^*_U = D = D_{L(U_k) \otimes 1_{2^m} [D, L(U_k^*) \otimes 1_{2^m}]}.$$

Moreover, we get the gauge transformation:

$$V_u D_A V^*_u = D_{\gamma_u(A)}$$

where the gauged transform one-form of A is

$$\gamma_u(A) := u[D, u^*] + uAu^*,$$

with the shorthand $L(u) \otimes 1_{2^m} \rightarrow u$.

As a consequence, the spectral action is gauge invariant: $S(D_A, \Phi, \Lambda) = S(D_{\gamma_u(A)}, \Phi, \Lambda)$.

An arbitrary selfadjoint one-form A, can be written as

$$A = L(-iA_\alpha) \otimes \gamma^\alpha, \quad A_\alpha = -A_\alpha^* \in \mathcal{A}_\Theta,$$

thus

$$D_A = -i \left(\delta_\alpha + L(A_\alpha) - R(A_\alpha) \right) \otimes \gamma^\alpha.$$

If $\tilde{A}_\alpha := L(A_\alpha) - R(A_\alpha)$, we get $D^2_A = -g^{\alpha_1 \alpha_2}(\delta_{\alpha_1} + \tilde{A}_{\alpha_1})(\delta_{\alpha_2} + \tilde{A}_{\alpha_2}) \otimes 1_{2^m} - \frac{1}{2} \Omega_{\alpha_1 \alpha_2} \otimes \gamma^{\alpha_1 \alpha_2}$

where $\gamma^{\alpha_1 \alpha_2} := \frac{1}{2}(\gamma^{\alpha_1} \gamma^{\alpha_2} - \gamma^{\alpha_2} \gamma^{\alpha_1})$, $\Omega_{\alpha_1 \alpha_2} := [\delta_{\alpha_1} + \tilde{A}_{\alpha_1}, \delta_{\alpha_2} + \tilde{A}_{\alpha_2}] = L(F_{\alpha_1 \alpha_2}) - R(F_{\alpha_1 \alpha_2})$.

In summary,

$$D^2_A = -\delta^{\alpha_1 \alpha_2} \left(\delta_{\alpha_1} + L(A_{\alpha_1}) - R(A_{\alpha_1}) \right) \left(\delta_{\alpha_2} + L(A_{\alpha_2}) - R(A_{\alpha_2}) \right) \otimes 1_{2^m} - \frac{1}{2} (L(F_{\alpha_1 \alpha_2}) - R(F_{\alpha_1 \alpha_2}) \otimes \gamma^{\alpha_1 \alpha_2}.$$

3.2. Spectral action

We first identify the dimension spectrum:

Theorem 3.1. (i) $Sd(A_\Theta, H, D) = \{ n - k : n \in \mathbb{N}_0 \}$ and all poles are simple.

(ii) $\zeta_D(s) = 2^n \sum_{k \in \mathbb{Z}^n \setminus \{ 0 \}} |k|^{-s} + \dim \ker D$. In particular, $\zeta_D(0) = 0$.

The reader should notice that

HIC SUNT DRACONES

In fact, (i) is true when Θ is badly approximable.

Definition 3.2. (i) Let $\delta > 0$. A vector $a \in \mathbb{R}^n$ is said to be δ-badly approximable if there exists $c > 0$ such that $|q, a - m| \geq c |q|^{-\delta}$, $\forall q \in \mathbb{Z}^n \setminus \{ 0 \}$ and $\forall m \in \mathbb{Z}$.

We note $\text{BV}(\delta)$ the set of δ-badly approximable vectors and $\text{BV} := \cup_{\delta > 0} \text{BV}(\delta)$ the set of badly approximable vectors.

(ii) A matrix $\Theta \in M_n(\mathbb{R})$ (real $n \times n$ matrices) will be said to be said badly approximable if there exists $u \in \mathbb{Z}^n$ such that $\Theta(u)$ is a badly approximable vector of \mathbb{R}^n.
Remark 3.3. A classical result from Diophantine approximation asserts that for all $\delta > n$, the Lebesque measure of $\mathbb{R}^n \setminus BV(\delta)$ is zero (i.e. almost any element of \mathbb{R}^n is δ—badly approximable.) Let $\Theta \in \mathcal{M}_n(\mathbb{R})$. If its row of index i is a badly approximable vector of \mathbb{R}^n (i.e. if $L_i \in BV$), then $^t \Theta(e_i) \in BV$ and thus Θ is a badly approximable matrix. It follows that almost any matrix of $\mathcal{M}_n(\mathbb{R}) \approx \mathbb{R}^{n^2}$ is badly approximable.

This difficulty is due to the presence of J: one must control the holomorphic behavior of few Hurwitz–Epstein Zeta functions.

Theorem 3.4. Define

$$f_a : s \in \mathbb{C} \rightarrow \sum_{0 \neq k \in \mathbb{Z}^n} \frac{P(k)}{||k||^q} e^{2\pi k \cdot a}$$

where $a \in \mathbb{R}^n$, $P \in \mathbb{C}[x_1, \ldots, x_n]$ is a homogeneous polynomial of degree p and $||k||^2 = \sum_{i=1}^{n} k_i^2$.

(i) When $a \in \mathbb{Z}^n$, f_a has meromorphic extension to the whole complex plane \mathbb{C} and f_a not entire \Leftrightarrow Res$_{s=n+p} f_a(s) = \int_{u \in S^{n-1}} P(u) dS(u) \neq 0$.

(ii) When $a \in \mathbb{R} \setminus \mathbb{Z}^n$, f_a extends holomorphically to the whole complex plane \mathbb{C}.

(iii) When Θ is badly approximable, for any integer $q > 0$, the function

$$g(s) := \sum_{l \in (\mathbb{Z}^n)^q} c(l) f_{\Theta}(\sum_{\epsilon_i} l_i)(s), \quad \text{with } c(l) \in S(\mathbb{Z}^n)^q \text{ and } \epsilon_i \in \{1, 0, -1\}.$$

extends meromorphically to \mathbb{C} with only one possible pole at $s = n + p$. If this pole exists, it is simple and

$$\text{Res}_{s=n+p} g(s) = c \int_{u \in S^{n-1}} P(u) dS(u), \quad \text{with } c := \sum_{l \in \mathbb{Z}} b(l) \text{ where } Z := \{ l \in (\mathbb{Z}^n)^q : \sum_{i=1}^{q} c_i l_i = 0 \}.$$

Examples:

$$\text{Res}_{s=0} \sum_{k \in \mathbb{Z}^2} \frac{k_i k_j}{||k||^{s+4}} = \delta_{i,j} \pi,$$

$$\text{Res}_{s=0} \sum_{k \in \mathbb{Z}^4} \frac{k_i k_j k_m}{||k||^{s+6}} = (\delta_{ij} \delta_{lm} + \delta_{il} \delta_{jm} + \delta_{im} \delta_{ij}) \frac{\pi^2}{12}.$$

with other similar results, see [12] for details. This might be helpful for computations in ζ-regularization, multiplicative anomalies or Casimir effect.

The main result is (see (16) for notations)

Theorem 3.5. Assume $\frac{1}{2\pi} \Theta$ is badly approximable. For any selfadjoint one-form A, the spectral action of the noncommutative torus of dimension n is

for $n=2$:

$$S(D_A, \Lambda, \Phi) = 4\pi \Phi_2 \Lambda^2 + O(\Lambda^{-2}),$$

for $n=4$:

$$S(D_A, \Lambda, \Phi) = 8\pi^2 \Phi_4 \Lambda^4 - \frac{4\pi^2}{3} \Phi(0) \tau(F_{\mu\nu} F^{\mu\nu}) + O(\Lambda^{-2}).$$

More generally, $\forall n \geq 1$,

$$S(D_A, \Lambda, \phi) = \sum_{k=0}^{n} \Phi_{n-k} c_{n-k}(A) \Lambda^{n-k} + O(\Lambda^{-1}) \quad (18)$$

with $c_{n-1}(A) = 0$, $c_{n-k}(A) = 0 \text{ for } k \text{ odd (} n \text{ odd } \Rightarrow c_0(A) = 0 \text{.)}$
Conjecture 3.6. The ratio \(\frac{\text{constant term of } S(D, \Lambda, \phi)}{\text{constant term of } S(D+A, \Lambda, \phi)} \) for the commutative torus (i.e. \(\Theta = 0 \)) is independent of \(A \). Note, however that, \(D_A = D, \forall A = A^* \) in the commutative torus.

Remark 3.7. (i) For general spectral triples with simple dimension spectrum, \(\int \) can be defined with \(D \) or \(D_A \):
\[
\int P = \text{Res}_{s=0} \text{Tr} (P|D_A|^{-s}), \quad \forall P \in \Psi DO.
\]
(ii) The top term (cosmological term) is covariance-invariant:
\[
\int |D_A|^{-n} = \int |D|^{-n}.
\]
(iii) There is no tadpole term in (7) for the noncommutative torus:
\[
\int \tilde{A} D^{-1} = 0.
\]
(iv) A Diophantine condition was characterized by Connes in [8, Prop. 49] for \(n = 2 \) in terms of Hochschild cohomology \(H(A \Theta, A \Theta^*) \).

3.3. Beyond Diophantine condition

It is interesting to overcome the Diophantine condition and to consider for instance the case \(n = 2 \), where \(\Theta = \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) with \(\theta \in \mathbb{R} \).

Let \(f : [1, \infty[\to [0, \infty] \) be a continuous function such that \(x^2 f(x) \) is non-increasing.
\[
K(f) := \{ \theta \in \mathbb{R} : |\theta - \frac{p}{q}| < f(q), \text{ for infinitely many rational numbers } \frac{p}{q} \}
\]
Such \(\theta \) are termed \(f \)-approximable. Note that this is not valid for all rational \(\frac{p}{q} \) since \((\theta q)_{q \geq 1} \) are dense in \([0, 1] \) when \(\theta \notin \mathbb{Q} \).

Lemma 3.8. Jarnik (1953): For each \(f \), there exists an uncountable set \(K(f) \) of real numbers \(\frac{1}{2\pi} \), \(f \)-approximable but not \(cf \)-approximable for any \(0 < c < 1 \).

\(K(f) \) has zero Lebesgue measure if \(\sum_{q=1}^{\infty} q f(q) \) converges and full Lebesgue measure otherwise.

Consequences: Tuning \(f \), \(\exists a, b \in A \) such that the correction term
\[
\text{Tr} (L(a) R(b) e^{-tD^2}) - \text{(same term when } \Theta \text{ badly approximable)}
\]
is not exponentially small, is not \(O(\frac{1}{t}) \) like for \(\frac{1}{2\pi} \theta \in \mathbb{Q} \), but can be of arbitrary order!
This could have consequences on computations in field theories over noncommutative tori, see [18] for details.

Naturally, all these complications are related to the compactness of the torus, so it is natural to consider the

4. Extension to noncompact manifolds

Let \(M \) be an \(n \)-dimensional non compact connected complete Riemannian spin\(^c\) manifold with bounded curvature and control of its heat kernel \(K_i(\cdot, \cdot) \) like
\[
\sup_{p \in M} \int_0^{\infty} t^k e^{-t} K_i(p, p) dt < \infty, \quad \forall k > \frac{n}{2} - 1
\]
\[
\sup_{p \in M} \int_m^{\infty} \frac{e^{-t}}{\sqrt{t}} K_i(p, p) dt < cm^{-(n-1)/2}, \quad \forall m \in [0, 1]
\]
This hypotheses are valid in the following cases (see [17]):
- \(M \) has Ricci curvature bounded from below.
- \(M \) has a positive injectivity radius and control of isoperimetric constants of balls of a given radius.
- M has a bounded geometry. Moreover, M is given a smooth isometric proper action α of \mathbb{R}^l.

Example: The Moyal planes where $M = \mathbb{R}^{2n}$ and $\alpha = \text{translation}$. A Moyal multiplication can be defined for any $n \times n$-skew-symmetric matrix Θ by

$$f \ast_\hbar g(x) := \int_{\mathbb{R}^{2n} \times \mathbb{R}^{2n}} f(x - \Theta u) g(x - v) e^{-i u \cdot v} du dv.$$

Theorem 4.1. [17] When $f \in C^\infty_c(M)$, $\int L f |D|^{-d} = \int M f |D|^{-d} = c \int_M f$.

Remarks:
- When M is compact, α being proper must be periodic.
- When M is non compact and as above, D has a continuous spectrum but for any $f \in C^\infty_c(M)$, and any $p \geq 2$, $L f (1 + |D|)^{-2k} \in L^p(\mathcal{H})$, $\forall k > \frac{n}{2p}$. This particularly fit our purpose since for noncompact spectral triple, we must have by hypothesis

$$a (D - \lambda)^{-1} \text{ is compact } \forall a \in A. \quad (19)$$

This is indeed the case for Moyal planes:

Theorem 4.2. [15] Moyal planes are spectral triples.

To compute a spectral action in the noncompact case, one can use (19) for instance with some spatial localization: Given $\rho \in A$, the action is defined by

$$S(D, \Lambda, \Phi, \rho) := \text{Tr} (\rho \Phi(D/\Lambda)). \quad (20)$$

In this setting,

Theorem 4.3. [16] $S(D, \Lambda, \Phi, \rho)$ has same coefficients as in (18) with replacement $c_k(A) \leftrightarrow \int_{\mathbb{R}^n/2} \rho(x) c_k(A)(x) \, dx$.

Remark 4.4. Definition (20) is not satisfactory since there are too many choices. This question has been investigated in [5] where a dilaton field ϕ is used and the squared Dirac operator D^2 is replaced by $e^{-\phi}D^2 e^{-\phi}$, $\phi = \phi^* \in Z(A)$. Thus in spectral action, the counting of eigenvalues $N(\Lambda) := \dim \{ D^2 \leq \Lambda \}$ is replaced by $N(\rho) := \dim \{ D^2 \leq \rho^2 \}$ where $\rho = e^\phi$.

A general framework for a good definition of spectral action in the noncompact setting is still lacking.

Acknowledgments

It is a pleasure to thank Driss Essouabri, Victor Gayral, Cyril Levy and Andrzej Sitarz and Joe Várilly for collaborations on which this review is based.

References

