Financial Models with Defaultable Numéraires
Travis Fisher, Sergio Pulido, Johannes Ruf

To cite this version:

Travis Fisher, Sergio Pulido, Johannes Ruf. Financial Models with Defaultable Numéraires. 2016. hal-01240736v2

HAL Id: hal-01240736
https://hal.archives-ouvertes.fr/hal-01240736v2
Submitted on 28 Oct 2016 (v2), last revised 18 Oct 2017 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Financial Models with Defaultable Numérimaires

Travis Fisher† Sergio Pulido‡ Johannes Ruf§

July 29, 2016

Abstract

Financial models are studied where each asset may potentially lose value relative to any other. To this end, the paradigm of a pre-determined numérimaire is abandoned in favour of a symmetrical point of view where all assets have equal priority. This approach yields novel versions of the Fundamental Theorems of Asset Pricing, which clarify and extend non-classical pricing formulas used in the financial community. Furthermore, conditioning on non-devaluation, each asset can serve as proper numérimaire and a classical no-arbitrage condition can be formulated. It is shown when and how these local conditions can be aggregated to a global no-arbitrage condition.

Keywords: Defaultable numérimaire; Devaluation; Fundamental Theorem of Asset Pricing; Non-classical pricing formulas.

AMS Subject Classification (2010): 60G48, 60H99, 91B24, 91B25, 91B70, 91G20, 91G40.

JEL Classification: D53, G13.

1 Introduction

Classical models of financial markets are built of a family of stochastic processes describing the random dynamics throughout time of the underlying assets’ prices in units of a pre-specified numérimaire. Such a numérimaire, often also interpreted as a money market account, is an asset that cannot devaluate. In this paper we cover the case when there are multiple financial assets, any of which may potentially lose all value relative to the others. Thus, none of these assets can serve as a proper numérimaire. We shift away from having a pre-determined numérimaire to a more symmetrical point of view that does not prioritize any of the assets. The symmetry not only improves the aesthetics of the no-arbitrage theory, but also clarifies non-classical pricing formulas for contingent claims written on these assets.

Pricing models for contingent claims that allow for the devaluation of the underlying assets are ample. For example, they appear naturally in credit risk. In the terminology introduced by Schönbucher (2003, 2003),

*We thank Monique Jeanblanc, Martin Larsson, Martin Schweizer, and Hideyuki Takada for helpful discussions. The research of S.P. benefited from the support of the Chair Markets in Transition (Fédération Bancaire Française) and the project ANR 11-LABX-0019. The research of S.P. has also received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 307465-POLYTE. J.R. acknowledges generous support from the Oxford-Man Institute of Quantitative Finance, University of Oxford. The views represented herein are the authors’ own views and do not necessarily represent the views of Morgan Stanley or its affiliates and are not a product of Morgan Stanley research.

†No affiliation, E-mail: traviswfisher@gmail.com

‡Laboratoire de Mathématiques et Modélisation d’Évry (LaMME), Université d’Évry-Val-d’Essonne, ENSIIE, UMR CNRS 8071, IBGBI 23 Boulevard de France, 91037 Évry Cedex, France, Email: sergio.pulidonino@ensiie.fr

§Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom, E-mail: j.ruf@ucl.ac.uk
such assets are called *defaultable numéraires.*\(^1\) Jarrow and Yu (2001), Collin-Dufresne et al. (2004), and Jamshidian (2004) are further examples of this literature. Financial models for foreign exchange yield another source of assets that might devaluate due to the possibility of hyperinflation occurring; see, for example, Câmara and Heston (2008), Carr et al. (2014), and Kardaras (2015).

Another class of models that has drawn much attention involves strict local martingale dynamics for the asset price processes; see, for example, Sin (1998) and Heston et al. (2007). Often such models are particularly chosen as they can be interpreted as bubbles (Protter (2013)) or they are easily analytically tractable (Hulley and Platen (2012), Carr et al. (2013)). Both practitioners (Lewis (2000), Paulot (2013)) and academics (Cox and Hobson (2005), Madan and Yor (2006)) suggest non-classical pricing formulas for contingent claims in such models in order to be consistent with market prices. In this paper, we argue that strict local martingale dynamics are consistent with the interpretation that the corresponding numéraire devaluates. This point of view then allows us to interpret the correction term in the pricing formula of Lewis (2000) as the value of the contingent claim’s payoff in the scenarios where the numéraire devaluates. Thus, the pricing formulas of Lewis (2000), Madan and Yor (2006), Paulot (2013), or Kardaras (2015) arise as special cases of this paper’s framework.

This paper’s contributions can now be summarized in three points:

1. It provides a formulation of the First and Second Fundamental Theorem of Asset Pricing and of the superreplication duality in the case that any asset may devaluate with respect to any other. The formulation is symmetric in the sense that none of the assets is prioritized.

2. It provides an interpretation of strict local martingale models, which can arise by fixing a numéraire that has positive probability to default. Non-classical pricing formulas, restoring put-call parity, can then be economically justified and extended.

3. Assume, for the moment, that for each asset there exists a probability measure under which the discounted prices (with the corresponding asset as numéraire) are local martingales (or, even, supermartingales). These measures need not be equivalent. By introducing the notion of *numéraire-consistency,* this paper shows when these measures can be aggregated to an arbitrage-free pricing operator that takes all events of devaluations into account.

In Section 2, we introduce the framework. We consider a model for \(d\) assets. We have in mind a foreign exchange market, and hence call these assets “currencies,” but really these could represent any asset of non-negative value. We denote the value of one unit of the \(j\)-th currency, measured in terms of the \(i\)-th currency, as \(S_{i,j}\). We model the full matrix \((S_{i,j})_{i,j}\) of these exchange rates. This is redundant, but convenient, because the *matrix of exchange rates* is precisely the concept that gives symmetry to our results. If the \(j\)-th currency has devaluated with respect to the \(i\)-th currency at time \(t\) we have \(S_{i,j}(t) = 0\) and \(S_{j,i}(t) = \infty\). In this case, the \(j\)-th currency cannot be used as a numéraire, and the standard results of mathematical finance in units of this currency do not apply. Nevertheless, considering all currencies simultaneously shall allow us to derive Fundamental Theorems of Asset Pricing with a symmetric formulation.

In Section 3, these versions of the Fundamental Theorems of Asset Pricing are stated and the corresponding superreplication duality is derived. These results cleanly and symmetrically cover the case when there are multiple financial assets, any of which may potentially lose all value relative to the others. The First Fundamental Theorem states that the symmetric version of the condition of *No Free Lunch with Vanishing Risk for allowable trading strategies* holds if and only if there is a martingale valuation operator. Hence,

\[^{1}\]The term “defaultable numéraire” sometimes appears in the credit risk literature with a different meaning, namely to describe assets with strictly positive but not adapted price processes; for example, Bielecki et al. (2004) use this definition; see also Brigo (2005). Here, however, we follow the convention of Schönbucher (2003, 2004), where a defaultable numéraire is an asset whose price has positive probability to become zero.
in this framework, the dual objects are no longer local martingale measures for the prices quoted in terms of the pre-specified numéraire, but martingale valuation operators. These operators, which are defined in an axiomatic and economically meaningful way, provide in a vectorized fashion the prices of contingent claims quoted in terms of all the currencies.

In Section 4, martingale valuation operators are related to families of numéraire-consistent probability measures. Each of these measures corresponds, in a certain sense, to fixing a specific currency as the underlying numéraire. We call disaggregation the step that constructs this family of numéraire-consistent probability measures from a martingale valuation operator. We call aggregation the reverse step, namely taking a possibly non-equivalent family of probability measures, corresponding to the different currencies as numéraires, and constructing a martingale valuation operator from it. Embedding a strict local martingale model in a family of numéraire-consistent probability measures and then aggregating this family to a martingale valuation operator yields the non-classical pricing formulas of Lewis (2000), Madan and Yor (2006), Paulot (2013), and Carr et al. (2014). This point of view has two advantages. First of all, it yields generic pricing formulas for any kind of contingent claim. These formulas are consistent with the above-mentioned non-classical pricing formulas, which are usually only provided for specific claims. Secondly, it gives an economic interpretation to the lack of martingale property as the possibility of a default of the underlying numéraire.

Section 5 contains the proofs of the main results. The symmetric approach, insisting in quoting prices in terms of the primitive underlying assets and not giving priority to any of them, leads in a natural way to consider the basket asset – the portfolio consisting of one unit of each currency – as a proper numéraire. The economic interpretation to the lack of martingale property as the possibility of a default of the underlying numéraire.

We point out the recent work of Tehranchi (2014), who considers an economy where prices quoted in terms of a given non-traded currency are not necessarily positive. Relative prices between the assets are not studied. Instead, Tehranchi (2014) focuses on different arbitrage concepts taking into consideration that the agent might not be able to substitute today’s consumption by tomorrow’s consumption.

Notation

Throughout the paper we fix a deterministic time horizon \(T > 0 \) and consider an economy with \(d \in \mathbb{N} \) traded assets, called “currencies.” To reduce notation, we shall use the generic letter \(t \) for time and abstain from using the qualifier “\([0,T] \).” We shall also use the generic letters \(i, j, k \) for the currencies and again abstain from using the qualifier “\(\in \{1,\ldots,d\} \).” For example, we shall write “\(\sum_i \)” to denote “\(\sum_{i=1}^d \).” When introducing a process \(X = (X(t))_{t\in[0,T]} \), we usually omit “\(= (X(t))_{t\in[0,T]} \).” If \(v \in \mathbb{R}^d \), we understand inequalities of the form \(v \geq 0 \) componentwise. For a matrix \(\Gamma \in \mathbb{R}^{d\times d} \), we shall denote by \(\Gamma_i \) the \(i \)-th row of \(\Gamma \). Moreover, we use the convention \(\inf \emptyset = \infty \) and we denote the cardinality of a countable set \(A \) by \(|A| \). Furthermore, we emphasize that a product \(xy \) of two numbers \(x, y \in [0,\infty] \) is always defined except if either (a) \(x = 0 \) and \(y = \infty \) or (b) \(x = \infty \) and \(y = 0 \).

We fix a filtered space \((\Omega, \mathcal{F}(T), (\mathcal{F}(t))_t)\), where the filtration \((\mathcal{F}(t))_t \) is assumed to be right-continuous and \(\mathcal{F}(0) \) to be trivial. In the absence of a probability measure, all statements involving random variables or events are supposed to hold pathwise for all \(\omega \in \Omega \). For an event \(A \in \mathcal{F}(T) \), we set \(1_A(\omega) \times \infty \) and \(1_A(\omega) \times (-\infty) \) to \(\infty \) and \(-\infty \), respectively, for all \(\omega \in A \) and to 0 for all \(\omega \notin A \). Let us now consider a probability measure \(\mathbb{Q} \) on \((\Omega, \mathcal{F}(T))\). We write \(\mathbb{E}_t^\mathbb{Q} \) for the corresponding expectation operator and \(\mathbb{E}_t^\mathbb{Q} \) for the conditional expectation operator, given \(\mathcal{F}(t) \), for each \(t \). If \(Y = (Y_i)_i \) is a \(d \)-dimensional process we say that \(Y \) is a \(\mathbb{Q} \)-semi / super martingale if \(Y_i \) is a \(\mathbb{Q} \)-semi / super martingale for each \(i \). For a real-valued
semimartingale X with $X(0) = 0$ we write $\mathcal{E}(X)$ to denote its stochastic exponential; that is,

$$
\mathcal{E}(X) = e^{X - [X]^c/2} \prod_{s \leq \cdot} (1 + \Delta X_s)e^{-\Delta X_s},
$$

where $\Delta X = X - X_-$ and $[X]^c$ denotes the continuous part of the quadratic variation of X.

2 Framework

This section introduces the concept of *exchange matrices* to represent prices of the underlying currencies and the related concept of *value vectors* to describe prices of contingent claims with the currencies as underlying. Then, in Subsection 2.2, we define trading strategies and the no-arbitrage condition of *No Free Lunch with Vanishing Risk*. This is straightforward but necessary since we have not assumed that any currency is a proper numéraire. In Subsection 2.3, we define *martingale valuation operators*, which will play the role of risk-neutral probability measures. Subsection 2.4 puts the concepts of this section in the context of the market with the basket as numéraire.

2.1 Exchange matrices and value vectors

We put ourselves in an economy that is characterized by the price processes of d currencies relative to each other via an $[0, \infty)^{d \times d}$-valued, right-continuous, $(\mathcal{F}(t))_{t \geq 0}$-adapted process $S = (S_{i,j})_{i,j}$. Here, the process $S_{i,j}$ denotes the price process of the j-th currency in units of the i-th currency. We also refer to Večeř (2011), where a similar point of view is taken. In order to simplify the analysis below we assume that interest rates are zero. Alternatively, we might interpret $S_{i,j}(t)$ as the price of one unit of the j-th money market in terms of units of the i-th money market at time t, for each i,j, and t.

In order to provide an economic meaning to the matrix-valued process S we shall assume that it satisfies certain consistency conditions. Formally, we assume that $S(t)$ is an exchange matrix for each t, in the sense of the following definition:

Definition 2.1 (Exchange matrix). An exchange matrix is a $d \times d$-dimensional matrix $s = (s_{i,j})_{i,j}$ taking values in $[0, \infty)^{d \times d}$ with the property that $s_{i,i} = 1$ and $s_{i,j}s_{j,k} = s_{i,k}$ for all i,j,k, whenever the product is defined.

Note that the definition implies, in particular, that an exchange matrix s also satisfies that $s_{i,j} = 0$ if and only if $s_{j,i} = \infty$ for all i,j. The consistency conditions of Definition 2.1 guarantee the following: for fixed i,j,k, an investor who wants to exchange units of the i-th currency into units of the k-th currency is indifferent between exchanging directly $s_{i,k}$ units of the i-th currency into the k-th currency or, instead, going the indirect way and first exchanging the appropriate amount of units of the i-th currency into the j-th currency and then exchanging those units into the k-th currency.

As long as no asset has defaulted, that is, as long as all entries in an exchange matrix s are strictly positive, s is said to have the *triangle property*; see, for example, Barrett (1979). The associated properties of such matrices, however, will not be further relevant for us.

For each t, we define the index set of “active currencies”

$$
\mathfrak{A}(t) = \left\{ i : \sum_j S_{i,j}(t) < \infty \right\}.
$$

If $i \in \mathfrak{A}(t)$ for some t then the i-th currency is not devaluated against any other currency. Note that $S_{i,j}(t) = 0$ for all $i \in \mathfrak{A}(t)$ and $j \notin \mathfrak{A}(t)$, for each t. To wit, if a currency is devaluated with respect
to another “active” currency, the consistency conditions of Definition 2.1 guarantee that that currency is also devaluated with respect to any other “active” currency. For sake of notational simplicity only, we shall assume that \(\mathfrak{N}(0) = \{1, \ldots, d\} \); that is, at time 0 no currency is devaluated.

Remark 2.2 (Existence of a strong currency). We always have \(\mathfrak{N}(t) \neq \emptyset \) for each \(t \). More precisely, if \(s \) is an exchange matrix, there exists \(i \) such that \(s_{i,j} \leq 1 \) for all \(j \). To see this, we define, on the set of indices \(\{1, \ldots, d\} \), a total preorder as follows: \(j \preceq k \) if and only if \(s_{j,k} \geq 1 \), that is, if and only if the \(k \)-th currency is “stronger” than the \(j \)-th currency. The consistency conditions of Definition 2.1 guarantee that this is a total preorder. Since the set of indices is finite, there exists a (not necessarily unique) maximal index \(i \) corresponding to the “strongest” currency. For such an index \(i \) we have \(s_{i,j} \leq 1 \) for all \(j \).

We are interested in additional assets in the economy besides the \(d \) currencies and in their relative valuation with respect to those currencies. Towards this end, we introduce the notion of value vector:

Definition 2.3 (Value vector for exchange matrix). A value vector for an exchange matrix \(s \) is a \(d \)-dimensional vector \(v = (v_i)_i \) taking values in \([-\infty, \infty]^d\) with the property that \(s_{i,j} v_j = v_i \) for all \(i, j \), whenever the product is defined.

A value vector encodes the price of an asset in terms of the \(d \) currencies. More precisely, the \(i \)-th component describes how many units of the \(i \)-th currency are required to obtain one unit of that specific asset. The consistency condition in Definition 2.3 guarantees that an investor who wants a unit of the new asset does not prefer to first exchange her currency into another one in order to obtain that asset.

Remark 2.4 (Value vectors exist and are essentially unique). If \(s \) is an exchange matrix, \(j \) is a non-devaluated currency, that is, \(\sum_i s_{j,i} < \infty \), and \(\hat{v} \in [-\infty, \infty] \setminus \{0\} \) denotes the price of an asset in terms of the \(j \)-th currency then there exists always a unique value vector \(v \in [-\infty, \infty]^d \) with \(v_j = \hat{v} \). Indeed, we may always set \(v_i = s_{i,j} \hat{v} \) for all \(i \). If \(\hat{v} = 0 \) then we could set \(v_i = 0 \) for all \(i \) and note that there might exist other value vectors \(\tilde{v} \) with \(\tilde{v}_j = \hat{v} \).

We use the following numéraire-independent notation, introduced for each \(t \), for sets of \(\mathcal{F}(t) \)-measurable contingent claims:

\[
\mathcal{C}^t = \left\{ C : C \text{ is an } \mathcal{F}(t) \text{-measurable value vector for } S(t) \text{ such that} \right. \\
\left. \text{there exists } K > 0 \text{ with } C_i \geq -K \sum_j S_{i,j}(t) \text{ for all } i \right\}; \\
\mathcal{D}^t = \mathcal{C}^t \cap (-\mathcal{C}^t).
\]

Thus, for each \(t \), the set \(\mathcal{C}^t \) corresponds to the family of \(\mathcal{F}(t) \)-measurable value vectors whose payoff is bounded from below by a multiple of the basket value, uniformly across all scenarios \(\omega \in \Omega \). Similarly, for each \(t \), the set \(\mathcal{D}^t \) corresponds to the family of \(\mathcal{F}(t) \)-measurable value vectors whose payoff is bounded from below and from above by a multiple of the basket value.

For all \(i \) we denote by \(I^{(i)}(\cdot) \) the value vector corresponding to the value of one unit of the \(i \)-th currency at time \(t \) in terms of the other currencies:

\[
I^{(i)}(\cdot) = (S_{j,i}(\cdot))_j.
\]

Remark 2.5 (Examples of value vectors in \(\mathcal{D}^t \)). Note that, for each \(i \) and \(t \), the value vector \(I^{(i)}(t) \), given in (2), belongs to \(\mathcal{D}^t \). In other words, all value vectors associated to the relative prices of the traded currencies belong to \(\mathcal{D}^t \) for each \(t \). This implies, for instance, that also the value vectors corresponding to call and put payoffs with maturity \(t \) written on these currencies belong to \(\mathcal{D}^t \).
2.2 Dynamic trading and the concept of no-arbitrage

We start by introducing some helpful notation. For an \(\mathbb{R}^d \)-valued process \(h = (h_i)_i \) we let \(V^h = (V_i^h)_i \) denote the process given by

\[
V_i^h(t) = \sum_j h_j(t) S_{i,j}(t)
\]

for all \(i \in \mathfrak{A}(t) \) and \(t \). When \(i \notin \mathfrak{A}(t) \), by using Remark 2.2, we can define \(V_i^h(t) \) as in Remark 2.4. As already pointed out there, \(V^h(t) \) is not necessarily the unique value vector such that (3) holds for all \(i \in \mathfrak{A}(t) \). Note that if \(h \) is progressively measurable then \(V^h \) is also progressively measurable. Here, we interpret \(h_i(t) \) as the number of units of the currency an investor holds at time \(t \) for each \(i \) and \(V^h(t) \) as the value of the corresponding position, relative to all \(d \) currencies, for each \(t \).

We are interested in continuous, self-financing trading and the associated wealth process. These concepts require the notion of stochastic integrals which again require an underlying probability measure along with the semimartingale property of the currencies. Towards this end, we now formulate the precise assumption that allows us to connect self-financing trading strategies with the associated wealth processes.

Definition 2.6 (Smg). We say that a probability measure \(\mathbb{P} \) on \((\Omega, \mathcal{F}(T)) \) satisfies (Smg) if there exists a family \((A_t)_t \) of events with \(\bigcup_t A_t = \Omega \) such that \(\mathbb{P}(A_t) > 0 \) and \(S_t \) is a \((d\text{-dimensional})\) \(\mathbb{P}_i \)-semimartingale for each \(i \), where \(\mathbb{P}_i(A_t) = \mathbb{P}(A_t \cap A_i) \); that is \(\mathbb{P}_i \) is the probability measure \(\mathbb{P} \), conditioned on the event \(A_i \).

Assume for a moment that we are given a probability measure \(\mathbb{P} \) that satisfies (Smg). Under the probability measure \(\mathbb{P}_i \), the \(i \)-th currency does not devalue against any other currency since \(S_t \) is a semimartingale and therefore, in particular, \(\mathbb{R}^d \)-valued, for each \(i \). Alternatively, the probability measure \(\mathbb{P}_i \) satisfies \(\mathbb{P}_i((\bigcap_t \{ i \in \mathfrak{A}(t) \})) = 1 \). Thus, the \(i \)-th currency can be used as a numéraire under the probability measure \(\mathbb{P}_i \). Observe also that \(\mathbb{P}_i \) is in general only absolutely continuous with respect to \(\mathbb{P} \) for each \(i \) but \(\mathbb{P} \) and \(\sum_i \mathbb{P}_i / d \) are equivalent.

The property (Smg) now allows the introduction of the self-financing property in terms of stochastic integration. To this end, for a probability measure \(\mathbb{Q} \) and an \(\mathbb{R}^d \)-valued \(\mathbb{Q} \)-semimartingale \(X \) we write \(L(X, \mathbb{Q}) \) to denote the space of \(\mathbb{R}^d \)-valued predictable processes \(h \) such that the (vector) stochastic integral \(h \cdot Q X \) is well-defined, \(\mathbb{Q} \)-almost surely.

Definition 2.7 (\(\mathbb{P} \)-trading strategy and \(\mathbb{P} \)-allowable strategy). Assume that a given probability measure \(\mathbb{P} \) on \((\Omega, \mathcal{F}(T)) \) satisfies (Smg). A predictable \(\mathbb{R}^d \)-valued process \(h \) is called a \(\mathbb{P} \)-trading strategy if \(h \in L(S_t, \mathbb{P}_i) \) and the self-financing condition holds, that is, \(V_i^h - V_i^h(0) = h \cdot \mathbb{P}_i S_t, \mathbb{P}_i \)-almost surely, for each \(i \).

We say that the \(\mathbb{P} \)-trading strategy \(h \) is \(\mathbb{P} \)-allowable if there exists \(\delta > 0 \) such that \(V_i^h(t) \geq -\delta \sum_j S_{i,j}(t) \) for all \(i \) and \(t \), \(\mathbb{P} \)-almost surely.

Remark 2.8 (Allowability and admissibility). We emphasize that the standard setup, see, for instance, Delbaen and Schachermayer (1994), focuses on the notion of \(\mathbb{P} \)-admissible strategies instead of \(\mathbb{P} \)-allowable strategies. However, the notion of admissibility depends strongly on a choice of numéraire, while the notion of allowability, studied by Yan (1998), treats all currencies equally important, and thus, is more suited for our approach. See also Ruf (2013) for more comments on this topic.

We are now ready to provide an important notion of no-arbitrage in the spirit of Delbaen and Schachermayer (1994) and Yan (1998).

Definition 2.9 (NFLVR for \(\mathbb{P} \)-allowable strategies). Assume that a given probability measure \(\mathbb{P} \) on \((\Omega, \mathcal{F}(T)) \) satisfies (Smg). We say that \(S \) satisfies No Free Lunch with Vanishing Risk (NFLVR) for \(\mathbb{P} \)-allowable strategies if for any sequence of \(\mathbb{P} \)-allowable strategies \((h^{(n)})_{n \in \mathbb{N}} \) with \(V_i^{h^{(n)}}(0) \leq 0 \) and such that there exists a sequence of \(\mathbb{P} \)-almost surely bounded random variables \((\xi^{(n)})_{n \in \mathbb{N}} \) satisfying

\[
V_i^{h^{(n)}}(T) \geq \xi^{(n)} \sum_j S_{i,j}(T)
\]
for all \(i \in \mathcal{A}(T)\), \(\mathbb{P}\)-almost surely, the following conclusion holds. If there exists a random variable \(\xi \geq 0\) such that \(\lim_{n \to \infty} \text{ess sup} |\xi(n) - \xi| = 0\) then \(\mathbb{P}(\xi = 0) = 1\).

We now introduce the notion of an \textit{obvious devaluation} and argue afterwards that such an obvious devaluation cannot occur if the exchange process \(S\) satisfies (NFLVR).

\textbf{Definition 2.10 (NOD).} We say that a probability measure \(\mathbb{P}\) on \((\Omega, \mathcal{F}(T))\) satisfies \textit{No Obvious Devaluations (NOD)} if \(\mathbb{P}(i \in \mathcal{A}(T) | \mathcal{F}(\tau)) > 0\) on \(\{\tau < \infty\} \cap \{i \in \mathcal{A}(\tau)\}\), \(\mathbb{P}\)-almost surely, for all \(i\) and stopping times \(\tau\).

A probability measure \(\mathbb{P}\) that satisfies (NOD) guarantees the following. If at any point of time \(\tau\) a certain currency \(i\) has not yet defaulted then the probability is strictly positive that this currency will not default in the future. \textit{Carr et al. (2014)} study the case \(d = 2\) and also introduce the notion of “no obvious hyperinflations,” seemingly different. However, that paper has an additional standing hypothesis, namely that there are no sudden complete devaluations through a jump (see Definition 4.9 below). Under this condition, their notion of “no obvious hyperinflations” and this paper’s notion (NOD) agree.

\textbf{Proposition 2.11 (NOD) holds under no-arbitrage.} If a probability measure \(\mathbb{P}\) on \((\Omega, \mathcal{F}(T))\) satisfies (Smg) and \(S\) satisfies (NFLVR) for \(\mathbb{P}\)-allowable strategies then \(\mathbb{P}\) satisfies (NOD).

\textbf{Proof.} Assume that \(\mathbb{P}\) satisfies (Smg) and suppose that there exists \(i\) and a stopping time \(\tau\) such that \(\mathbb{P}(\tau < \infty) > 0\) and \(\mathbb{P}(\{\tau < \infty\} \cap \{i \in \mathcal{A}(\tau)\}) > 0\). To wit, at time \(\tau\), if the \(i\)-th currency has not devaluated, it is sure that it will completely devaluate at time \(T\). Consider now the \(\mathbb{P}\)-trading strategy \(h\) that sells the \(i\)-th currency at time \(\tau\) if this currency is active at that time; that is,

\[
\begin{align*}
 h_i &= -\sum_{k \neq i} \frac{S_{i,k}(\tau)}{\sum_{k} S_{i,k}(\tau)} \mathbf{1}_{\tau,\infty}\mathbf{1}_{\{\tau < \infty\} \cap \{i \in \mathcal{A}(\tau)\}}; \\
 h_j &= \frac{1}{\sum_{k} S_{i,k}(\tau)} \mathbf{1}_{\tau,\infty}\mathbf{1}_{\{\tau < \infty\} \cap \{i \in \mathcal{A}(\tau)\}} \quad \text{for all } j \neq i.
\end{align*}
\]

Clearly, \(h\) is \(\mathbb{P}\)-allowable and yields a free lunch with vanishing risk in the sense of Definition 2.9. This observation then yields the statement.

\textbf{2.3 Martingale valuation operators}

We would like to derive a Fundamental Theorem of Asset Pricing, but, in general, none of the \(d\) currencies can serve as a proper numéraire as each currency might completely devaluate. To avoid such problems we replace the concept of equivalent local martingale measure with the notion of a martingale valuation operator, in the spirit of \textit{Harrison and Pliska (1981)} and \textit{Biagini and Cont (2006)}.

\textbf{Definition 2.12 (Martingale valuation operator).} We say that a family of operators \(\mathcal{V} = (\mathcal{V}^{r,t})_{r \leq t}\), with \(\mathcal{V}^{r,t}: \mathcal{D}^r \to \mathcal{D}^r\), is a martingale valuation operator (with respect to \(S\)) if the following conditions hold.

\[(a) \quad \text{(Positivity) If } C \in \mathcal{D}^T \text{ and } C \geq 0 \text{ then } \mathcal{V}^{0,T}(C) \geq 0.\]

\[(b) \quad \text{(Linearity) If } H \text{ is a bounded } \mathcal{F}(r)\text{-measurable random variable and } C, \overline{C} \in \mathcal{D}^r \text{ then }\]

\[
\mathcal{V}^{r,t}(H \mathbf{1}_{\{H \neq 0\}} C + \overline{C}) = H \mathbf{1}_{\{H \neq 0\}} \mathcal{V}^{r,t}(C) + \mathcal{V}^{r,t}(\overline{C}) \quad (4)
\]

for all \(r \leq t\), whenever the sums are well-defined.
(c) (Continuity From Below) If \((C^{(n)})_{n \in \mathbb{N}} \subset \mathcal{D}^T \) is a nondecreasing sequence of nonnegative value vectors that converge (path- and componentwise) to a value vector \(C \in \mathcal{D}^T \), then \(\mathbb{V}^{0,T}(C^{(n)}) \) converges to \(\mathbb{V}^{0,T}(C) \), as \(n \) increases to infinity.

(d) (Time Consistency) For all \(r \leq t \) and \(C \in \mathcal{D}^T \),

\[
\mathbb{V}^{r,t}(\mathbb{V}^{t,T}(C)) = \mathbb{V}^{r,T}(C).
\]

(e) (Martingale Property) For all \(i \) and \(t \), we have

\[
\mathbb{V}^{t,T}(I^{(i)}(T)) = I^{(i)}(t)1_{\{i \in \mathcal{A}(t)\}},
\]

with \(I^{(i)} \) as in (2).

(f) (Redundancy) For all \(r \leq t \) and \(C \in \mathcal{D}^T \) with \(\sum_i 1\{C_i = 0\} > 0 \), we have \(\mathbb{V}^{r,t}(C) = 0 \).

We denote the projection of \(\mathbb{V}^{r,t} \) on its \(i \)-th component by \(\mathbb{Y}^{r,t}_i \) for all \(i \).

Suppose there exists a family of probability measures \((Q_i) \), such that \(S_i \) is a \(Q_i \)-martingale for each \(i \). Under certain consistency conditions, given in Definition 4.1 below, a martingale valuation operator \(\mathbb{V} \) can then be defined by

\[
\mathbb{V}^{r,t}_i(C) = \mathbb{E}^{Q_i}_r[C_i]
\]

for all \(C \in \mathcal{D}^t \), \(i \), and \(r \leq t \). Vice versa, the results in Section 4 below yield that any martingale valuation operator has a representation similar to (6); however, for a given \(i \), \(S_i \) is not necessarily a \(Q_i \)-martingale, in which case a correction term is added to the right-hand side of (6).

The properties of Positivity and Linearity reflect the corresponding properties of the expectation operator. The indicator appearing in (4) resolves possible conflicts when multiplying zero and infinity; see also the section on notation above. Such a conflict appears whenever, for some scenario \(\omega \in \Omega \), some currency has completely devaluated, the contingent claim’s payoff \(C(\omega) \) is not zero when measured in a strong currency, and \(H(\omega) = 0 \). Continuity From Below corresponds to the monotone convergence theorem and arises from the fact that the family of set functions \((Q_i)_i \) is not only finitely but also countably additive. Time Consistency corresponds to the tower property for conditional expectations. Martingale Property reflects the fact that \(S_i \) is a \(Q_i \)-martingale for all \(i \) if the representation in (6) without a correction term holds. The indicator in (5) is motivated by Remark 2.4. Indeed, in this case either \(C = \tilde{C} \) or \(C_i = 0 = \tilde{C}_i \) for all \(i \in \mathcal{A}(t) \) and \(r \leq t \). The indicator now takes care of the uniqueness issue raised in Remark 2.4 and forces the corresponding value vector to be zero in each component. Redundancy assures that an asset that has zero value with respect to some currency in each possible scenario has to have value zero at any earlier time.

As the following remark discusses, Redundancy implies in particular that all assets whose values agree on the active currencies have the same value under a martingale valuation operator.

Remark 2.13 (Valuation of essentially equal value vectors). Any martingale valuation operator \(\mathbb{V} \) satisfies \(\mathbb{V}^{r,t}(C) = \mathbb{V}^{r,t}(\tilde{C}) \) whenever \(C, \tilde{C} \in \mathcal{D}^t \) and \(C_i = \tilde{C}_i \) for all \(i \in \mathcal{A}(t) \) and \(r \leq t \). Indeed, in this case either \(C = \tilde{C} \) or \(C_i = 0 = \tilde{C}_i \) for all \(i \in \mathcal{A}(t) \). Therefore,

\[
\mathbb{V}^{r,t}(C) = \mathbb{V}^{r,t}(C 1_{\{C = \tilde{C}\}} + C 1_{\{C \neq \tilde{C}\}}) = \mathbb{V}^{r,t}(\tilde{C} 1_{\{C = \tilde{C}\}}) + \mathbb{V}^{r,t}(C 1_{\{C \neq \tilde{C}\}})
\]

\[
= \mathbb{V}^{r,t}(\tilde{C} 1_{\{C = \tilde{C}\}}) = \mathbb{V}^{r,t}(\tilde{C}),
\]

by Linearity and Redundancy of \(\mathbb{V}^{r,t} \).
The following definitions extend the concept of equivalence of probability measures and of almost-sure statements.

Definition 2.14 (Equivalence between martingale valuation operators and probability measures). We say that two martingale valuation operators \(V \) and \(\tilde{V} \) are equivalent and write \(V \sim \tilde{V} \) if the following equivalence holds for any nonnegative \(C \in \mathcal{D}^t \): we have \(V_{1,T}^0(C) = 0 \) if and only if \(\tilde{V}_{1,T}^0(C) = 0 \).

Analogously, we say that a martingale valuation operator \(V \) and a probability measure \(P \) are equivalent and write \(P \sim V \) if the following equivalence holds for any nonnegative \(C \in \mathcal{D}^t \): we have \(V_{1,T}^0(C) = 0 \) if and only if \(\sum_i 1_{\{C_i = 0\}} > 0 \), \(P \)–almost surely.

Remark 2.15 (Transitivity of equivalence). Let \(P \) and \(\tilde{P} \) denote two probability measures and let \(V \) and \(\tilde{V} \) denote two martingale valuation operators. Then \(P \sim V \) in conjunction with \(P \sim \tilde{V} \) implies \(V \sim \tilde{V} \); moreover, \(P \sim V \) in conjunction with \(\tilde{P} \sim V \) implies \(P \sim \tilde{P} \); and also \(P \sim \tilde{P} \) in conjunction with \(P \sim V \) implies \(\tilde{P} \sim V \).

Definition 2.16 (\(V \)–almost surely). Suppose that \(V \) is a martingale valuation operator. We say that an event \(A \) holds \(V \)–almost surely if the contingent claim \(C = 1_{\Omega \setminus A} \sum_i I^{(i)}(T) \) satisfies \(V_{1,T}^0(C) = 0 \).

To wit, two contingent claims \(C \) and \(\tilde{C} \) are \(V \)–almost surely equal if the contingent claim \(\tilde{C} \), which pays one unit of each currency in the case that the two contingent claims \(C \) and \(\tilde{C} \) differ, has zero valuation under \(V \). Moreover if \(P \sim V \) then an event holds \(V \)–almost surely if and only if it holds \(P \)–almost surely.

To discuss the concept of superreplication below in full generality we make the following observation.

Lemma 2.17 (Extending the domain of a martingale valuation operator). Fix \(r \leq t \) and \(C \in \mathcal{C}^t \). Then there exists a nondecreasing sequence \((C^{(n)})_{n \in \mathbb{N}} \subset \mathcal{D}^t \) with \(\lim_{n \uparrow \infty} C^{(n)} = C \). Moreover, the limit \(V_{r,t}^0(C) = \lim_{n \uparrow \infty} V_{r,t}^0(C^{(n)}) \) exists and is well-defined in the following sense. If \((\tilde{C}^{(n)})_{n \in \mathbb{N}} \subset \mathcal{D}^t \) is another nondecreasing sequence with \(\lim_{n \uparrow \infty} \tilde{C}^{(n)} = C \), then \(\lim_{n \uparrow \infty} V_{r,t}^0(\tilde{C}^{(n)}) = V_{r,t}^0(C) \). Thus, \(V_{r,t}^0 \) can be extended to the unique mapping \(\mathcal{C}^t \to \mathcal{C}^r \) such that the family \((V_{r,t}^0)_{r \leq t} \) satisfies Definition 2.12 with \(\mathcal{D}^t \) replaced by \(\mathcal{C}^t \).

Proof. The first statement is clear. The remaining statements follow directly from Proposition 2.20 below.

2.4 Dynamic trading and no-arbitrage in the basket market

In this subsection we consider the financial market where prices are quoted in terms of the basket asset – the portfolio consisting of one unit of each currency. This will clarify the previously introduced concepts of value vectors, dynamic trading, no-arbitrage, and martingale valuation operators.

The value of the basket in terms of the \(i \)-th asset equals exactly \(\sum_j S_{i,j} \) and the value of the \(i \)-th asset in terms of the basket equals its reciprocal. This simple observation allows us to express the relative price process \(\mathcal{S} = (\mathcal{S}_i)_i \) with respect to the basket numéraire as

\[
\mathcal{S}_i = \frac{1}{\sum_k S_{i,k}}.
\]

(7)

Observe that in (7) there are no divisions by zero because \(\sum_k S_{i,k} \geq S_{i,i} = 1 \); hence, \(0 \leq \mathcal{S}_i \leq 1 \) for all \(i \). Vice versa, note that we get

\[
S_{i,j} = \frac{\mathcal{S}_j}{\mathcal{S}_i},
\]

(8)
whenever the fraction is well-defined, for all i, j. Thanks to (8), with $i^* \in \mathcal{A}(t)$, we get
\[
\sum_j \mathcal{S}_j(t) = \sum_{j \in \mathcal{A}(t)} \frac{S_{i^*, j}(t) \mathcal{S}_j(t)}{S_{i^*, j}(t)} = \mathcal{S}_{i^*}(t) \sum_{j \in \mathcal{A}(t)} S_{i^*, j}(t) = 1
\]
for all t; hence, in the basket market an asset representing a risk-free bond can be replicated.

Next, for any t, given a value vector C with respect to exchange matrix $\mathcal{S}(t)$, we define
\[
\mathcal{C} = \frac{1}{|\mathcal{A}(t)|} \sum_i \mathcal{S}_i(t) C_i 1_{\{i \in \mathcal{A}(t)\}}. \tag{9}
\]
Since $0 < \mathcal{S}_i(t) \leq 1$ on $\{i \in \mathcal{A}(t)\}$ all the multiplications in (9) are well-defined. To understand the
definition in (9) better, first note that inserting the value vector $C = I^{(j)}$ of (2) leads exactly to $\mathcal{C} = \mathcal{S}_j$, for
each j. Indeed, the formula in (9) transforms, for each active currency $i \in \mathcal{A}(t)$ the payoff C_i into a payoff
measured with respect to the basket, by dividing with the value of the basket. All of the $|\mathcal{A}(t)|$ values are
identical, thus summing them up and dividing by $|\mathcal{A}(t)|$ does not modify the value, which can be interpreted as
the payoff of the corresponding contingent claim, measured in terms of the basket.

We have now translated the setup of this section into a classical setup, with \mathcal{S} denoting a vector-valued
price process, measured in terms of a basket as in Yan (1998), and \mathcal{C} denoting a one-dimensional random
variable, representing the payoff of a contingent claim, again measured in terms of the basket.

The following lemmas contain the main observations regarding dynamic trading in the financial market
with price process \mathcal{S} defined in (7). These lemmas require rigorous arguments. The proofs are included
in Appendix A. We recall that for a probability measure \mathbb{Q} and an \mathbb{R}^d–valued \mathbb{Q}–semimartingale X, the
notation $L(X, \mathbb{Q})$ denotes the space of \mathbb{R}^d–valued predictable processes h such that the (vector) stochastic
integral $h \cdot \mathbb{Q} X$ is well-defined, \mathbb{Q}–almost surely. The next lemma shows that if \mathbb{P} satisfies the property
(Smg) of Definition 2.6, then the process \mathcal{S} is a semimartingale with respect to \mathbb{P}.

Lemma 2.18 (The semimartingale property of the basket). *Suppose that \mathbb{P} satisfies (Smg). Then \mathcal{S} is a \mathbb{P}–
and a \mathbb{P}_k–semimartingale for each k. Moreover, we have $L(\mathcal{S}, \mathbb{P}) = \bigcap_i L(\mathcal{S}, \mathbb{P}_i)$, and if $h \in L(\mathcal{S}, \mathbb{P})$ then $h \cdot \mathbb{P} \mathcal{S} = h \cdot \mathbb{P}_i \mathcal{S}, \mathbb{P}_i$–almost surely for each i.\(^2\)

In terms of dynamic trading, by taking into account the previous lemma, we observe that \mathbb{P}–allowable
strategies correspond to \mathbb{P}–admissible strategies with respect to \mathcal{S}.

Lemma 2.19 (Allowability is equivalent to admissibility with respect to the basket). *Assume that \mathbb{P} satisfies
(Smg). Let h be a predictable process. Then h is a \mathbb{P}–trading strategy with respect to the exchange process \mathcal{S}
if and only if h is a trading strategy with respect to \mathcal{S}, in the sense that $h \in L(\mathcal{S}, \mathbb{P})$ and
\[
\mathcal{V}^h - \mathcal{V}^h(0) = h \cdot \mathbb{P} \mathcal{S}, \quad \mathbb{P}$–almost surely,
\]
with \mathcal{V}^h given by (9). Moreover, in this case, h is \mathbb{P}–allowable if and only if h is \mathbb{P}–admissible with respect
to \mathcal{S} in the sense that there exists $\delta > 0$ such that $\mathcal{V}^h > -\delta, \mathbb{P}$–almost surely.

The axiomatic definition of a martingale valuation operator (see Definition 2.12), which is stated in terms
of the primitives of the market and not in terms of the auxiliary price process \mathcal{S} defined in (7), guarantees that
the set of martingale measures \mathbb{Q} for \mathcal{S} is in one-to-one correspondence with the set of martingale valuation
operators \mathcal{V}. More precisely we have the following result.

\(^2\)Indeed, with $C = I^{(j)}$, (9) becomes, with the help of (8),
\[
\mathcal{C} = \frac{1}{|\mathcal{A}(t)|} \sum_i \mathcal{S}_i S_{i, j} 1_{\{i \in \mathcal{A}(t)\}} = \mathcal{S}_j, \quad \frac{1}{|\mathcal{A}(t)|} \sum_i 1_{\{i \in \mathcal{A}(t)\}} = \mathcal{S}_j
\]
for each j.

10
Proposition 2.20 (Existence of a risk-neutral measure for the basket). The following two statements hold.

(a) Suppose that \mathbb{V} is a martingale valuation operator. Then there exists a unique probability measure Q such that

$$E^Q_r [C] = \mathbb{V}^{r,t}(C)$$

for all $C \in \mathcal{D}^t$ and $r \leq t$. In particular, we have $Q \sim \mathbb{V}$ and S is a Q–martingale.

(b) Suppose that Q is a probability measure such that \overline{S} is a Q–martingale. Then there exists a unique martingale valuation operator \mathbb{V} that satisfies (10) for all $C \in \mathcal{D}^t$ and $r \leq t$. In particular, we have $\mathbb{V} \sim Q$.

The proof of the proposition is included in Appendix A. The construction of a probability measure in the proof can be seen as a special case (the linear case) when representing an agent’s preferences or a risk measure in terms of expectations; see, for instance, Föllmer and Schied (2011). Cassese (2008) is another example, where risk-neutral measures are constructed without an a-priori given reference measure.

3 The Fundamental Theorems of Asset Pricing

3.1 The theorems

In this section, the two Fundamental Theorems of Asset Pricing and some of its consequences are stated. We provide the corresponding proofs in Section 5.

The First Fundamental Theorem of Asset Pricing relates the economic concept of no-arbitrage to the existence of a linear pricing rule, usually formulated in terms of an equivalent local martingale measure. Dybvig and Ross (1987) first used the term Fundamental Theorem of Asset Pricing, but already de Finetti studied these concepts in the context of gambles; see Schervish et al. (2008) for a survey of his original insights. The most general version of the First Fundamental Theorem of Asset Pricing, in the presence of a numéraire, is due to Delbaen and Schachermayer (1994, 1998a). The following version, in terms of martingale valuation operators, resembles the original approach in Harrison and Pliska (1981), and more recently the study in Biagini and Cont (2006).

Theorem 3.1 (First Fundamental Theorem of Asset Pricing). The following implications hold:

(a) If there exists a probability measure P on $(\Omega, \mathcal{F}(T))$ that satisfies (Smg) and S satisfies (NFLVR) for P–allowable strategies then there exists a martingale valuation operator $\mathbb{V} \sim P$.

(b) If there exists a martingale valuation operator \mathbb{V} then there exists a probability measure $P \sim \mathbb{V}$ that satisfies (Smg) and such that S satisfies (NFLVR) for P–allowable strategies.

Corollary 3.2 (First Fundamental Theorem of Asset Pricing in the presence of a reference measure). Suppose P is a probability measure on $(\Omega, \mathcal{F}(T))$. Then the following statements are equivalent:

(i) P satisfies (Smg) and S satisfies (NFLVR) for P–allowable strategies.

(ii) There exists a martingale valuation operator $\mathbb{V} \sim P$.

Proof. Note that if $\hat{P} \sim P$ then P satisfies (Smg) and S satisfies (NFLVR) for P–allowable strategies if and only if \hat{P} satisfies (Smg) and S satisfies (NFLVR) for \hat{P}–allowable strategies. Therefore, the equivalence follows directly from Theorem 3.1 and Remark 2.15.

3 We thank Marco Fritelli and Marco Maggis for pointing us to Schervish et al. (2008).
The recent papers of Herdegen (2014) and Herdegen and Schweizer (2015), which are closely related to Delbaen and Schachermayer (1997), develop a numéraire-independent theory of arbitrage and obtain also a version of the First Fundamental Theorem of Asset Pricing.

We next have a closer look at the condition in Corollary 3.2(i). Towards this end, we call a predictable process \(h \) simple if it has the form \(h(t) = h^01_{(0)}(t) + \sum_{n=1}^m h^n1_{(\tau_{n-1},\tau_n)}(t) \), where \(0 = \tau_{-1} = \tau_0 \leq \cdots \tau_m \leq T \) with \(m \in \mathbb{N} \) is a finite sequence of stopping times and \(h^n \in \mathcal{F}(\tau_{n-1}) \) is an \(\mathbb{R}^d \)-valued random variable for all \(n \in \{0, \cdots, m\} \). Note that in the case of simple predictable processes the stochastic integrals in the self-financing condition of Definition 2.7 can be defined in a pathwise sense. Thus, the condition of (NFLVR) for \(\mathbb{P} \)-allowable simple strategies can be formulated without the assumption that \(\mathbb{P} \) satisfies (Smg). As the following proposition shows, the property (Smg) can then be deduced from the financial condition of (NFLVR) for \(\mathbb{P} \)-allowable simple strategies.

Proposition 3.3 ((NFLVR) for simple strategies implies (Smg)). Let \(\mathbb{P} \) be a probability measure on \((\Omega, \mathcal{F}(T)) \). Suppose that \(S \) satisfies (NFLVR) for \(\mathbb{P} \)-allowable simple strategies. Then \(\mathbb{P} \) satisfies (Smg).

To state the Second Fundamental Theorem of Asset Pricing in this paper’s framework, we introduce the following concepts.

Definition 3.4 (\(\mathcal{V} \)-trading strategies and \(\mathcal{V} \)-allowable strategies). Suppose that \(\mathcal{V} \) is a martingale valuation operator. By Theorem 3.1, there exists a probability measure \(\mathbb{P} \sim \mathcal{V} \) that satisfies (Smg). We say that a predictable process \(h \) is a \(\mathcal{V} \)-trading strategy if \(h \) is a \(\mathbb{P} \)-trading strategy. For a \(\mathcal{V} \)-trading strategy \(h \), we say that \(h \) is \(\mathcal{V} \)-allowable if \(h \) is \(\mathbb{P} \)-allowable.

As a consequence of Remark 2.15, the previous definition is independent of the chosen probability measure \(\mathbb{P} \); see also Theorem 4.14 in Shiryaev and Cherny (2002).

Definition 3.5 (Superreplication strategy, replication strategy, market completeness). Assume that there exists a martingale valuation operator \(\mathcal{V} \). We say that a \(\mathcal{V} \)-allowable trading strategy \(h \) superreplicates a claim \(C \in \mathcal{C}^T \) if \(C_i \leq V_i^h(T) \) for all \(i \in \mathcal{A}(T) \), \(\mathcal{V} \)-almost surely. We say that a \(\mathcal{V} \)-allowable trading strategy \(h \) replicates a claim \(C \in \mathcal{C}^T \) if

(a) \(V_i^h(T) = C_i \) for all \(i \in \mathcal{A}(T) \), \(\mathcal{V} \)-almost surely; and

(b) for all \(\mathcal{V} \)-allowable trading strategies \(g \) with \(V^g(0) = V^h(0) \) and \(V^g(T) \geq V^h(T) \), \(\mathcal{V} \)-almost surely, we have \(V^g(T) = V^h(T) \), \(\mathcal{V} \)-almost surely.

Moreover, we say that the market is complete if for all \(C \in \mathcal{D}^T \), there exists a \(\mathcal{V} \)-allowable trading strategy \(h \) that replicates \(C \).

Theorem 3.6 (Second Fundamental Theorem of Asset Pricing). Suppose that there exists a martingale valuation operator \(\mathcal{V} \). Then the market is complete if and only if \(\mathcal{V} \) is the unique martingale valuation operator equivalent to \(\mathcal{V} \).

We now state the superreplication duality in terms of martingale valuation operators.

Theorem 3.7 (Superreplication duality). Assume that there exists a martingale valuation operator \(\mathcal{V} \) and let \(C \in \mathcal{C}^T \). Then we have

\[
\inf \left\{ V^h(0) : h \text{ superreplicates } C \right\} = \sup \left\{ \tilde{\mathcal{V}}^{0,T}(C) : \tilde{\mathcal{V}} \sim \mathcal{V} \text{ is a martingale valuation operator} \right\}, \tag{11}
\]

where the sup and the inf are taken componentwise and for each martingale valuation operator \(\tilde{\mathcal{V}} \) we consider the extension of Lemma 2.17. Additionally, when the supremum in (11) is finite the infimum is equal to a minimum, that is, there exists a minimal superreplication strategy for \(C \). Moreover, the supremum in (11) is finite and equals to a maximum if and only if \(C \) can be replicated by a \(\mathcal{V} \)-allowable strategy \(h \).
3.2 Valuation and replication in terms of the basket market

To complement the discussion in Subsection 2.4, we consider again the financial market where the basket asset serves as a numéraire.

As a consequence of Lemma 2.19, the condition of (NFLVR) for \(\mathbb{P} \)-allowable strategies holds if and only if the condition of (NFLVR) for \(\mathbb{P} \)-admissible strategies is satisfied by the price process \(\mathbb{S} \), given in (7). Since the semimartingale \(\mathbb{S} \) is bounded, the classical Fundamental Theorem of Asset Pricing (see Delbaen and Schachermayer (1994)) implies that the condition of (NFLVR) for \(\mathbb{P} \)-allowable strategies is equivalent to the existence of a measure \(\mathbb{Q} \sim \mathbb{P} \) such that \(\mathbb{S} \) is a \(\mathbb{Q} \)-martingale. This observation constitutes the basis of the Fundamental Theorems of Asset Pricing and valuation formulas within our context.

Proposition 2.20 puts martingale valuation operators in a one-to-one relation with martingale measures, and will be the fundamental component in the proof of the First Fundamental Theorem of Asset Pricing (see Theorem 3.1), included in Section 5. The following lemma allows us to relate this paper’s Second Fundamental Theorem of Asset Pricing (see Definition 3.5 and Theorem 3.6) and superreplication duality formulas (see Theorem 3.7) with the classical versions of these results. It constitutes the basis of the proofs which are contained in Section 5.

Lemma 3.8 (Superreplication and replication in terms of the basket). Suppose that \(\mathbb{V} \) is a martingale valuation operator and that \(\mathbb{P} \) is a probability measure such that \(\mathbb{P} \sim \mathbb{V} \). Let \(h \) be a \(\mathbb{V} \)-allowable trading strategy and \(C \in \mathcal{C}^T \). Let \(\mathcal{C} \) and \(\overline{V}^h \) be given by (9). Then \(h \) superreplicates the contingent claim \(C \) if and only if \(C \leq \overline{V}^h(T), \mathbb{P} \)-almost surely. Moreover, the following statements are equivalent.

(i) \(h \) replicates the contingent claim \(C \).

(ii) \(\mathcal{C} = \overline{V}^h(T), \mathbb{P} \)-almost surely, and \(\overline{V}^h \) is a \(\mathbb{Q} \)-martingale for some probability measure \(\mathbb{Q} \sim \mathbb{P} \) such that \(\mathbb{S} \) is a \(\mathbb{Q} \)-martingale.

Furthermore, if \(C \in \mathcal{D}^T \) then any of the above statements are equivalent to the following.

(iii) \(\mathcal{C} = \overline{V}^h(T), \mathbb{P} \)-almost surely, and \(\overline{V}^h \) is \(\mathbb{P} \)-almost surely uniformly bounded.

The proof of Lemma 3.8 can be found in Appendix A.

4 Aggregation and disaggregation of measures

In this section, we investigate how to aggregate risk-neutral measures, each supported on a subset of the set \(\Omega \) of possible scenarios and relative to one of the \(d \) currencies, to a martingale valuation operator. We provide the proofs of the theorems in Section 5. We structure this study in four parts.

Subsection 4.1 argues that the existence of a martingale valuation operator yields a family of \(d \) probability measures, which are not necessarily equivalent. However, each of these \(d \) measures can be interpreted as a risk-neutral measure with one of the \(d \) numéraires fixed. Moreover, the measures are related to each other via a generalized change-of-numéraire formula. This property is called numéraire-consistency. We then show that if a family of probability measures is numéraire-consistent they can be “stuck together” to yield a global martingale valuation operator.

Subsection 4.2 compares the results of Subsection 4.1 with the classical valuation formulas in mathematical finance. Subsection 4.3 provides several examples. They illustrate, in particular, how the results of Carr et al. (2014) and Câmara and Heston (2008) are special cases of this paper’s setup. In Subsection 4.4 we start with \(d \) probability measures, each serving again as a risk-neutral measure for a fixed numéraire. However, this time we do not assume that these measures are numéraire-consistent. We then study conditions such that a martingale valuation operator exists.
4.1 Aggregation with numéraire-consistency and disaggregation

We start by introducing and discussing the following consistency condition.

Definition 4.1 (Numéraire-consistency of probability measures). Suppose that \((Q_i)_i\) is a family of probability measures. We say that \((Q_i)_i\) is a numéraire-consistent family of probability measures if for all \(A \in \mathcal{F}(t)\) we have

\[
E^Q_i[S_{i,j}(t)1_A] = S_{i,j}(0)Q_j(A \cap \{S_j,i(t) > 0\})
\]

for all \(i, j\) and \(t\).

Proposition 4.2 (Properties of a numéraire-consistent family of probability measures). Suppose that \((Q_i)_i\) is a numéraire-consistent family of probability measures. Then the following statements hold, for each \(i, j\).

(a) \(S_i\) is a \(Q_i\)-supermartingale; thus, in particular, \(Q_i(\bigcap_t \{i \in \mathcal{A}(t)\}) = 1\). More precisely, we have

\[
E^Q_i[S_{i,j}(t)X] = S_{i,j}(r)E^Q_i[X1_{\{S_{j,i}(t) > 0\}}], \quad Q_i\text{-almost surely}
\]

for all bounded \(\mathcal{F}(t)\)-measurable random variables \(X\) and \(r \leq t\).

(b) \(S_{i,j}\) is a \(Q_i\)-local martingale if and only if \(S_{j,i}\) does not jump to zero under \(Q_j\).

(c) For each stopping time \(\tau\), \(S_{i,j}\) is a \(Q_i\)-martingale if and only if \(Q_j(S_{j,i}(\tau) > 0) = 1\). Moreover, in this case we have \(dQ_j/dQ_i|_{\mathcal{F}(\tau)} = S_{j,i}(0)S_{i,j}(\tau)\). In particular, the \(i\)-th currency does not completely devaluate with respect to the \(j\)-th currency, if and only if \(S_{i,j}\) is a true \(Q_i\)-martingale.

Note that (13) can be interpreted as a change-of-numéraire formula.

Remark 4.3 (An interpretation for numéraire-consistency). Let \((Q_i)_i\) be a numéraire-consistent family of probability measures. Then with \(w_{i,j} = S_{i,j}(0)/\sum_k S_{i,k}(0)\in (0, 1)\) for all \(i, j\), we have \(\sum_j w_{i,j} = 1\) and

\[
1 - \frac{1}{\sum_k S_{i,k}(0)} \sum_j S_{i,j}(T) = \sum_j w_{i,j} \left(1 - S_{j,i}(0)E^Q_i[S_{i,j}(T)]\right) = \sum_j w_{i,j}Q_j(S_{j,i}(T) = 0)
\]

for all \(i\). Therefore, the normalized expected decrease of the total value of all currencies, measured in terms of the \(i\)-th currency, equals to the sum of the weighted probabilities that the \(i\)-th currency completely devaluates. The weights correspond exactly to the proportional value of the corresponding currency at time zero.

We are now ready to relate martingale valuation operators to numéraire-consistent families of probability measures.

Theorem 4.4 (Aggregation and disaggregation). The following statements hold.

(a) Given a martingale valuation operator \(\mathbb{V}\) there exists a unique numéraire-consistent family of probability measures \((Q_i)_i\) such that \((\sum_i Q_i/d) \sim \mathbb{V}\) and

\[
\mathbb{V}^{r,t}_j(C) = \sum_{i=1}^d S_{j,i}(r)E^Q_i\left[\frac{C_i}{\mathcal{A}(t)}\right]
\]

for all \(r \leq t\), \(j \in \mathcal{A}(r)\), and \(C \in \mathcal{D}'\).

(b) Given a numéraire-consistent family of probability measures \((Q_i)_i\), there exists a unique martingale valuation operator \(\mathbb{V} \sim (\sum_i Q_i/d)\) that satisfies (14) for all \(r \leq t\), \(j \in \mathcal{A}(r)\), and \(C \in \mathcal{D}'\).
Consider a martingale valuation operator \(V \) and the corresponding numéraire-consistent family of probability measures \((Q_i)_{i} \) from (a) and fix \(r \leq t \). If a contingent claim \(C \in \mathcal{D}^t \) satisfies \(V^{r,t}(C) = \bigvee^{r,t}(C1_{\{i \in \mathcal{A}(t)\}}) \) for some \(i \), then we have

\[
V^{r,t}_j(C) = S_{j,i}(r)E^{Q_i}_r[C_i]
\]

(15)

for all \(j \in \mathcal{A}(r) \).

Let us first interpret the representation in (14). In order to compute the valuation \(V^{0,T}(C) \) of a contingent claim \(C \in \mathcal{D}^T \) under a martingale valuation operator \(V \) one can proceed according to the following steps. First, one replaces the claim \(C \) by the claim \(\tilde{C} = C/|\mathcal{A}(t)| \); that is, one divides the payoff of the contingent claim by the number of active currencies at maturity \(T \). Then, one computes the risk-neutral expectation of this payoff under \(Q_i \) corresponding to fixing the \(i \)-th currency as numéraire, for each \(i \). One then converts all these values into one currency (the \(j \)-th one in (14)), and adds them up. This then yields \(V^{0,T}(C) \). If the contingent claim \(C \) has no payoff in the case that the \(i \)-th currency completely devaluates, then (15) holds so that one can compute the valuation \(V^{0,T}(C) \) by only computing the risk-neutral expectation with the \(i \)-th currency as numéraire.

In the terminology of Schönbucher (2003, 2004), \(Q_i \) is called a “survival measure” (corresponding to the \(i \)-th currency) as it is equivalent to the probability measure \(\mathbb{P}\) (corresponding to \(V \) by Theorem 3.1(b)), conditioned on the \(i \)-th currency not completely devaluing.

4.2 Comparison with the classical setup

In this subsection we compare the aggregation results of Theorem 4.4 with the classical valuation formulas in mathematical finance. As it is customary in the classical setup, we fix a numéraire; say, the one corresponding to the first row of the exchange matrix. Moreover, we assume that \(S_1 \), the vector of prices quoted with respect to this numéraire, is a \(\mathbb{P}_1\)-semimartingale. In order to clarify this comparison we now consider three different cases.

1. Suppose that there exists a probability measure \(Q_1 \sim \mathbb{P}_1 \) such that \(S_1 \) is a \(Q_1\)-martingale and that \(S_1 > 0 \) under \(\mathbb{P}_1 \). In the terminology of Yan (1998), in this case the market is fair. In particular the condition of (NFLVR) for admissible strategies, as defined in Delbaen and Schachermayer (1994), holds with respect to \(\mathbb{P}_1 \). We can define a numéraire-consistent family of probability measures \((Q_i)_{i} \) through the change-of-numéraire formula

\[
\frac{dQ_i}{dQ_1}(0)S_{i,1}(T).
\]

(16)

Indeed, we have

\[
E^{Q_i}[S_{i,j}(t)1_A] = S_{i,1}(0)E^{Q_1}[S_{i,i}(t)S_{i,j}(t)1_A] = S_{i,1}(0)E^{Q_1}[S_{i,j}(t)1_A] = S_{i,j}(0)Q_j(A)
\]

for all \(i, j, t, \) and \(A \in \mathcal{F}(t) \). Observe that \(Q_i \sim Q_j \) for all \(i, j \) and \(\sum_i Q_i \sim \mathbb{P}_1 \). Due to Theorem 4.4(c), the associated martingale valuation operator, with respect to any currency \(i \), corresponds to the classical pricing operator arising from taking conditional expectations. This is

\[
V^{r,t}_i(C) = E^{Q_i}_r[C_i]
\]

for all \(i, r \leq t \) and \(C \in \mathcal{D}^t \). Hence, in the special case when \(S_1 \) is a strictly positive \(Q_1\)-martingale, the valuation operator completely agrees with classical valuation formulas.
2. Suppose now that there exists a probability measure $Q_1 \sim P_1$ such that S_1 is a Q_1–martingale but S_1 is not necessarily positive under P_1. In this case, the market is also fair in the terminology of Yan (1998). However, the i-th currency is not a classical numéraire, as it does not stay strictly positive. Nevertheless, an interpretation as “defaultable numéraire” is possible and we can again define a family of probability measures through (16). We observe that now Q_i is not necessarily equivalent to P_1, but only absolutely continuous with respect to Q_1 for all i and $\sum_i Q_i \sim P_1$. The family of probability measures is numéraire-consistent since

$$E_{Q_i}[S_{i,j}(t)1_A] = S_{i,i}(0)E_{Q_i}[S_{i,i}(t)S_{i,j}(t)1_{A \cap \{S_{i,j}(t) < \infty}\}] = S_{i,j}(0)Q_j(A \cap \{S_{i,j}(t) < \infty\})$$

Furthermore, due to Theorem 4.4(c), the associated martingale valuation operator, with respect to the first currency, corresponds to the classical formula

$$V_{i}^{t,i}(C) = E_{Q_1}[C_1]$$

for all $r \leq t$ and $C \in D^t$. With respect to the other currencies, however, the martingale valuation operator does not necessarily correspond to taking conditional expectations. Indeed, for $i \geq 2$, it is possible that S_i is not a Q_i–local martingale but only a Q_i–supermartingale. Hence, the condition of (NFLVR) as in Delbaen and Schachermayer (1994) does not necessarily hold with respect to Q_i. By using Theorem 4.4(c) and (13), the associated martingale valuation operator can be written as

$$V_{j}^{t,j}(C) = S_{j,i}(r)E_{P}^{Q_i}[C_1] = E_{P}^{Q_i}[S_{j,1}(t)C_1] + S_{j,1}(r)E_{P}^{Q_i}[C_11_{\{S_{i,j}(t) = 0\}}] = E_{P}^{Q_i}[C_1] + S_{j,1}(r)E_{P}^{Q_i}[C_11_{\{S_{i,j}(t) = 0\}}]$$

for all $r \leq t$, $j \in A(r)$, and $C \in D^t$. Therefore, the classical pricing operator is adjusted by a factor depending on the Q_1–probability of devaluation of each currency with respect to the first currency. Let us now fix j, t, and $C \in D^t$ with $C \geq 0$ and consider the correction term

$$F_j(r) = S_{j,1}(r)E_{P}^{Q_i}[C_11_{\{S_{i,j}(t) = 0\}}]$$

for all $r \leq t$ more closely. Then $F_j(t) = S_{j,1}(t)C_11_{\{S_{i,j}(t) = \infty\}} = 0$ under Q_j. Moreover, for $r_1 \leq r_2 \leq t$ we have

$$E_{Q_i}[F_j(r_2)] = S_{j,1}(r_1)E_{P}^{Q_i}[1_{\{S_{i,j}(r_2) > 0\}}E_{P}^{Q_i}[C_11_{\{S_{i,j}(t) = 0\}}]] \leq F_j(r_1)$$

under Q_j. Hence the correction term F_j is a Q_j–potential. More precisely, by the same computations F_j is indeed a Q_j–local martingale, as long as $S_{i,j}$ does not jump to zero under P_1. Hence, under this no-jump condition, valuation according to the pricing operator yields a local martingale, whose Riesz decomposition equals risk-neutral expectation plus the correction term F_j.

3. Suppose now that there does not exist a measure $Q_1 \sim P_1$ such that S_1 is a Q_1–martingale. In this case, according to Theorem 3.2 in Yan (1998), the condition of (NFLVR) for P_1–allowable strategies does not hold. Let us assume, nevertheless, that there exists a family of numéraire-consistent probability measures $(Q_i)_i$. As S_1 is only a Q_1–supermartingale, and there does not necessarily exist a probability measure equivalent to P_1 under which S_1 is a local martingale, the condition of (NFLVR) with respect to admissible strategies, as defined in Delbaen and Schachermayer (1994), could also fail. In contrast, due to Theorems 3.1 and 4.4, the condition of (NFLVR) for $(\sum_i Q_i)$–allowable strategies holds. This extended model would depart from the classical setup as in this case there exists i such that $Q_i(S_{1,i}(T) = \infty) > 0$.

16
The representation in (14) provides an economically meaningful pricing formula in this setup. This is possible even if after fixing the first currency as numéraire the condition of (NFLV) with respect to \mathbb{P}_1—allowable strategies (or even admissible strategies) is violated. The key is to consider non-equivalent probability measures that allow for devaluations of the first currency and to take consistently these states of the world into account for arbitrage considerations and valuation of options. As we illustrate in Example 4.5 below, these valuation formulas can be applied to strict local martingale models and yield prices consistent with market conventions such as put-call parity. This valuation framework corrects the deficiencies of the classical conditional expectation approach for pricing. Additionally, Theorem 3.6 provides a dual superreplication result in this framework where the market is not fair in the classical sense.

4.3 Examples

As already pointed out in Lewis (2000), Cox and Hobson (2005), Madan and Yor (2006), and Carr et al. (2014), among others, a strict local martingale measure is not always suitable for pricing purposes because prices computed through expectations with this measure fail to be in accordance with market conventions such as put-call-parity. The works of Lewis (2000) and Madan and Yor (2006) propose ad-hoc correction terms to solve these deficiencies. Similarly to the study in Carr et al. (2014), we recognize that the problems arise from the fact that a strict local martingale measure does not take into account the states of the world where the corresponding currency devaluates. Martingale valuation operators correct this deficiency, and they do it in a symmetric and financially meaningful form.

Example 4.5 (A representation of \mathbb{V} when $d = 2$). Consider an economy with $d = 2$ currencies and assume the existence of a martingale valuation operator \mathbb{V}. In the following we derive a representation of \mathbb{V}. By Theorem 4.4(a), \mathbb{V} corresponds to a numéraire-consistent family of measures $(\mathbb{Q}_1, \mathbb{Q}_2)$. Next, fix two times $r < t$, a contingent claim $C \in \mathcal{D}^t$, and some active currency $j \in \mathfrak{A}(r)$. We then have

\[
\mathbb{V}_{j}^{r,t}(C) = S_{j,1}(r)\mathbb{E}_r^{\mathbb{Q}_1}\left[\frac{C_1}{\mathfrak{A}(t)} \right] + S_{j,2}(r)\mathbb{E}_r^{\mathbb{Q}_2}\left[\frac{C_2}{\mathfrak{A}(t)} \right] \\
= S_{j,1}(r)\left(\mathbb{E}_r^{\mathbb{Q}_1}\left[\frac{C_1}{2} \mathbf{1}_{\{S_{1,2}(t)>0\}} \right] + \mathbb{E}_r^{\mathbb{Q}_1}\left[C_1 \mathbf{1}_{\{S_{1,2}(t)=0\}} \right] \right) \\
+ S_{j,2}(r)\left(\mathbb{E}_r^{\mathbb{Q}_2}\left[\frac{C_2}{2} \mathbf{1}_{\{S_{1,2}(t)<\infty\}} \right] + \mathbb{E}_r^{\mathbb{Q}_2}\left[C_2 \mathbf{1}_{\{S_{1,2}(t)=\infty\}} \right] \right) \\
= S_{j,1}(r)\mathbb{E}_r^{\mathbb{Q}_1}\left[C_1 \right] + S_{j,2}(r)\mathbb{E}_r^{\mathbb{Q}_2}\left[C_2 \mathbf{1}_{\{S_{1,2}(t)=\infty\}} \right].
\]

(17)

Here we used (13) (applied with $j = 1$, $i = 2$, and $X = C_1/2$) to deduce that

\[
S_{j,2}(r)\mathbb{E}_r^{\mathbb{Q}_2}\left[\frac{C_2}{2} \mathbf{1}_{\{S_{1,2}(t)<\infty\}} \right] = S_{j,1}(r)\mathbb{E}_r^{\mathbb{Q}_1}\left[\frac{C_1}{2} \mathbf{1}_{\{S_{1,2}(t)>0\}} \right].
\]

Therefore, in the case $d = 2$, \mathbb{V} corresponds exactly to the pricing formula in Carr et al. (2014), constructed to restore put-call parity in a strict local martingale model. Looking closer at (17), say with $j = 1$, yields that \mathbb{V} can be written as the sum of two terms. The first term is the risk-neutral expectation of the contingent claim if the first currency is chosen as numéraire. The second term can be interpreted as a correction factor. It is a product of the exchange rate, converting units of the second currency into units of the first currency, and another risk-neutral expectation. This time, the risk-neutral expectation is chosen with respect to the second currency as numéraire. It considers the contingent claim on the event when the first currency completely devaluates. In the case when the contingent claim C is a European call (with the first currency chosen as numéraire), this second term corresponds exactly to the ad-hoc correction in Lewis (2000). Thus, (17)
retrieves exactly the pricing formulas in Lewis (2000), Madan and Yor (2006), Paulot (2013), and Kardaras (2015).

In the following, we discuss the superreplication duality of Theorem 3.7 and illustrate that one may not argue currency-by-currency in order to compute the minimal superreplication cost.

Example 4.6 (Superreplication duality: a counter-example). Consider again an economy with \(d = 2 \) currencies. Assume that \(\mathbb{Q}_1 \) and \(\mathbb{Q}_2 \) denote two equivalent probability measures such that \(S_{1,2} \) is a strict local \(\mathbb{Q}_1 \)-martingale but a true \(\mathbb{Q}_2 \)-martingale. Such examples exist; see, for instance, Delbaen and Schachermayer (1998b), or Carr et al. (2014) for a finite-horizon example. Let \(\mathbb{Q}_2 \) denote another probability measure such that \(S_{2,1} \) is a \(\mathbb{Q}_2 \)-local martingale and such that \(\mathbb{Q}_1 \) and \(\mathbb{Q}_2 \) is a numéraire-consistent family. Such a measure can be constructed, for example by the approach pioneered in Föllmer (1972); see also Perkowski and Ruf (2015). In particular, we have \(\mathbb{Q}_2(S_{1,2}(T) = \infty) > 0 \).

Now, consider the value vector \(C = I^{(2)}(T) \) corresponding to one unit of the second currency and defined in (2). The superreplication value vector of this payoff is given by (11) and clearly bounded from above by \((S_{1,2}(0), 1)^T\), as buying and holding the second currency superreplicates \(C \). Having Example 4.5 and in particular (17) in mind, we now consider

\[
\sup_{\mathbb{Q} \sim \mathbb{Q}_1, S_{1,2} \text{ is a } \mathbb{Q}-\text{local martingale}} \mathbb{E}^\mathbb{Q}[C_1] + S_{1,2}(0) \quad \text{sup}_{\mathbb{Q} \sim \mathbb{Q}_2, S_{2,1} \text{ is a } \mathbb{Q}-\text{local martingale}} \mathbb{E}^\mathbb{Q}[C_2 1_{\{S_{1,2}(T) = \infty\}}] \geq \mathbb{E}^{\mathbb{Q}_2}[S_{1,2}(T)] + S_{1,2}(0) \mathbb{E}^{\mathbb{Q}_2}[1_{\{S_{1,2}(T) = \infty\}}] > S_{1,2}(0). \tag{18}
\]

Hence, the expression in (18) does usually not yield the minimum superreplication price. Thus, for the superreplication formula, the supremum cannot be taken component-wise by looking at each currency as numéraire separately. To conclude, this example illustrates that the supremum in (11) cannot be split into \(d \) suprema in (14).

We next study the extension of the Black-Scholes-Merton model proposed in Câmará and Heston (2008). They suggest to augment the original Black-Scholes-Merton model by allowing the relative prices to jump to zero and infinity. The jump to zero “adjust[s] the Black-Scholes model for biases related with out-of-the-money put options,” and the jump to infinity “captures the exuberance and the extreme upside potential of the market and leads to a risk-neutral density with more positive skewness and kurtosis than the density implicit in the Black-Scholes model.” Câmará and Heston (2008) then illustrate that such a modification indeed yields an implied volatility which is closer to the ones observed in the market.

Example 4.7 (Black-Scholes with jumps to zero and infinity). We consider again two currencies, that is, \(d = 2 \). We assume that the relative prices are described through the Black-Scholes model; however, now with the additional feature that the price may either jump to zero or infinity at some exponential time. We introduce the model formally by specifying a probability measure \(\mathbb{P} \) on \((\Omega, \mathcal{F}(T)))\). Towards this end, suppose that \(\tau_1 \) and \(\tau_2 \) are exponentially distributed stopping times with intensity \(\lambda_1^\mathbb{P} \) and \(\lambda_2^\mathbb{P} \), respectively, and satisfy \(\mathbb{P}({\tau_1 = \tau_2}) = 0 \). We then set

\[
S_{1,2}(t) = S_{1,2}(0) \exp \left(\sigma W(t) - \frac{\sigma^2}{2} t + \mu t \right) 1_{\{t < \tau_1 \land \tau_2\}} + \infty 1_{\{\tau_1 \leq t \land \tau_2\}},
\]

where \(\mu, \sigma \in \mathbb{R} \) are constant with \(\sigma \neq 0 \) and \(W \) is a \(\mathbb{P} \)-Brownian motion, independent of \(\tau_1 \) and \(\tau_2 \). This yields directly

\[
S_{2,1}(t) = S_{2,1}(0) \exp \left(-\sigma W(t) + \frac{\sigma^2}{2} t - \mu t \right) 1_{\{t < \tau_1 \land \tau_2\}} + \infty 1_{\{\tau_2 \leq t \land \tau_1\}}.
\]

Thus, on the event \(\{\tau_1 < \tau_2\} \), the first currency devaluates completely at time \(\tau_1 \), while on \(\{\tau_2 < \tau_1\} \) the second currency devaluates completely at time \(\tau_2 \).
We now want to construct a martingale valuation operator. Towards this end, we first construct a numéraire-consistent family of probability measures \((Q_1, Q_2)\) and then apply Theorem 4.4(b). In particular, under \(Q_1\) the process \(S_{1,2}\) stays real-valued and is a supermartingale; a similar statement holds for \(Q_2\). To start, we define the probability measures \(P_1\) and \(P_2\) by

\[
\frac{dP_1}{dP} = \frac{1_{\{\tau_1 > \tau_2 \wedge T\}}}{P(\tau_1 > \tau_2 \wedge T | \tau_2)} = 1_{\{\tau_1 > T \wedge \tau_2\}} e^{\lambda_1^2(T \wedge \tau_2)}; \tag{19}
\]

\[
\frac{dP_2}{dP} = \frac{1_{\{\tau_2 > \tau_1 \wedge T\}}}{P(\tau_2 > \tau_1 \wedge T | \tau_1)} = 1_{\{\tau_2 > T \wedge \tau_1\}} e^{\lambda_2^2(T \wedge \tau_1)}. \tag{20}
\]

We next fix some, for the moment arbitrary, constants \(\mu_1, \mu_2 \in \mathbb{R}\) and \(\lambda_1, \lambda_2 > 0\) and define the probability measures \(Q_1\) and \(Q_2\) by

\[
\frac{dQ_1}{dP_1} = \mathcal{E} \left(\left(\frac{\mu_1 - \mu}{\sigma} \right) W \right)(T) \exp(\lambda_2^2(T \wedge \tau_2) \left(\frac{\lambda_2}{\lambda_1^2} \right) 1_{\{\tau_2 \leq T\}}; \tag{21}\]

\[
\frac{dQ_2}{dP_2} = \mathcal{E} \left(\left(\frac{\mu_2 - \mu + \sigma^2}{\sigma} \right) W \right)(T) \exp(\lambda_1^2(T \wedge \tau_1) \left(\frac{\lambda_1}{\lambda_2^2} \right) 1_{\{\tau_1 \leq T\}}. \tag{22}\]

Then the \(Q_1\)-intensity of \(\tau_2\) equals \(\lambda_2\) and the \(Q_2\)-intensity of \(\tau_1\) equals \(\lambda_1\). Moreover, we get

\[
S_{1,2}(t) = S_{1,2}(0) \exp \left(\sigma W_1(t) - \frac{\sigma^2}{2} t + \lambda_2 t \right) \mathbb{1}_{\{t < \tau_2\}} e^{\mu_1 t - \lambda_2^2 t}, \quad Q_1\text{-almost surely}; \tag{23}\]

\[
S_{2,1}(t) = S_{2,1}(0) \exp \left(\sigma W_2(t) - \frac{\sigma^2}{2} t + \lambda_1 t \right) \mathbb{1}_{\{t < \tau_1\}} e^{-\mu_2 t - \lambda_1^2 t}, \quad Q_2\text{-almost surely} \tag{24}\]

for all \(t\), with \(W_1\) a \(Q_1\)-Brownian Motion independent of \(\tau_2\) and \(W_2\) a \(Q_2\)-Brownian motion independent of \(\tau_1\). It is clear that it is necessary to have \(\lambda_1 \geq -\mu_2\) and \(\lambda_2 \geq \mu_1\) for the supermartingale property of \(S_{1,2}\) and \(S_{2,1}\), respectively.

Fix now \(t \in [0, T]\) and \(A \in \mathcal{F}(t)\). Then, by (21)–(22), (19)–(20), and (23)–(24)

\[
Q_1(A \cap \{S_{1,2}(t) > 0\}) = \mathbb{E}^P \left[\mathcal{E} \left(\left(\frac{\mu_1 - \mu}{\sigma} \right) W \right)(t) \exp(\lambda_2^2(t \wedge \tau_2) \left(\frac{\lambda_2}{\lambda_1^2} \right) \mathbb{1}_{\{t < \tau_2 \wedge \tau_2\}} \mathbb{1}_A \right) \right];
\]

\[
S_{1,2}(0) \mathbb{E}^Q_1 [S_{2,1}(t) \mathbb{1}_A] = \mathbb{E}^P \left[\mathcal{E} \left(\left(\frac{\mu_2 - \mu}{\sigma} \right) W \right)(t) \exp(\lambda_1^2(t \wedge \tau_1) \left(\frac{\lambda_1}{\lambda_2^2} \right) \mathbb{1}_{\{t < \tau_1 \wedge \tau_2\}} \mathbb{1}_A \right) \right].
\]

This yields that for (12) to hold we need to impose that

\[
\lambda_2 - \lambda_1 = \mu_1 = \mu_2.
\]

Indeed, this is sufficient for the numéraire-consistency of \((Q_1, Q_2)\) since then also, in the same manner,

\[
S_{2,1}(0) \mathbb{E}^Q_1 [S_{1,2}(t) \mathbb{1}_A] = Q_2(A \cap \{S_{2,1}(t) > 0\}).
\]

Theorem 4.4(b) now yields a martingale valuation operator \(V\), corresponding to the family \((Q_1, Q_2)\).

Consider next an exchange option \(C = (C_1, C_2)\) with \(C_1 = (S_{1,2}(T) - K)^+\) and \(C_2 = (1 - K S_{2,1}(T))^+\), where \(K \in \mathbb{R}\). That is, at time \(T\), the option gives the right to swap \(K\) units of the first currency into one unit of the second currency. Then the representation of \(V\) in (17) of Example 4.5 yields

\[
V^0_{1,2}(C) = \mathbb{E}^Q_1 [(S_{1,2}(T) - K)^+ \mathbb{1}_{\{\tau_2 > T\}} + S_{1,2}(0) Q_2(\tau_1 \leq T)]
\]

\[
= Q_1(\tau_2 > T) \mathbb{E}^Q_1 \left[(S_{1,2}(0) e^{\sigma W_1(T) + (\lambda_2 - \lambda_1 - \sigma^2/2) T} - K)^+ \right] + S_{1,2}(0)(1 - e^{-\lambda_1 T})
\]

19
\[= e^{-\lambda_1 T} S_{1,2}(0) \Phi(d_1) - K e^{-\lambda_2 T} \Phi(d_2) + S_{1,2}(0)(1 - e^{-\lambda_1 T}), \]

where
\[d_1 = \frac{1}{\sigma \sqrt{T}} \left(\ln \left(\frac{S_{1,2}(0)}{K} \right) + \left(\lambda_2 - \lambda_1 + \frac{\sigma^2}{2} \right) T \right); \quad d_2 = d_1 - \sigma \sqrt{T} \]

and \(\Phi \) is the standard normal cumulative distribution function. For the last equality in (25), we have used the standard Black-Scholes-Merton formula with interest rate \(\lambda_2 - \lambda_1 \). This then directly yields also
\[\mathbb{V}_2^0(T)(\mathcal{C}) = e^{-\lambda_2 T} \Phi(d_1) - K S_{2,1}(0) e^{-\lambda_2 T} \Phi(d_2) + 1 - e^{-\lambda_1 T}. \]

The expression in (25) corresponds to formula (16) in Câmará and Heston (2008). That formula has been derived via solving a partial differential integral equation. In contrast, (25) has been derived by a purely probabilistic approach based on equivalent supermartingale measures. Note that the use of martingale valuation operators yields a systematic way to price more complicated, possibly path-dependent contingent claims in the Câmará-Heston framework. Moreover, this example also shows that the Câmará-Heston framework is free of arbitrage, in the sense of Definition 2.9. Due to the presence of a jump to zero and due to the incompleteness of the model this example is not covered by Carr et al. (2014).

We emphasize that this approach is not restricted to the Black-Scholes model. One might take any model, for example the Heston model, and then add a jump to zero and a jump to infinity. Going through the same steps as in this example then yields a martingale valuation operator that corrects deep out-of-the-money puts and call prices.

4.4 Aggregation without numéraire-consistency

Theorem 4.4(b) yields that, given a numéraire-consistent family of probability measures \((\mathbb{Q}_i)_i\), there exists a martingale valuation operator, and thus, by Theorem 3.1, \(S \) satisfies (NFLVR) for \((\sum_i \mathbb{Q}_i/d)\)–allowable strategies. In practice it might be difficult to decide whether a given family of probability measures \((\mathbb{Q}_i)_i\) is numéraire-consistent. Thus, the question arises, under which conditions the existence of a not necessarily numéraire-consistent family of probability measures yields the existence of a martingale valuation operator. The next theorem provides more easily verifiable conditions such that there exists a martingale valuation operator \(\mathbb{V} \sim (\sum_i \mathbb{Q}_i/d) \) for an arbitrary family of probability measures \((\mathbb{Q}_i)_i\).

Theorem 4.8 (Aggregation without numéraire-consistency). Let \((\mathbb{Q}_i)_i\) be a family of probability measures. Then there exists a martingale valuation operator \(\mathbb{V} \sim (\sum_i \mathbb{Q}_i/d) \) if one of the following two conditions is satisfied.

(a) \(S_i \) is a \(\mathbb{Q}_i \)–martingale for each \(i \).

(b) The following four conditions hold:

(i) \(S_i \) is a \(\mathbb{Q}_i \)–local martingale for each \(i \).

(ii) \(\sum_i \mathbb{Q}_i/d \) satisfies (NOD); see Definition 2.10.

(iii) For each \(k \),
\[\mathbb{Q}_k | \mathcal{F} \cap \{ \sum_j S_{k,j}(T) < \infty \} \sim \left(\sum_i \mathbb{Q}_i/d \right) | \mathcal{F} \cap \{ \sum_j S_{k,j}(T) < \infty \}, \]

(iv) There exist \(\epsilon > 0 \), \(N \in \mathbb{N} \), and predictable times \((T_n)_{n \in \{1, \ldots, N\}} \) such that
\[\bigcup_k \left\{ (t, \omega) : \sum_j S_{k,j}(t) = \infty \text{ and } \sum_j S_{k,j}(t-) \leq d + \epsilon \right\} \subset \bigcup_{n=1}^N [T_n], \]

\((\sum_i \mathbb{Q}_i/d)\)–almost surely.
As Example 4.10 below illustrates, Theorem 4.8(b) is not sufficient for the existence of a martingale valuation operator, in general, without (b)(i), namely that S_t is a Q_i–local martingale for each i. The condition in Theorem 4.8(b)(ii) states that $\sum_i Q_i / d$ must satisfy the minimal no-arbitrage condition given by (NOD) — the selling of an active currency does not yield a simple arbitrage strategy. Indeed, Theorem 3.1(b) in conjunction with Proposition 2.11 yields that this condition is necessary. As Example 4.11 below illustrates, the conclusion of Theorem 4.8 is wrong without (b)(ii). Thus, given the other conditions, it is not redundant for the formulation of the theorem. The condition in Theorem 4.8(b)(iii) means that the support of Q_k is the event $\{\sum_j S_{k,j}(T) < \infty\}$ for each k. The necessity of such a condition is the content of Example 4.12 below.

Theorem 4.8(b)(iv) is a technical condition and we do not know whether it is necessary for the statement of the theorem to hold. This condition allows the k-th currency to devaluate suddenly, as long as it is not “strong” in the sense $\sum_j S_{k,j} \leq d + \varepsilon$. If, however, a “strong” currency devalues suddenly, it only is allowed to do so at a finite number of fixed, predictable times. In particular, any discrete-time model with finitely many time steps satisfies this condition. This condition also holds if $\sum_i Q_i / d$ satisfies (NSD), in the sense of the following definition.

Definition 4.9 (NSD). We say that a probability measure P satisfies No Sudden Devaluation (NSD) if $P(S_{k,j} \text{ jumps to } \infty) = 0$ for all k,j.

Under (NSD) no currency devalues completely against any other currency suddenly. Example 4.11 below illustrates that there exists a probability measure P that satisfies (NSD) but not (NOD). It is simple to construct an example that satisfies (NOD) but not (NSD).

Example 4.10 (On the necessity of Theorem 4.8(b)(ii)). Fix $T = d = 2$ and $\Omega = \{\omega_1, \omega_2\}$ along with $\mathcal{F}(t) = \{\emptyset, \Omega\}$ for all $t < 1$ and $\mathcal{F}(t) = \{\emptyset, \Omega, \{\omega_1\}, \{\omega_2\}\}$ for all $t \geq 1$. Let $S_{1,2}(\omega_1, t) = 1$ and $S_{1,2}(\omega_2, t) = 1_{t<1}$ for all t. That is, two states of the world are possible; up to time 1 the exchange rate between the two currencies stays constant, and at time one either the second currency devalues completely or nothing happens, depending on the state of the world. We now let $Q_1(\{\omega_1\}) = Q_1(\{\omega_2\}) = 1/2$, and $Q_2(\{\omega_1\}) = 1$. Then $S_{1,2}$ is a strict Q_1–supermartingale and $S_{2,1}$ is a Q_2–martingale. Moreover, all conditions in Theorem 4.8(b), apart from (i), are satisfied. However, selling one unit of the second currency and buying one unit of the first currency at time zero yields a nonnegative wealth process that is strictly positive in state ω_2, which has strictly positive $(Q_1 + Q_2)/2$–probability; thus a clear arbitrage. Thus, by Theorem 3.1, no martingale valuation operator $V \sim (Q_1 + Q_2)/2$ can exist. This illustrates that Theorem 4.8 indeed needs the local martingale property, formulated in (b)(i), in its statement.

Example 4.11 (On the necessity of Theorem 4.8(b)(ii)). We slightly modify Example 4.10. Again, fix $T = d = 2$ and assume that $(\Omega, \mathcal{F}, Q_1)$ supports a Brownian motion B started in zero and stopped when hitting -1, and an independent $\{0, 1\}$–distributed random variable X with $Q_1(X = 0) = Q_1(X = 1) = 1/2$. Now, let $S_{1,2}(t) = 1 + 1_{\{X=1\}} B\left(\tan\left(\pi\cdot\frac{t(t-1)}{2}\right)\right)$ for all t. Now let $(\mathcal{F}(t))_t$ denote the smallest right-continuous filtration that makes $S_{1,2}$ adapted. Then $S_{1,2}$ is constant before time one and stays constant afterwards with probability $1/2$, but moves like a time-changed Brownian motion stopped when hitting zero, otherwise. We now set $Q_2 = Q_1(\{X = 0\})$ and note that $S_{2,1}$ is a (constant) Q_2–martingale. Then the conditions in Theorem 4.8(b)(i), (iii), and (iv) are all satisfied, but as in the previous example, NFLVR for allowable strategies does not hold. Thus, Theorem 4.8(b)(ii) is necessary to make the theorem valid. Note that $(Q_1 + Q_2)/2$ satisfies (NSD) but not (NOD) in this example.

Example 4.12 (On the necessity of Theorem 4.8(b)(iii)). With $d = 2$ assets again, we now provide an example for a family of local martingale measures (Q_1, Q_2) such that $(Q_1 + Q_2)/2$ satisfies (NSD) and
(NOD), but no martingale valuation operator $V \sim (Q_1 + Q_2)/2$ exists. Fix $T = 2$ and a filtered probability space $(\Omega, \mathcal{F}(2), (\mathcal{F}(t))_t, Q_2)$ that supports a three-dimensional Bessel process R starting in one. Next, let τ denote the smallest time that R hits 1/2; in particular, we have $Q_2(\tau < T) > 0$ and $Q_2(\tau = \infty) > 0$. Consider now the process

$$S_{1,2} = 1 + \left(R - \frac{1}{2} \right) 1_{[\tau, \infty[} > 0.$$

With $Q_1(\cdot) = Q_2(\cdot|\{\tau = \infty\})$ we have $Q_1(S_{1,2} = 1) = 1$. Moreover, $S_{2,1}$ is a Q_2–local martingale and $\mathfrak{A}(T) = \{1, 2\}$. In particular, $(Q_1 + Q_2)/2$ satisfies (NSD) and (NOD). However, Proposition 4.2(c) yields that no numéraire-consistent family of probability measures can exist. Thus, Theorem 4.4(a) yields that no martingale valuation operator $V \sim (Q_1 + Q_2)/2$ exists either. This shows that Theorem 4.8(b) is not correct without the support condition in (b)(iii).

\[\square \]

5 Proofs

Subsections 5.1 and 5.2 contain the proofs of the statements in Sections 3 and 4, respectively.

5.1 Proofs of Theorems 3.1, 3.6, and 3.7, and of Proposition 3.3

Proof of Theorem 3.1. We first observe that if P satisfies (Smg) then, due to Lemmas 2.18 and 2.19, the condition of (NFLVR) for P–allowable strategies is equivalent to the condition that

(*) the P–semimartingale \overline{S} satisfies (NFLVR) for admissible strategies.

Since \overline{S} is bounded, by Theorem 1.1 in Delbaen and Schachermayer (1994), (*) is equivalent to the condition that

(**) there exists a probability measure $Q \sim P$ such that \overline{S} is a Q–martingale.

Thus, to see (a), note that Proposition 2.20 and Remark 2.15 imply the existence of a martingale valuation operator $V \sim P$ if the conditions in (a) hold.

Suppose now that there exists a martingale valuation operator V. By Proposition 2.20 there exists a probability measure Q that satisfies (**) above with P replaced by V. Thus, to conclude the proof of (b), we only need to argue that the measure Q satisfies (Smg) with $A_i = \{i \in \mathfrak{A}(T)\}$ for all i. Indeed, $Q(A_i) > 0$ since $Q(\overline{S}_i(T) > 0) > 0$ and S_i is a $Q(|A_i)$–semimartingale by (8) for all i. \[\square \]

Proof of Proposition 3.3. Suppose S satisfies (NFLVR) for P–allowable simple strategies. As it can be checked from their proofs, Lemma 2.19 holds for simple predictable strategies without the assumption that P satisfies (Smg). Therefore, \overline{S} satisfies (NFLVR) for P–admissible simple strategies. Theorem 7.2 in Delbaen and Schachermayer (1994) now implies that \overline{S} is a P–semimartingale. We conclude that P satisfies (Smg) with $A_i = \{i \in \mathfrak{A}(T)\}$ for each i. Indeed, the proof of Proposition 2.11 shows that P satisfies (NOD) and in particular $P(A_i) > 0$ for all i. To conclude, S_i is a $P(|A_i)$–semimartingale by (8) on A_i for all i. \[\square \]

Proof of Theorem 3.6. By Theorem 3.1(b) there exists a probability measure $P \sim V$ that satisfies (Smg) and the exchange process S satisfies (NFLVR) for P–allowable strategies. The equivalence between (i) and (iii) in Lemma 3.8 implies that the market is complete if and only if the market with traded assets \overline{S} and reference probability measure P is complete in the sense of Definition 1.15 in Shiryaev and Cherny (2002).

The classical Second Fundamental Theorem of Asset Pricing, see Theorem 1.17 in Shiryaev and Cherny (2002), implies that the market is complete if and only if there exist a unique martingale measure $Q \sim P$. Proposition 2.20 and Remark 2.15 allow us to conclude. \[\square \]
Proof of Theorem 3.7. By Proposition 2.20 there exists a probability measure $Q \sim \mathbb{V}$, such that \overline{S} is a Q–martingale. With the notation of Lemma 3.8, the classical superreplication theorem (see Theorem 5.7 in Delbaen and Schachermayer (1994) and Theorem 3.2 in Kramkov (1996)) shows that
\[
\inf \{ V^h(0) : h \text{ is } \mathbb{P}\text–admissible and } \overline{C} \leq V^h(T), \mathbb{P}\text–almost surely \}
= \sup \{ E^Q[\overline{C}] : \overline{Q} \sim Q \text{ such that } \overline{S} \text{ is a } \overline{Q}\text–martingale \}. \tag{26}
\]
Recall that Proposition 2.20 yields a relationship between martingale valuation operators and martingale measures in the extended market. This together with Lemmas 2.19 and 3.8 implies (11).

By the same lemmas, Theorem 3.2 in Kramkov (1996) (see also Remark 5.9 in Delbaen and Schachermayer (1994)) guarantees the infimum in (11) to be a minimum if the supremum is finite. Moreover, if the contingent claim C can be replicated by a \mathbb{V}–allowable strategy, then the supremum in (11) is finite and equals to a maximum, due to the equivalence between (i) and (ii) in Lemma 3.8, by virtue of Proposition 2.20. To conclude, let the supremum in (11), and thus, in (26) be finite and equal to a maximum. Then by Théorème 3.2 in Ansel and Stricker (1993), (ii) in Lemma 3.8 holds, and thus the statement follows. \qed

5.2 Proofs of Proposition 4.2 and Theorems 4.4 and 4.8

Proof of Proposition 4.2. In the following we argue the three parts of the statement.

(a): Fix i and j and note that (12) yields that $Q_i(i \notin A(t)) = 0$ for all t. Monotone convergence then yields
\[
E^Q[S_{i,j}(t)X] = S_{i,j}(0)E^Q[X1_{\{S_{j,i}(t) > 0\}}] \tag{27}
\]
for all bounded $\mathcal{F}(t)$–measurable random variables X and for all t. To show (13), fix a bounded $\mathcal{F}(t)$–measurable random variable X, $A \in \mathcal{F}(r)$, and $r \leq t$. We then have
\[
E^Q[S_{i,j}(t)X1_A] = E^Q[S_{i,j}(t)X1_A1_{\{S_{j,i}(r) > 0\}}] = S_{i,j}(0)E^Q[X1_{\{S_{j,i}(t) > 0\}}1_A1_{\{S_{j,i}(r) > 0\}}]
= E^Q[S_{i,j}(r)E^Q[X1_{\{S_{j,i}(t) > 0\}}1_A]
\]
by applying (27) twice, which yields (13). The fact that S_i is a Q_i–supermartingale follows from (13) with $X = 1$.

(b): Fix i and j. As in Proposition 2.3 in Perkowski and Ruf (2015), we may replace t in (12) by a stopping time τ. With $A = \Omega$, we then have
\[
E^{Q_i}[S_{i,j}(\tau)] = S_{i,j}(0)Q_j(S_{j,i}(\tau) > 0)
\]
for all stopping times τ. Recall now that $S_{i,j}$ is a Q^i–supermartingale and localize with a sequence of first crossing times.

(c): The first part follows as in (b). The second statement follows directly from (13). \qed

The following lemma shows that numéraire-consistent families of probability measures are in one-to-one correspondence with martingale measures for \overline{S}.

Lemma 5.1 (Numéraire consistency and martingale property for the basket). The following formulas establish a one-to-one correspondence between numéraire-consistent families of probability measures $(Q_i)_i$ such that $(\sum_i Q_i/d) \sim \mathbb{P}$ and probability measures $Q \sim \mathbb{P}$ such that the process \overline{S} given by (7) is a Q–martingale.
\[
Q = \sum_i \overline{S}_i(0)Q_i; \tag{28}
\]
Remark 2.13 now implies a family of probability measures such that \(\frac{\sum_i Q_i}{d} \sim P \). Define the probability measure \(Q \) through (28). It is clear that \(Q \sim P \). To show that the process \(\overline{S} \) is a \(Q \)-martingale we need the following identity:

\[
E^Q[S_k(t)1_A] = \overline{S}_k(0)Q_k(A)
\]

for all \(k, t \) and \(A \in \mathcal{F}(t) \). Indeed (8) and Proposition 4.2(a) imply

\[
E^Q[S_k(t)1_A] = \sum_j S_j(0)E^Q[S_k(t)1_A]
\]

\[
= \sum_j S_k(0)S_{k,j}(0)E^Q[S_k(t)1_A1_{\{S_{j,i}(t)>0\}}]
\]

\[
= \sum_j S_k(0)E^Q[S_{k,j}(t)S_k(t)1_A]
\]

\[
= \sum_j S_k(0)E^Q[S_j(t)1_A] = \overline{S}_k(0)Q_k(A).
\]

Fixing \(A \in \mathcal{F}(r) \) and \(r \leq t \) and applying (30) twice yields that \(\overline{S} \) is a \(Q \)-martingale.

Let us now fix a probability measure \(Q \sim P \) such that \(\overline{S} \) is a \(Q \)-martingale. Define the probability measures \((Q_i)_i \) by (29). Since \(\sum_i S_i(0)Q_i = Q \) it is clear that \(\sum_i Q_i/d \sim P \). We now show that the family of probability measures \((Q_i)_i \) is numéraire-consistent. Indeed, thanks to (8) we have

\[
E^Q_i[S_{i,j}(t)1_A] = (\overline{S}_i(0))^{-1}E^Q_i[S_{i,j}(t)1_A\overline{S}_i(t)1_{\{S_{j,i}(t)>0\}}]
\]

\[
= (\overline{S}_i(0))^{-1}E^Q[S_j(t)1_A1_{\{S_{j,i}(t)>0\}}]
\]

\[
= (\overline{S}_i(0))^{-1}\overline{S}_j(0)Q_j(A \cap \{S_{j,i}(t) > 0\}) = S_{i,j}(0)Q_j(A \cap \{S_{j,i}(t) > 0\})
\]

for all \(i, j, A \in \mathcal{F}(t) \), and \(t \).

The fact that (28) and (29) establish a one-to-one correspondence follows directly from their definition and (30).

Proof of Theorem 4.4. First, we argue (a) and (c). Towards this end, let \(V \) be a martingale valuation operator. Recall Proposition 2.20(a) and the unique probability measure \(Q \) satisfying (10), such that \(\overline{S} \) is a \(Q \)-martingale. Let \((Q_i)_i \) be the family of numéraire-consistent measures from Lemma 5.1. Assume now that \(V^{r,t}(C) = V^{r,t}((C1_{i\in A(t)}) \) for some \(C \in \mathcal{D}^r \), \(r \leq t \), and \(i \). Next, using (8) yields

\[
V^{r,t}_j(C1_{i\in A(t)}) = \frac{1}{S_j(r)}E^Q_j[C1_{i\in A(t)}] = \frac{1}{S_j(r)}E^Q_j[\overline{S}_j(t)1_{\{S_{j,i}(t)>0\}}C_i]
\]

\[
= \frac{\overline{S}_i(r)}{S_j(r)}E^Q_i[C_i] = S_{j,i}(r)E^Q_i[C_i]
\]

for all \(j \in A(t) \), using Proposition 4.2(a). This yields (c). Next, fix a general \(C \in \mathcal{D}^r \) and \(r \leq t \). Remark 2.13 now implies

\[
V^{r,t}(C) = V^{r,t}(\sum_i C_{|\{i\in A(t)\}}1_{i\in A(t)})
\]

Linearity of the martingale valuation operator \(V \) implies (14). The uniqueness of \((Q_i)_i \) follows from Lemma 5.1.

In order to see (b) argue in the same way and combine Proposition 4.2(a), Lemma 5.1, and Proposition 2.20(b). \(\square \)
Proof of Theorem 4.8. Assume there exists a probability measure \(Q \sim (\sum_j Q_j/d) \) such that \(\overline{S}_i = 1/\sum_j S_{i,j} \) is a \(Q \)-martingale. Then Proposition 2.20(b) in conjunction with Remark 2.15 yields the statement. In the following, we argue the existence of such a probability measure \(Q \) if (a) or (b) hold.

(a): Consider the probability measures \(Q_i \) given by \(dQ_i/dQ = \sum_j S_{j,i}(0)S_{j,i}(T) \) for each \(i \), and \(Q = \sum_j Q_j/d \). Then we have \(Q \sim (\sum_j Q_j/d) \). Moreover, \(S \) is a \(Q_i \)-martingale for each \(i \), thus it is also a \(Q \)-martingale.

(b): We set \(P = \sum_j Q_j/d \) and fix \(\varepsilon > 0 \) as in (b)(iv). To prove the statement suffices to construct a strictly positive \(P \)-martingale \(Z \) such that \(ZS \) is also a \(P \)-martingale. We proceed in several steps.

Step 1: For the construction of \(Z \) below, we shall iteratively pick the strongest currency until some time \(\tau \), after which we shall switch to the new strongest one. To follow this example, following Blachet and Ruf (2015), yields that

\[
\text{for each } \{i \text{ event} \}, \end{equation}

where \(q \) is strictly positive \(P \)-martingale. Then Proposition 2.20(b) in conjunction with Remark 2.15 yields the statement. In the following, we argue the existence of such a probability measure \(Q \) if (a) or (b) hold.

(a): Consider the probability measures \(Q_i \) given by \(dQ_i/dQ = \sum_j S_{j,i}(0)S_{j,i}(T) \) for each \(i \), and \(Q = \sum_j Q_j/d \). Then we have \(Q \sim (\sum_j Q_j/d) \). Moreover, \(S \) is a \(Q_i \)-martingale for each \(i \), thus it is also a \(Q \)-martingale.

Step 2: We claim that \(P(\lim_{n \to \infty} \tau_n > T) = 1 \). To see this, assume that \(P(\lim_{n \to \infty} \tau_n \leq T) > 0 \). Then there exist \(i \) and \(j \) such that \((\overline{S}_i)^{-1} \) has infinitely many upcrossings from \(d \) to \(d + \varepsilon \) with strictly positive \(Q_j \)-probability. Next, by a simple localization argument we may assume that \((\overline{S}_j)^{-1} \) is a \(Q_j \)-martingale and we consider the corresponding measure \(\widehat{Q} \), given by \(d\widehat{Q}/dQ_j = \overline{S}_j(0)\overline{S}_j(T)^{-1} \). Note that \(\widehat{Q} \sim Q_j \) and that the process \(\overline{S}_j \) is a bounded \(\widehat{Q} \)-martingale that has infinitely many downcrossings from \(1/d \) to \(1/(d+\varepsilon) \) with positive probability. This, however, contradicts the supermartingale convergence theorem, which then yields a contradiction. Thus, the claim holds.

Step 3: Assume that we are given a nonnegative stochastic process \(Z \) such that \(Z^{\tau_n} \) and \(Z^{\tau_n} S^{\tau_n} \) are \(P \)-martingales for each \(n \in \mathbb{N} \), in the notation of (32). We then claim that \(Z \) and \(ZS \) are \(P \)-martingales. To see this, note that \(Z \) and \(ZS \) are \(P \)-local martingale by Step 2. Next, define a sequence of probability measures \((Q^n)_{n \in \mathbb{N}} \) via \(dQ^n/dP = Z^{\tau_n}(T) \) and note that \(S^{\tau_n} \) is a \(Q^n \)-martingale satisfying \(S_{i,n}(\tau_n) \geq 1/d \) on the event \(\{\tau_n \leq T\} \), where \(i_n \) is given in (31). Thus, on \(\{\tau_n \leq T\} \) we have

\[
\frac{1}{d} \leq \mathbb{E}^{Q^n}[S_{i,n}(\tau_n)|F(\tau_n-1)] \leq 1 - q_n + \frac{q_n}{d+\varepsilon},
\]

where \(q_n = Q^n(\tau_n \leq T|F(\tau_n-1)) \), for each \(n \in \mathbb{N} \). We obtain that

\[
q_n \leq \frac{d^2 + \varepsilon d - d - \varepsilon}{d^2 + \varepsilon d - d} = \eta \in (0, 1),
\]

which again yields

\[
Q^n(\tau_n \leq T) \leq \mathbb{E}^{Q^n}[Q^n(\tau_n \leq T|F(\tau_n-1))1_{\{\tau_n \leq T\}}] \leq \eta Q^n(\tau_n \leq T) \leq \eta^n
\]

for each \(n \in \mathbb{N} \), where the last inequality follows by induction. This yields \(\lim_{n \to \infty} Q^n(\tau_n \leq T) = 0 \). Now, a simple extension of Lemma III.3.3 in Jacod and Shiryaev (2003), such as the one of Corollary 2.2 in Blanchet and Ruf (2015), yields that \(Z \) is a \(P \)-martingale. Since \(S \) is bounded, also \(ZS \) is a \(P \)-martingale.

Step 4: We now construct a stochastic process \(\overline{Z} \) that satisfies the assumptions of Step 3. Towards this end, for each \(i \), let \(Z_i \) denote the unique \(P \)-martingale such that \(dQ_i/dP = Z_i(T) \). With the notation of (32), (b)(ii) and (iii) yield that \(Z_{i,n}(\tau_{i,n}) > 0 \) for each \(n \in \mathbb{N} \). This allows us to define the process \(\overline{Z} \) inductively by \(\overline{Z}(0) = 1 \) and

\[
\overline{Z}(t) = \overline{Z}(\tau_{i,n}) \times \frac{(S_{i,n}(t))^{-1}1_{\{Z_{i,n}(t) > 0\}}Z_{i,n}(t)}{(S_{i,n}(\tau_{i,n}))^{-1}Z_{i,n}(\tau_{i,n})}.
\]
for all \(t \in (\tau_{n-1}, \tau_n \wedge T) \) and \(n \in \mathbb{N} \). Here we have again used the indices \((i_n)_{n \in \mathbb{N}}\) of (31). Since

\[
\mathbb{E}^P[(S_{i_n}(\tau_n))^{-1}1_{\{Z_{i_n}(\tau_n) > 0\}}Z_{i_n}(\tau_n)|\mathcal{F}(\tau_n)] = \mathbb{E}^{Q_{i_n}}[(S_{i_n}(\tau_n))^{-1}|\mathcal{F}(\tau_n)]Z_{i_n}(\tau_{n-1})
\]

\[
= (S_{i_n}(\tau_{n-1}))^{-1}Z_{i_n}(\tau_{n-1})
\]

on \(\{\tau_{n-1} \leq T\} \), the process \(\widetilde{Z}^{\tau_n} \) is a \(\mathbb{P} \)-martingale for each \(n \in \mathbb{N} \). We now fix \(j \) and argue that \(\mathcal{S}_j^{\tau_n} \widetilde{Z}^{\tau_n} \) is a \(\mathbb{P} \)-martingale for each \(n \in \mathbb{N} \). Thanks to (8) we have

\[
\mathcal{S}_j(t) \widetilde{Z}(t) = \mathcal{S}_j(\tau_{n-1}) \widetilde{Z}(\tau_{n-1}) \times \frac{S_{i_n,j}(t)1_{\{Z_{i_n}(t) > 0\}}Z_{i_n}(t)}{S_{i_n,j}(\tau_{n-1})Z_{i_n}(\tau_{n-1})}
\]

for all \(t \in (\tau_{n-1}, \tau_n \wedge T) \) on \(\{\mathcal{S}_j(\tau_{n-1}) > 0\} \) and \(n \in \mathbb{N} \). Since zero is an absorbing state for \(\mathcal{S}_j \) under \(\mathbb{P} = \sum \mathbb{Q}_i/d \) the same arguments as above yield that \(\mathcal{S}_j^{\tau_n} \widetilde{Z}^{\tau_n} \) is a \(\mathbb{P} \)-martingale for each \(n \in \mathbb{N} \).

Step 5: If \(\mathbb{P} \) satisfies (NSD), then \(\widetilde{Z} \) is strictly positive since \(\mathcal{S}_{i_n}(\tau_n) > 0 \) for each \(n \in \mathbb{N} \), in the notation of (31) and (32). In this case, the proof of (b) is finished. However, under the more general condition in (b)(iv) it cannot be guaranteed that the \(\mathbb{P} \)-martingale \(\widetilde{Z} \) is strictly positive as it might jump to zero on \(\bigcup_{n \in \mathbb{N}} \tau_n \bigcap \bigcup_{m \in \{1, \ldots, N\}} \{T_m\} \). To address this issue, we shall modify the construction in **Step 4** at the predictable times \(\{T_m\}_{m \in \{1, \ldots, N\}} \) to obtain a strictly positive \(\mathbb{P} \)-martingale \(Z \) such that also \(Z\mathcal{S} \) is a \(\mathbb{P} \)-martingale.

Step 5A: We may assume that \(0 < T_m < T_{m+1} \) on \(\{T_m < \infty\} \) for all \(m \in \{1, \ldots, N\} \) and, set, for sake of notational convenience, \(T_0 = 0 \) and \(T_{N+1} = \infty \). In **Step 5B**, we shall construct a family of strictly positive \(\mathbb{P} \)-martingales \((Y_m)_{m \in \{1, \ldots, N+1\}} \) that satisfy the following two conditions:

- \(Y_m = Y_m^{T_m} \) and \(Y_m^{T_m-1} = 1 \); and
- \(Y_m\mathcal{S}^{T_m} - \mathcal{S}^{T_m-1} \) is a \(\mathbb{P} \)-martingale for all \(m \in \{1, \ldots, N+1\} \).

If we have such a family then the process \(Z = \prod_{m=1}^{N+1} Y_m \) is a strictly positive \(\mathbb{P} \)-martingale and \(Z\mathcal{S} \) a nonnegative \(\mathbb{P} \)-martingale. This then concludes the proof.

Step 5B: In order to construct a family of strictly positive \(\mathbb{P} \)-martingales \((Y_m)_{m \in \{1, \ldots, N+1\}} \) as desired, let us fix some \(m \in \{1, \ldots, N+1\} \). We first define a process \(\mathcal{Y} \) by \(\mathcal{Y}_m = 1 \) on \(\{0, T_m-1] \cap]0, \infty[\) and then by proceeding exactly as in **Step 4**, but with \(\tau_0 = 0 \) replaced by \(\tau_m = T_m-1 \), with \(\mathcal{S} \) replaced by \(\mathcal{S}^{T_m} \) and with \(\mathcal{Z}_i \) replaced by \(\mathcal{Z}_i^{T_m} \) for each \(i \). Then \(\mathcal{Y}_m \) is a nonnegative \(\mathbb{P} \)-martingale that satisfies the two conditions of **Step 5A**. Let \(\tilde{M} \) now denote the stochastic logarithm of \(\mathcal{Y}_m \) and \(M_i \) the stochastic logarithm of \((\mathcal{S}_i)^{-1} \mathcal{Z}_i \) for each \(i \). Note that, for each \(i, M_i \) is only defined up to the first time that \((\mathcal{S}_i)^{-1} \mathcal{Z}_i \) hits zero, see also Appendix A in Larsson and Ruf (2014). Next, define the stochastic process

\[
M = \tilde{M} + \left(\frac{1}{|\mathcal{A}(T_m)|} \sum_{j \in \mathcal{A}(T_m)} \Delta M_j(T_m) - \Delta \tilde{M}(T_m) \right) 1_{[T_m, \infty[};
\]

that is, \(M \) equals \(\tilde{M} \) apart from the modification at time \(T_m \) on \(\{T_m < \infty\} \), where we replace its jump by the average jumps of the deflators corresponding to the active currencies at this point of time. Then we have \(\Delta M > 1 \), which implies that its stochastic exponential \(Y_m = \mathcal{E}(M) \) is strictly positive. Due to the predictable stopping theorem, \(Y_m \) is a \(\mathbb{P} \)-martingale, and moreover, the two conditions in **Step 5A** are satisfied. \(\square \)
A Proofs of Lemmas 2.18, 2.19, and 3.8 and of Proposition 2.20.

Proof of Lemma 2.18. We first observe that \((\mathcal{S}_i)_i\) is a \(\mathbb{P}_j\)-semimartingale for each \(j\) by (8). Since \(\sum_j \mathbb{P}_j \sim \mathbb{P}\), Theorems II.2 and II.3 in Protter (2003) yield that \((\mathcal{S}_i)_i\) is also a \(\mathbb{P}\)-semimartingale. Shiryaev and Cherny (2002) prove that \(h \in L(\mathcal{S}, \mathbb{P})\) if and only if \(((h \mathbf{1}_{\{h \leq n\}}) \cdot \mathbb{P} \mathcal{S})_{n \in \mathbb{N}}\) converges in the Emery topology as \(n\) tends to infinity; see their remark after Lemma 4.13. This yields \(L(\mathcal{S}, \mathbb{P}) \subset \bigcap_i L(\mathcal{S}_i, \mathbb{P}_i)\), and in the same manner, the reverse implication. The last assertion corresponds to Theorem 4.14 in Shiryaev and Cherny (2002).

Proof of Lemma 2.19. The process \(h\) is a \(\mathbb{P}\)-trading strategy with respect to \(S\) if and only if \(h \in L(\mathcal{S}_i, \mathbb{P}_i)\) and
\[
V_i^h - V_i^h(0) = h \cdot \mathbb{P}_i S_i, \quad \mathbb{P}_i\text{-almost surely}
\]
for all \(i\). Observe that for all \(i\), the semimartingale \(\mathcal{S}_i\) is positive and \(\overline{V}^h = \mathcal{S}_i V_i^h\) under \(\mathbb{P}_i\). Hence, by the change of numéraire theorem (see Geman et al. (1995) and Lemma 4.16 in Pulido (2014)), the process \(h\) is a \(\mathbb{P}_i\)-trading strategy with respect to \(S\) if and only if \(h \in L(\mathcal{S}, \mathbb{P}_i)\) and
\[
\overline{V}^h - \overline{V}^h(0) = h \cdot \mathbb{P}_i \mathcal{S}_i, \quad \mathbb{P}_i\text{-almost surely}
\]
for all \(i\). Lemma 2.18 now implies the first assertion of the statement.

Next, Remark 2.2 and the identity \(V_i^h(t) = \overline{V}(t) \sum_j S_{i,j}(t)\) for all \(i \in \mathcal{A}(t)\) and \(t\) yield the second assertion of the statement.

Proof of Proposition 2.20.

(a): Suppose that \(\mathcal{V}\) is a martingale valuation operator and define
\[
\mathcal{Q}(A) = \mathcal{V}^{0,T} \left(\mathbf{1}_A \sum_j I^{(j)}(T) \right) \tag{33}
\]
for all \(A \in \mathcal{F}(T)\). This defines a probability measure on \(\mathcal{F}(T)\). Indeed, note that Linearity and Martingale Property of \(\mathcal{V}^{0,T}\) yield that
\[
\mathcal{Q}(\Omega) = \sum_j \mathcal{V}^{0,T} \left(I^{(j)}(T) \right) = \sum_j I^{(j)}(0) = 1.
\]
Similarly, Positivity and Linearity of \(\mathcal{V}^{0,T}\) yield \(\mathcal{Q}(A) \in [0,1]\) for all \(A \in \mathcal{F}(T)\). Linearity of \(\mathcal{V}^{0,T}\) then yields that \(\mathcal{Q}\) is a finitely additive measure. The sigma additivity of \(\mathcal{Q}\) follows from Continuity From Below of \(\mathcal{V}^{0,T}\), which, in conjunction with Linearity of \(\mathcal{V}^{0,T}\), also yields
\[
\mathbb{E}^{\mathcal{Q}}[X] = \mathcal{V}^{0,T} \left(X \sum_j I^{(j)}(T) \mathbf{1}_{\{X \neq 0\}} \right) \tag{34}
\]
for all \(\mathcal{F}(T)\)-measurable random variables \(X\).

We now fix \(r \leq t\), \(C \in \mathcal{D}^t\), and \(B \in \mathcal{F}(r)\). Then \(\overline{C}\) is a bounded \(\mathcal{F}(t)\)-measurable random variable. Next, repeatedly applying (34), Time Consistency, Linearity, Redundancy, and Martingale Property of \(\mathcal{V}\) yields
\[
\mathbb{E}^{\mathcal{Q}}[\mathbf{1}_B \overline{C}] = \mathcal{V}^{0,T} \left(\mathbf{1}_B \overline{C} \sum_j I^{(j)}(T) \mathbf{1}_{\{\overline{C} \neq 0\}} \right) = \mathcal{V}^{0,t} \left(\mathbf{1}_B \overline{C} \sum_{j \in \mathcal{A}(t)} (I^{(j)}(t)) \mathbf{1}_{\{\overline{C} \neq 0\}} \right) = \mathcal{V}^{0,t} (\mathbf{1}_B \overline{C})
\]
for all \(t \leq r\) and \(B \in \mathcal{F}(r)\).
which in turn yields (10).

The uniqueness of \(\mathbb{Q} \) can be argued by using \(C = 1_A \sum_j I^{(j)}(T), \) for each \(A \in \mathcal{F}(T). \) The property \(\mathbb{Q} \sim \mathcal{V} \) follows directly from (10). Using \(C = I^{(i)}(T) \) for all \(i \), yields the martingale property of \(\overline{S} \) under \(\mathbb{Q}. \)

(b): For the converse direction we define \(\mathcal{V} \) by
\[
\mathcal{V}^{r,t}(C) = \mathbb{E}_t^\mathbb{Q}[\mathcal{C}] \sum_j I^{(j)}(r)1_{\{\mathcal{V}^{r,t}(C)\neq 0\}}
\]
for all \(C \in \mathcal{D}^t \) and \(r \leq t \), which is consistent with (10). We first show that \(\mathcal{V} \) is a martingale valuation operator. The properties of Positivity, Linearity, Continuity From Below, and Redundancy follow from analogous properties of the conditional expectation. The tower property of conditional expectation yields Time Consistency of \(\mathcal{V} \). Additionally, for all \(i \) and \(t \leq T \), since \(\overline{S}_t \) is a \(\mathbb{Q}- \)martingale, we have
\[
\mathcal{V}^t,T(I^{(i)}(T)) = \mathbb{E}_t^\mathbb{Q}[\mathcal{S}_T] \sum_j I^{(j)}(t)1_{\{\mathbb{E}_t^\mathbb{Q}[\mathcal{S}_T]\neq 0\} = \mathcal{S}_t(t) \sum_j I^{(j)}(t)1_{\{i \in \mathfrak{A}(t)\} = I^{(i)}(t)1_{\{i \in \mathfrak{A}(t)\}}
\]
for all \(i \), which proves Martingale Property.

The uniqueness of the martingale valuation operator \(\mathcal{V} \) that satisfies (10) follows from Remark 2.4 and Redundancy of \(\mathcal{V}. \)

Proof of Lemma 3.8. As a consequence of Theorem 3.1(b), \(\mathbb{P} \) satisfies (Smg) and \(\overline{S} \) satisfies (NFLVR) for allowable strategies. Moreover, by Lemma 2.18 the strategy \(h \) is \(\mathbb{P} \)-admissible with respect to \(\overline{S} \). Suppose first that \(h \) superreplicates \(C \in \mathcal{C}^T \). Then we have \(\overline{C} \leq \mathcal{V}^h(T), \mathcal{V} \)-almost surely, and hence, \(\mathbb{P} \)-almost surely. Conversely, suppose that \(\overline{C} \leq \mathcal{V}^h(T), \mathbb{P} \)-almost surely. Then we have \(C \leq \mathcal{V}^h(T), \mathcal{V} \)-almost surely.

To prove the equivalence between (i) and (ii), we consider the following additional statement:

(i') \(\overline{C} = \mathcal{V}^h(T), \mathbb{P} \)-almost surely, and \(h \) is \(\mathbb{P} \)-maximal with respect to \(\overline{S} \) in the following sense: given any \(\mathbb{P} \)-admissible strategy \(g \) with \(\mathcal{V}^g(0) = \mathcal{V}^g(0) \) and \(\mathcal{V}^h(T) \leq \mathcal{V}^g(T), \mathbb{P} \)-almost surely, we have \(\mathcal{V}^h(T) = \mathcal{V}^g(T), \mathbb{P} \)-almost surely.

The equivalence between (i) and (i') follows, as above. Theorem 13 in Delbaen and Schachermayer (1995) yields the equivalence between (i') and (ii). We now assume that \(C \in \mathcal{D}^T \). Then the equivalence between (ii) and (iii) holds, on the one side, because \(\overline{C} \) is bounded, and on the other side, because a uniformly bounded local martingale is a martingale.

References

