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Abstract

In this paper we present an exact schedulability test for sporadic real-
time tasks scheduled by the Global Fixed Priority (G-FP) Fully Preemp-
tive Scheduler on a multiprocessor system. The analysis consists in mod-
eling the system as a Linear Hybrid Automaton (LHA), and in performing
a reachability analysis for states representing deadline miss conditions. To
mitigate the problem of state space explosion, we propose a pre-order re-
lationship over the symbolic states of the model: states that are simulated
by others can be safely eliminated from the state space.

We also formulate the concept of decidability interval with respect
to a set of constrained-deadline sporadic tasks on multiprocessor. The
decidability interval is a bounded time interval such that, if a deadline
miss occurs in the schedule, then it is possible to find a configuration of
arrival times for the tasks such that the deadline miss happens within
the bounded interval. Vice versa, if no configuration of arrival times
produces a deadline miss in the bounded interval, then no deadline miss
is ever possible in the schedule. Hence we prove that the schedulability
analysis problem is decidable, and we provide a formula for computing
the decidability interval. To our knowledge, this is the first time such a
time interval is proposed for sporadic tasks running on multiprocessor.

The proposed schedulability analysis has been implemented in a soft-
ware tool. For the first time we assess the pessimism of the state-of-the-art
approximate schedulability test through experiments. Moreover, we show

∗This paper has been accepted by the Real Time Systems Journal. This is the submitted
version, the final accepted version is avaliable at the journal’s web site.
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that the use of the proposed model permits to analyse tasks with more
general parameter values than other exact algorithms in the literature.
Nevertheless, even with our approach the complexity remains too high for
analysing practical task sets with more than 7 tasks.

1 Introduction

A real-time system consists of a set of real-time tasks with timing constraints,
executed on a single or multiprocessor platform. A real-time task is a piece of
code that must be executed periodically or upon reception of an event. Each
instance of the task is called a job and it is characterised by a worst-case execu-
tion time (i.e. an upper bound on the execution time of the corresponding piece
of code), an arrival time (i.e. the instant at which the job is inserted in the
ready queue of the operating system and could start executing) and a deadline
(i.e. the instant in time within which it must completed). The response time of
a job is the length of interval between its arrival and the time instant it finishes
execution.

One fundamental problem for real-time systems is to assess the schedulability
of a set of tasks on a platform by a certain scheduling algorithm: a task set is
said to be schedulable if all jobs complete executions before their deadlines.

One of the most popular scheduling algorithms in the programming practice
is the Fixed Priority Fully Preemptive scheduler: each task is assigned a fixed
priority, and jobs are ordered in the ready queue by decreasing priority; if a
lower priority task is executing and a higher priority task is activated, the latter
can preempt the former and execute in its place.

Since the seminal work of [24], the fixed-priority scheduling problem has been
extensively studied. The problem has been solved exactly for single processor
systems by using a well known property: the worst-case response time of a task
happens when it is activated simultaneously with its higher priority tasks, and all
jobs are activated at their maximum frequency. Therefore, it suffices to simulate
the system starting from this critical instant and activating all subsequent jobs
as soon as possible, until the first idle time.

In this paper, we consider the problem of checking the schedulability of a
set of independent real-time sporadic tasks on a multiprocessor platform when
the scheduling algorithm is the Global Fixed Priority (G-FP) Fully Preemptive
scheduler. According to this scheduling algorithm, on a m-processor platform
all jobs are ordered in one single ready queue by decreasing priority, and the m
highest priority jobs are executed at every instant.

Unfortunately, there is no easy solution for checking the schedulability of a
task set scheduled by G-FP. The difficulty comes from two facts:

• No single critical instant exists: the worst-case response time of a task can
be found anywhere in the schedule. Also, it is not true that the worst-case
response time happens when all jobs are activated as soon as possible. An
example is presented in Section 3.
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• On the other hand, the sporadic behaviour of the tasks increases the num-
ber of possible interleavings.

In order to find the exact combination of arrival times that leads to the
worst-case response time of a task, it is then necessary to explore all possible
legal combinations of arrivals, and this number is so large that a brute-force
approach fails already for very small task sets.

Therefore, most of the research in the literature has been focused on finding
upper bounds to the response times. However, to assess the pessimism of such
approximate analyses, it is necessary to solve the problem exactly, i.e. to obtain
necessary and sufficient conditions for the schedulability of a task set.
Contributions In this paper, we address the problem of deriving an exact anal-
ysis for the schedulability of a set of sporadic real-time tasks scheduled by G-FP
on a multiprocessor platform. We model the problem using the formalism of
Linear Hybrid Automata ([1, 2]) to represent the tasks and the scheduler. In
particular, deadline miss conditions are modeled as error locations in the au-
tomata. The analysis consists in performing a reachability analysis for such
error states. Due to the non-deterministic sporadic task activations, the analy-
sis complexity explodes for very small task sets. To defer the state explosion, we
propose a weak simulation relation between symbolic states and prove its cor-
rectness. The relation allows us to eliminate those states that are not useful for
our reachability analysis, thus reducing the size of the state space. Furthermore,
we prove the decidability of the proposed analysis by demonstrating that the
schedulability test of a set of sporadic tasks under G-FP scheduling policy can
be done in a bounded time interval, called decidability interval. We present the
implementation of our model in a software tool, and we show that it can handle
more complex task sets with respect to state-of-the-art exact algorithms based
on discrete time. Here, by “more complex” we mean that tasks’ parameters can
be generic values and, as we are going to see, this makes a critical difference
between previous works on exact multiprocessor schedulability analysis and our
solution. Also, we evaluate the pessimism of current state-of-the-art approxi-
mate schedulability analysis of G-FP scheduling over sporadic tasks. Through
extensive experiments, we investigate the factors that could affect the runtime
performance of the proposed schedulability analysis.
Limitations. Unfortunately, as the number of sporadic tasks grows beyond
7, and for more than 4 processors, the complexity rises so much that all exact
analysis techniques proposed so far can hardly terminate on current desktop
computers, even when using our weak simulation relation. This is due to the
exponential nature of the problem and it can only be mitigated by future im-
provements of the simulation relation. Thus, we will continue to work in this
direction in the hope to further enhance the practicability of the method.
Organisation. The remainder of this paper is organised as follows. In Section
2 we discuss previous works on the same problem. In Section 3 we formally
introduce the problem. In Section 4 we describe the formalism of Linear Hybrid
Automata. In Section 5 we present our model for the G-FP scheduling problem
over sporadic tasks. The core of the paper is Section 6, in which we propose the
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pre-order relationship and prove its correctness as a weak simulation relation
in our proposed LHA model; we also formalise the exact schedulability test,
based on reachability analysis in LHA. In Section 7 we introduce the concept of
decidability interval and demonstrate how to derive it for G-FP scheduling of
sporadic tasks, then apply the obtained decidability interval result to prove the
decidability of our exact test in case of constrained-deadline tasks. In Section 8
we report a set of experiments. Finally, in Section 9 we conclude the paper.

2 Related Work

Given the complexity of the problem, most of the work for G-FP scheduling is
focused on obtaining an approximate schedulability test.

The general properties of multiprocessor scheduling have been discussed in
many previous papers. [19, 14] proposed upper bounds to the feasibility in-
terval of a set of periodic tasks scheduled upon a multiprocessor (uniform or
heterogeneous).

[3] developed sophisticated schedulability analysis techniques consisting in
selecting a problem window, and in computing an upper bound to the maximum
amount of workload and interference of each individual task in that window.
Since then, reducing the pessimism in the estimation of workload and inter-
ference has been the main approach to improve analysis precision. [8] applied
this technique to perform an iterative response time analysis of global schedul-
ing. [22] developed RTA-LC (Response Time Analysis with Limited Carry-in)
schedulability analysis for G-FP scheduling by integrating the response time
analysis in [8] and the technique in [6] for Global Earliest Deadline First (G-
EDF) scheduling of limiting the number of carry-in tasks. [30] developed RTA-
CE (RTA with Carry-in task sets Enumeration) that explicitly enumerates all
possible carry-in task sets. Among approximate G-FP schedulability tests, RTA-
CE achieves the best precision. In this paper, we also evaluate how much pes-
simism lies between the RTA-CE test and the exact analysis.

Regarding exact analysis, the first brute force approach to the problem was
proposed in [5]: the test assumes discrete time parameters, and it consists in
building a finite state machine that represents all possible combinations of ar-
rival times and execution sequences for a task set scheduled by G-EDF. Unfor-
tunately, the problem is so complex that the authors could analyse only tasks
whose period is in the range {3, 4, 5}; the tool produces an out-of-memory error
for values of T = 6.

[15] proposed an exact schedulability test for a set of periodic tasks, but
they did provide neither a tool, nor experiments with task sets. We believe that
their algorithm is very complex and a naive implementation would not scale to a
large number of tasks. [20] proposed a timed-automata model for schedulability
analysis of periodic tasks. However, periodic tasks are simpler to analyse than
sporadic tasks: we will provide a detailed comparison in Section 8.4.

Recently, [17] improved over [5] by using an antichain technique. In partic-
ular, they proposed a simulation relation between states of the underlying finite
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automaton. An informal definition of simulation relation is the following:

Given two states s1 and s2, we say that s1 simulates s2 (denoted as
s1 � s2) if and only if: 1) for every state s′2 successor of s2, there
exists a state s′1 successor of s1 and s′1 � s′2; 2) if s2 is an error state
(i.e. it models a deadline miss), then also s1 is an error state.

Thanks to this relation, when we find two states such that s1 � s2, we can
avoid analysing all paths starting from state s2: in fact, if the error state is
not reachable from s1, then it is not reachable from s2 either. This produces a
significant reduction on the number of states to be analysed in the reachability
analysis. The simulation relation proposed in [17] is valid for any fixed job-
level scheduling algorithm, including G-FP and G-EDF. Besides, [9] studied
the feasibility problem of sporadic tasks in multiprocessor by reducing it to a
safety game, where the two players are the scheduler and the set of the tasks
respectively. As shown in [18], the antichain technique in [17] can be applied to
[9] in order to improve the efficiency.

However, all such methods rely on explicit (discrete) techniques for time
analysis and are limited to tasks with very small discrete parameters. For ex-
ample, in their experiments [17] could analyse task sets with maximum period
equal to T = 8 on 2 processors.

In this paper we take a different approach. We model the system as a
Linear Hybrid Automaton (LHA) and then we perform our analysis on the
corresponding symbolic state space. As in [17], we define a weak simulation
relation over the symbolic states, and prove its correctness for G-FP scheduling.
This allows us to considerably reduce the analysis time, and thus to analyse more
complex task sets. Due to the different features between explicit and symbolic
techniques for state space exploration, when tasks are with small parameters, it
is possible that existing works on exact multiprocessor schedulability analysis
are more efficient than our solution; however, our exact analysis is the only work
that can handle task sets with general configurations.

3 System Model

We consider the problem of checking the schedulability of a set of n independent
sporadic tasks, scheduled on m identical processors, with n > m, by G-FP, so
that all timing constraints are respected.

A sporadic task τi = (Ci, Di, Ti) is characterised by a minimum interarrival
time Ti, a relative deadline Di and a worst-case execution time (WCET) Ci
(≤ min{Di, Ti}). With an abuse of notation, Ti is sometimes called period. The
utilisation of a task is defined as Ui = Ci

Ti
. The task emits jobs whose activation

time is separated by at least Ti units of time; each job executes for at most Ci
units of time and must complete within Di units of time from its activation. A
task is said to have constrained-deadline if Di ≤ Ti; otherwise, it is called an
unconstrained-deadline task. An arbitrary-deadline task has no requirement on
the values of relative deadline Di and period Ti, that is, Di could be less than,
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(a) (b)

Figure 1: Example of schedule of sporadic tasks (a) jobs arrive as soon as
possible (b) second job of τ1 is delayed.

equal to or larger than Ti. We assume that all jobs of the same task must be
executed sequentially and cannot be parallelised. Each task is pre-assigned a
fixed and unique priority, and we assume that a lower task index corresponds to
a higher priority. We assume by convention that time 0 corresponds to the first
arrival instant of any sporadic task in the system: in other words, no arrival
event happens before time 0.

In this paper we consider global fixed-priority (G-FP) fully-preemptive schedul-
ing: the execution of a job can be suspended at any time to execute another
higher priority job (preemption); the same job can later resume execution on a
possibly different processor (migration). G-FP scheduling is sustainable ([4]),
i.e. given a schedulable task set, by decreasing the WCET Ci, increasing Ti or
enlarging Di of tasks, the task set remains schedulable.

As mentioned in Section 1, the main obstacle to perform an exact analysis is
that there is no critical instant, and that the worst-case response time of a task
may not correspond to a situation in which all jobs arrive as soon as possible.
To better understand the problem, consider the following example (from [6]):
the system consists of 3 tasks τ1 = (1, 1, 2), τ2 = (1, 3, 3) and τ3 = (5, 6, 6), to be
scheduled by G-FP on a 2-processor platform. Task τ1 has the highest priority
and τ3 is the lowest priority task. The schedule obtained when all tasks start at
time 0 and arrive as soon as possible is shown in Figure 1a, where all tasks meet
their deadlines. However, if the second job of task τ1 arrives at time instant 3
instead of 2, task τ3 misses its deadline (Figure 1b).

In fact, we cannot make any worst-case assumption on the arrival times of
the jobs, we need to analyse all legal combinations of arrival instants.

4 Linear Hybrid Automata

A hybrid automaton ([1], [23]) is a finite automaton associated with a finite set
of variables continuously varying in dense time. In this section, we introduce
the basic terminology and the definition of Linear Hybrid Automata.

Let Var = {x1, . . . , xn} be a set of continuous variables and ˙Var = {ẋ1, . . . , ẋn}
be the set of variables’ derivatives over time. A linear constraint atom over Var
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is of the form
∑n
i=1 cixi ∼ b, where ci (1 ≤ i ≤ n) and b are rational numbers

and ∼∈ {<,≤,=,≥, >}. A linear constraint C is the conjunction of a finite
number of constraint atoms. A valuation ν over Var is a function that assigns
a real value to each element in Var. The set of all possible valuations over Var
is denoted as V (Var). We write ν |= C to represent that ν satisfies C. The same
notations can also be defined for ˙Var.

Definition 1. A Linear Hybrid Automaton A = (Var, Loc, Init, Lab, Trans, D,
Inv) consists of seven components:

• a finite set Var of variables;

• a finite set Loc of locations including an initial location l0;

• a labeling function Init that specifies the initial linear constraint over vari-
ables;

• a finite set Lab of synchronisation labels including a stutter label ε;

• a finite set Trans of transitions;

• a labeling function D which assigns to each location l a linear constraint
over variables’ derivatives;

• and a labeling function Inv which assigns each location l a constraint, called
invariant, over variables.

The automaton can be in a location l as long as the current valuations of
the variables satisfy Inv(l). A transition is a tuple (l, γ, a, α, l′) consisting of a
source location l, a target location l′, a guard γ that is a linear constraint over
Var, a synchronisation label a ∈ Lab, and the transition relation α which is used
to update the values of the variables in Var. We require that on each location,
there is a stutter transition (l, true, ε, Id, l) where Id = {(ν, ν)|ν ∈ V (Var)} is
the identical transition relation.

Let A1 and A2 be two LHA over a set of variables Var. Their parallel
composition A1×A2 is the LHA (Var, Loc1×Loc2, Init, Lab1∪Lab2,Trans, D, Inv)
such that:

• Init(l1, l2) = Init1(l1) ∧ Init2(l2).

• ((l1, l2), γ, a, α, (l′1, l
′
2)) ∈ Trans iff

1. (l1, γ1, a1, α1, l
′
1) ∈ Trans1 and (l2, γ2, a2, α2, l

′
2) ∈ Trans2.

2. γ = γ1 ∧ γ2.

3. either a1 = a2 = a, or either a1 = a 6∈ (Lab1 ∩ Lab2) and a2 = ε or
a1 = ε and a2 = a 6∈ (Lab1 ∩ Lab2).

4. α = α1 ∧ α2.

• D(l1, l2) = D1(l1) ∧D2(l2).
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• Inv(l1, l2) = Inv1(l1) ∧ Inv2(l2).

A concrete state s of the LHA is in the form of (l, ν), where l is a location
and ν ∈ V (Var). A state can change in two ways:

• A discrete step: (l, ν)
a−→ (l′, ν′) which means there exists a transition

(l, γ, a, α, l′) and

ν |= γ ∧ ν′ = α(ν) ∧ ν′ |= Inv(l′)

• A time step: (l, ν)
t−→ (l, ν′) at which t is a real-value represents time

elapsed, and

ν |= Inv(l) ∧ ν′ ∈ ν ↑tD(l) ∧ν
′ |= Inv(l) ∧ t ≥ 0

where ν ↑tD(l) represents the set of valuations that can be reached by letting
variables continuously evolve for t time units, according to derivatives
constrained by D(l), and starting from the valuation ν.

We use → to represent a generic step, which could be either a discrete step

or time step. We also define ⇒ to denote a sequence of steps, and
t

=⇒ means
that the accumulated time during the sequence of steps is t.

A symbolic state S of the LHA is a pair (l, C), where l is a location and C is
a linear constraint over variables. We can define a step and a sequence of steps
for symbolic states by lifting the definitions of step and sequence of steps for
concrete states. When it comes to symbolic states, the corresponding operations
are performed on convex regions instead of concrete valuations on variables.

For a concrete state s and a symbolic state S, we say s ∈ S if s.l = S.l and
s.ν |= S.C. The concrete state space and symbolic state space of a LHA A are
represented by space(A) and Space(A) respectively.

5 Multiprocessor Schedulability in LHA

In this section we describe the automaton used for modeling our scheduling
problem. In particular, we use two different types of automata that synchronise
with each other: the task automata and the scheduler automaton. Indeed, the
LHA model we are going to propose can be also encoded by using Timed Au-
tomata with stopwatches ([12]). As it will be clear in the next section, the only
difference is that we allow some variables to decrease at unitary rate, whereas
in Stopwatch Timed Automata all variables are either stopped or increasing at
unitary rate. We think that using the LHA model is more straightforward to
understand our analysis scheme in Section 6.

5.1 The task automata

We start by presenting the LHA that models one single sporadic task. Such a
LHA model for the sporadic task is called task automaton. A concrete task
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Idle
ṗ = 1, ċ = 0

Waiting
ṗ = 1, ċ = 0
p ≤ D

Running
ṗ = 1, ċ = −1
c ≥ 0 ∧ p ≤ D

Deadline
Missed

arrival
p ≥ T
p := 0
c := C

dispatch

p ≥ T
p := 0

c := c+ C

p ≥ D

preemption
c > 0

c > 0∧
p ≥ D p ≥ T

p := 0
c := c+ C

end
c = 0

Figure 2: Task Automaton

automaton TA = (C,D, T ) is depicted in Figure 2. It has two continuous
variables p and c, and four locations.

Variable p represents the time passed since the latest activation of the task,
and its rate is always 1. Every time a new job arrives, p is reset to 0. Variable
c represents the remaining computation time of a task. Its rate can be 0, when
the task does not execute, or −1 when the task executes.

The automaton works as follows. Initially, it is in state Idle, where p ≥ 0
and c = 0; p ≥ 0 models the fact that the first job release of a task can happen
at any time. From there, when the guard constraint p ≥ T is satisfied, i.e.
at least T time units have been passed since latest activation of the task, it
can move non-deterministically to location Waiting. Along with this new job
arrival transition, p variable is reset to 0 and C is assigned to variable c. Also,
it synchronises with the scheduler (see next section) on the task arrival label.
Notice that every task always executes for its WCET: as mentioned in Section 3,
G-FP is sustainable, thus if the system is schedulable when every task always
executes for its WCET, it is also schedulable when a task is allowed to execute
for less than its WCET.

While in Waiting, the rate of c will remain equal to 0. The automaton moves
to location Running after synchronising with the scheduler on label dispatch,
which notifies that some processor is available for the task to run. While a task
is running, the rate of c is set to−1, so its remaining computation time decreases.
Its execution can be preempted by the arrival of a higher priority task, at which
point the task will move back to location Waiting after synchronising with the
scheduler on label preemption.

We say a task is active if it is in location Waiting or Running. An active task
must finish its computation time before reaching its deadline. This means the c
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variable must reach 0 no later than the time at which p reaches D. Otherwise,
a task misses its deadline and goes (from Waiting or Running) to the Deadline-
Missed location. If a task finishes its execution before deadline, i.e. c = 0 and
p ≤ D, the task is forced to move to location Idle (transition from Running to
Idle).

In case that a task has unconstrained deadline, there could be a new job
arrival for an active task. This is modeled as a non-deterministic transition
from Waiting or Running to itself. Since the new instance must wait for its
precedence completes, variable c is incremented by C with the transition.

In the following we will denote as TAi the automaton corresponding to the
i-th task in the system, with qi, ci, pi its location, left computation time and
passed time, respectively, and with arrivali, endi, dispatchi, preemptioni the cor-
responding synchronisation labels.

5.2 Scheduling automaton

Given a set of tasks T = {TA1, . . . ,TAn}, set A is defined as the set of active
tasks that are in locations Waiting or Running, and set R denotes the set of tasks
that are in location Running.

Let Scheduler : 2T → 2T be a scheduling function that, given a set of active
tasks, returns the set of executing tasks: R = Scheduler(A).

In this paper, we consider a G-FP Scheduler, which chooses the min{m, |A|}
highest priority tasks to run.

The scheduling function can be modeled by a finite automaton synchronised
with the task automata the system is composed of. More formally, the schedul-
ing (or scheduler) automaton Sched = {m, Loc, Lab} is characterised by:

• m is the number of identical processors in the system;

• Loc is the set of locations of the scheduler;

• Lab =
⋃
i Labi with Labi = {arrivali, endi, dispatchi, preemptioni} is the

set of synchronisation labels.

The responsibility of a scheduling automaton is to synchronise with the task
automata, i.e. to decide which tasks to run (staying in location Running) and
which tasks to wait (staying in location Waiting). Every time a task completes
its execution or releases a new job, the active task set A changes to A′ and a
new running task set R′ is computed according to the scheduling function R′ =
Scheduler(A′). Then, for the task that is in R but was not in R′, the scheduling
automaton informs its preemption from the processor through synchronisation
on the preemptioni label; and for the task that was not in R but is now in R′,
the scheduling automaton synchronises on the dispatchi label with it.

An example of scheduling automaton for n = 3 tasks on m = 2 processors
is shown in Figure 3. In the figure, nodes depict locations, and the name of the
location encodes the state of the system queue, and in some cases the event that
just happened. For example, location E1E2W3 corresponds to the execution of
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task τ1 and τ2 on the two processors, and the task τ3 waiting to be executed;
location E1 arr2 represents the fact that, while task τ1 is executing on one pro-
cessor, task τ2 has just arrived. Also, please note that all locations with names
containing arr are assumed to be committed locations1. Finally, on the edges we
show the synchronisation labels (in short form for graphical reasons), hence arr1
stands for arrival1, etc. For simplicity, when there is a preemption (for example
τ3 is preempted by the arrival of τ1), we put the two synchronisation labels pre3
and dis1 in the same transition. This means between the two synchronisations,
no time will elapse (as we assume no context switch cost). This can be realised
by inserting a committed location in between the two. In the special case of
one processor, a formal modeling of the fixed-priority scheduler can be found
in [29].

The number of locations needed for representing the scheduler automaton
is exponential in the number of tasks. Such locations can be automatically
generated by using function Scheduler() for computing which task to execute
and which task to suspend or preempt. Notice also that the location encodes
the same information that is contained in the task automata presented above; in
particular, executing tasks will be in location Running, whereas suspended tasks
will be in location Waiting. Therefore, the scheduler automaton does not add
additional complexity to the problem; on the contrary, it restricts the number
of possible combinations of task locations: for example a lower priority task
cannot be in the Running location if there are m higher priority tasks that are
active.

Finally, a system automaton SA = (T ,Sched), is the parallel composition of
n task automata and one scheduler automaton, where

• T = {TA1, . . . ,TAn} is a set of n task automata;

• Sched is the scheduler automaton.

The following theorem shows that SA models the real-time scheduling of a
set T of sporadic tasks with G-FP, including all legal task arrival and execution
patterns.

Theorem 1. Given a task set T , all tasks in T are guaranteed to meet their
deadlines if and only if DeadlineMissed locations are not reachable in the system
automaton SA.

Proof. We must demonstrate that, if there is a deadline miss for the set of tasks
under G-FP scheduling, there is a sequence of transitions in SA starting from
the initial location until to the DeadlineMissed location. Vice versa, if some
DeadlineMissed locations can be reached using a sequence of transitions, then
there exists a configuration of arrival times for the sporadic instances such that
one task will miss its deadline.

1 A committed location is a location where time is not allowed to elapse; more details can
be found in [7].
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,dis2

,dis1

Figure 3: Scheduler for 3 tasks on 2 processors
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Suppose that the task set is not schedulable under G-FP and the first dead-
line miss happens at time t. We now build a sequence of transitions (i.e. a
trace) in the SA that reproduces the schedule.

Suppose that the first instance of a task τi is released at time ri,1. Then, the
corresponding TA remains in the Idle location while p < ri,1, and the transition
to location Waiting is taken when p = ri,1; correspondingly p is reset to 0. The
scheduling automaton Sched at each instant represents the state of the ready
queue, so it mimics the state of the schedule. For example, upon arrival of a
high priority task, a sequence of transitions synchronized by dispatch and/or
preemption is triggered in zero time so that the TA corresponding to the high
priority task is moved to location Running, whereas the TA corresponding to the
preempted task is moved to location Waiting. If a task executes for ∆t units
of time, the corresponding variable c is decreased by the same amount, so the
value of the variable always represents the execution time.

Successive releases at ri,j are treated differently: if the task has already
completed its execution, the corresponding automaton is in location Idle, so
they are treated as in the first release.

If at time ri,j the previous instance of τi has not yet completed, the TA may
decide non-deterministically to update c and p to account for the new instance
or decide to ignore the new arrival and analyse the previous one. In practice,
in the analysis we need to consider both cases. If the instance that misses
the deadline is the (j − 1)-th instance of task τi, we ignore the release of the
j− th instance (which has no impact on the current schedule), and continue the
analysis of the current instance until the DeadlineMissed location is reached.

If instead the deadline miss happens on a different instance of the same task
or of another tasks, we update variable c← c+C and variable p← 0 to account
for the new instance.

Then, it is clear that each task arrival, execution, preemption and completion
corresponds to a transition in the task automaton TA. Therefore, a deadline
miss for a task always corresponds to the corresponding TA going into the
DeadlineMissed location.

Vice versa, if there exists a sequence of transitions in SA that finally reaches
the DeadlineMissed location, following the same reasoning as above, we can find
a corresponding task arrival and preemption pattern in the scheduling of tasks
that causes a deadline miss.

In conclusion, the task set is schedulable if and only if the location Deadline-
Missed is not reachable in the system automaton SA.

Given a state s in SA, A(s) and R(s) represent the set of active and running
tasks in the system respectively. We denote with q0 the current location of the
scheduler automaton, and with qi (1 ≤ i ≤ n) the location of the i-th task
automaton. The same notions are also applied to a symbolic state S.
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6 Weak Simulation Relation in SA

In the previous section we proved that analysing the schedulability of a task set
is equivalent to performing a reachability analysis of DeadlineMissed locations in
SA. Due to the non-deterministic and sporadic behaviour of task arrivals, the ex-
ploration of SA’s (symbolic) state space will easily produce a “state explosion”.
To reduce the number of generated states, we propose a weak simulation rela-
tion for SA such that, given two states S1 and S2, if S1 simulates S2 then S2 can
be eliminated from state space without interfering with the final schedulability
analysis result.

6.1 Weak simulation in concrete state space

We first discuss the weak simulation relation in concrete state space of SA, then
we will extend it for symbolic states.

Definition 2. A weak simulation relation in the concrete state space of SA is a
pre-order �⊆ space× space such that the following two conditions are satisfied:

1. ∀s1, s2, s4 s.t. s1 � s2, s2 → s4: there exists s3 s.t. s1 ⇒ s3 and s3 � s4;

2. ∀s1, s2 s.t. s1 � s2 : ∀i s2.qi = DeadlineMissed implies s1.qi = DeadlineMissed.

If s1 � s2, we say that s1 simulates s2. If s1 � s2 but s2 6� s1, we write s1 � s2.

Roughly speaking, s1 � s2 means that the scenario in s1 is worse than in s2

for tasks to finish execution before their deadlines.
The first condition in Definition 2 says that, given s1 � s2 and given s2 that

performs a (discrete or time) step to s4, there exists a state s3 reachable from s1

such that s3 � s4. The second condition says that if some task in the simulated
state (s2) misses its deadline, so does it in the simulating state (s1). For these
two reasons, during state space exploration, we can safely eliminate states that
are simulated by others without violating the reachability analysis result. Note
that for two states s1 � s2 and s2 � s1, we only need to keep one of them.

Now, we present a specific pre-order relation in space(SA) that satisfies the
definition of a weak simulation relation, thus it can be used to simplify the state
space exploration in SA.

Definition 3 (Slack-time pre-order). For automaton SA, the slack-time pre-
order �st⊆ space × space is defined as follows: ∀s1, s2, s1 �st s2 if and only
if

∀τi : s1.pi ≥ s2.pi ∧ s1.ci ≥ s2.ci

For an active task, the difference between the time left before its deadline
and the remaining computation time is called the slack of the task. When the
slack is less than 0, the task is doomed to miss its deadline. Intuitively, a smaller
slack corresponds to a more urgent scenario. In a task automaton TAi, the slack
can be computed by Di − pi − ci. Given two states s1, s2 such that s1 �st s2,
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there is s1.pi ≥ s2.pi and s1.ci ≥ s2.ci. So, an active task’s slack in s1 is no
larger than its slack (if in s2 it is also active) in s2.

We now prove that �st satisfies the two conditions for a weak simulation
relation in Definition 2.

Theorem 2. The pre-order relation �st is a weak simulation relation in space(SA).

Proof. To prove that �st is indeed a weak simulation relation, we must demon-
strate that it satisfies the two properties stated in Definition 2, where the second
point trivially holds for �st. Therefore, in this proof we address the first point:
i.e. given s1 �st s2 and s2 → s4, we prove that there exists s3 such that s1 ⇒ s3

and s3 �st s4.
s2 → s4 in SA can be a time step or a discrete step. The latter could be

further differentiated, depending on whether it is caused by a task arrival or by
a task completion. In the following we will analyse these cases one by one.

1. s2 → s4 is a time step with elapsed time t: s2
t−→ s4. Let us consider a

timed step sequence s1
t

=⇒ s3 with the same t as accumulated time; and let
us assume that there is no new task arrival during this time interval. For
any task τi, s3.pi = s1.pi+t ≥ s2.pi+t = s4.pi. If a task τi is not in A(s2),
then s2.ci = s4.ci = 0; certainly, there will be s3.ci ≥ s4.ci. Otherwise, a
key observation for the proof is that ∀i, s1.ci ≥ s2.ci implies A(s2) ⊆ A(s1);
so task τi in A(s2) also belongs to A(s1). Suppose from s1 to s3 (s2 to s4),
the time that τi stays in location Running is t1 (t2). Since the scheduler
chooses tasks to run according to their fixed priority and A(s2) ⊆ A(s1),
t1 will be no larger than t2 and s3.ci = s1.ci − t1 ≥ s2.ci − t2 = s4.ci. So,
we proved that s3 �st s4.

2. s2 → s4 is a discrete step caused by the arrival of a task τi. For such a step,
only variables of the arriving task will change. Because that s1.pi ≥ s2.pi,
there exists also a discrete step from s1 to s3 triggered by τi’s new arrival
job. We have s3.pi = s4.pi = 0 and s3.ci = s1.ci +Ci ≥ s2.ci +Ci = s4.ci.
So, we proved s3 �st s4.

3. s2 → s4 is a discrete step caused by the completion of a task τi. For
such a step, only variables of the finishing task will change. Then, s4.pi =
s2.pi ≤ s1.pi and s4.ci = 0 ≤ s1.ci. Remember that in the definition of
LHA, there is always a stutter transition from a location to itself. So,
there is s1 → s1 and s1 �st s4.

In conclusion, the pre-order �st satisfies point one in Definition 2 also. Thus
�st is a weak simulation relation in SA.

6.2 Weak simulation in symbolic state space

As continuous variables in LHA vary in dense time domain, the weak simula-
tion relation in concrete state space cannot be applied to reachability analysis
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directly. In this section, we extend the slack time weak simulation relation �st
to symbolic states.

We remind here the concepts in Section 4 that a symbolic state is defined as
a pair S = (l, C), where l is a location and C is a linear constraint (or a convex
region). A symbolic state abstracts a (possibly infinite) set of concrete states.
We could define the weak simulation relation in symbolic state space (Space) by
employing its counterpart in concrete state space (space).

Given symbolic states S1 and S2, we say S1 simulates S2 if

∀s2 ∈ S2 , ∃s1 ∈ S1 s.t. s1 � s2 (1)

Remember that a symbolic state is a pair (l, C) with a location l and a linear
constraint C. The linear constraint C can be represented by a convex region. In
the following we use C to denote both a linear constraint and its convex region.
In the context of �st for concrete state space, there is no need to consider
location names. Clearly, given two states S1 = (l1, C1) and S2 = (l2, C2), if C1
includes C2 (denoted as C1 ⊇ C2), then S1 simulates S2. In the following, we are
going to explore a more general relationship between convex regions that could
be used to judge the simulation relation between symbolic states.

Assume we are in a N-dimensional space. Given two valuations ν = (x1, x2, . . . ,
xN ) and ν′ = (y1, y2, . . . , yN ), we say ν prevails ν′, denoted by ν ≥ ν′, if for
all i it holds xi ≥ yi. We say a valuation ν is prevailed by a convex region C if
there exists some valuation ν′ |= C and ν′ ≥ ν. Given two convex regions C1 and
C2, C1 is said to prevail C2, denoted as C1 ≥ C2 if for all ν |= C2, ν is prevailed
by C1. We can see that the prevailing relation is transitive. The convex region
inclusion is a sufficient (but not necessary) condition for prevailing relation.

Given two valuations ν and ν′ such that ν prevails ν′, if we pair them with
location names we can obtain two concrete states s = (l, ν) and s′ = (l′, ν′).
The prevailing relation between ν and ν′ implies that s �st s′. Similarly, the
weak simulation relation between symbolic states can be decided by employing
the prevailing relation between two convex regions.

We first extend the slack time pre-order from concrete state space to symbolic
state space.

Definition 4. For the SA automaton, the slack-time pre-order �st⊆ Space ×
Space is defined such that ∀S1, S2, S1 �st S2 if and only if S1.C prevails S2.C.

Theorem 3. The pre-order �st⊆ Space× Space is a weak simulation relation.

Proof. From the definition of convex region prevailing.

We now need an efficient method for checking if two convex regions are in a
relationship of prevailing. To do this, we first define a widening operator ∇.

Given a convex region C, its widening ∇(C) is the convex region that can be
obtained as follows:

• Construct linear constraints C′ in 2×N dimensional space (x1, . . . , xN , y1, . . . , yN )
such that

(y1, . . . , yN ) |= C ∧ ∀i, xi ≤ yi

16



x

y

x
+
y
≤

4
x ≥ 1

y ≥ 1

(a) the original convex region

x

y

x
+
y
≤

4

y ≤ 3

x ≤ 3

(b) after windening

Figure 4: A convex region C and its windening ∇(C)

• Remove the space dimensions higher than N in C′.

∇(C) represents the largest region that is prevailed by C. ∀ν ∈ ∇(C), there
exists a ν′ ∈ C such that ν′ ≥ ν and vice versa; this means C ≥ ∇(C) and
∇(C) ≥ C. An example for the widening operation is shown in Figure 4.

Finally, the prevailing relation between two convex regions, thus the sim-
ulation relation between two symbolic states, can be decided by the following
lemma.

Lemma 1. Given two convex regions C1 and C2, C1 ≥ C2 if and only if ∇(C1)
includes ∇(C2).

Proof. We first prove that C1 ≥ C2 ⇒ ∇(C1) ⊇ ∇(C2). Since C1 ≥ C2 ≥ ∇(C2)
and ∇(C1) is the largest region prevailed by C1, we get ∇(C1) ⊇ ∇(C2).

Then we prove ∇(C1) ⊇ ∇(C2) ⇒ C1 ≥ C2. From ∇(C1) ⊇ ∇(C2), we have
C1 ≥ ∇(C1) ≥ ∇(C2) ≥ C2. So, C1 ≥ C2 ⇔ ∇(C1) ⊇ ∇(C2) and the lemma is
proved.

6.3 Optimizing the slack-time pre-order relation

We now present another more efficient simulation relation as an extension of the
slack-time pre-order relation �st in case that tasks have constrained deadlines.
Although a similar pre-order can also be defined for arbitrary-deadline sporadic
tasks, for simplicity we restrict our extension only for tasks with deadlines less
than or equivalent to their respective minimum interarrival times.

Let us first have a look at a simple example. Given two states s1 and s2

with s1.ci = s2.ci = 0, s1.pi = Ti + 1, s2.pi = Ti + 10000 and for any j 6= i,
there is s1.cj ≥ s2.cj and s1.pj ≥ s2.pj . Following the definition of slack-time
pre-order, we would see s1 6� s2 because of s1.pi < s2.pi. However, for a task
with pi ≥ Ti that is ready for releasing a new job, the exact valuation of pi
does not really matter. In the following, we are going to extend the original
slack-time pre-order given this observation.
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Definition 5 (Extended slack-time pre-order). For automaton SA, the extended
slack-time pre-order �′st⊆ space× space is defined as follows: ∀s1, s2, s1 �′st s2

if and only if for any τi

s1.pi ≥ s2.pi ∧ s1.ci ≥ s2.ci

or
s1.pi > Ti ∧ s1.ci ≥ s2.ci (C1)

The extension comes from the condition in (C1): s1.ci ≥ s2.ci is the same as
in �st; s1.pi > Ti says that τi is eligible to release a new job in s1 at any time.
The extension part is meaningful when s2.pi > s1.pi > Ti and in such a case
the new job release of τi in both s1 and s2 can happen at any time regardless
of the exact values of s1.pi or s2.pi.

Theorem 4. The extended pre-order relation �′st is still a weak simulation
relation in space(SA).

Proof. Let us say s1 �′st s2. If s2.pi ≤ Ti, then the original �st pre-order
relation simply holds. Otherwise, if there is s1.ci = 0, then for any job release
of τi from s2, τi can trigger its job release also in s1; given the structure of
a Task Automaton and the constraint s1.pi > Ti, there is no possibility that
s1.ci > 0 (suppose that s1 be not in a DeadlineMissed location). In the end, our
proof for Theorem 2 still holds for the extended slack-time pre-order.

Additionally, we can define the new pre-order for unconstrained-deadline
tasks by modifying the condition in (C1) as: s1.pi > Di ∧ s1.ci ≥ s2.ci.
The reasoning behind this is similar as in proof of Theorem 4 and we are not
going into details of it.

As in the case of �st, we are going to adapt �′st for symbolic state space
of SA. We first extend the widening operator ∇. We define a new widening
operator ∇′ such that given a convex polyhedron C, ∇′(C) is constructed as
follows.

• For each task τi, let us say the dimension xi (in C) corresponds to its pi
variable. If xi > Ti, then we unconstrain xi; that is, after the operation
there is −∞ < xi < +∞.

• Suppose C′ be the resulted convex polyhedron after the first step; the orig-
inal widening operator ∇ is then called on C′. That is, the final widened
convex region is ∇(C′).

Now, let us define the extended slack-time pre-order in the symbolic state
space Space(SA) and prove its validity.

Definition 6. For the SA automaton, the extended slack-time pre-order �′st⊆
Space × Space is defined such that ∀S1, S2, S1 �′st S2 if and only if ∇′(S1.C)
includes ∇′(S2.C).
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Theorem 5. The extended pre-order �′st⊆ Space× Space is a weak simulation
relation.

Proof. After the ∇′ operation, −∞ < pi < +∞ notifies the existence of such
tasks that are eligible to release new jobs at any time from then on. As in con-
dition (1), the weak simulation relation between symbolic states can be derived
from corresponding weak simulation relation in concrete state space. Given the
definition of extended slack-time pre-order �′st in space(SA), the claim in this
theorem is valid.

In the remainder of this work, we implicitly use the notation slack-time
pre-order �st to denote also the extended one.

6.4 Schedulability Analysis in SA

In this section, we formulate the algorithm to explore the state space of SA by
using a breadth-first traversal for reachability analysis. The pseudo-code of the
Schedulability Analysis algorithm in SA (SA-SA) is shown in Algorithm 1. S0 is
the initial state of SA, R denotes the set of reachable states in SA and F is the
set of states representing deadline miss. The Post operation returns the set of
states that can be reached in a single transition from states in R. If some state
in F is reachable, then the task set encoded in SA is deemed not-schedulable.

Max�(R′) is defined as

∀S ∈ Max�(R′) :6 ∃S′ ∈ R′ s.t. S′ �st S
∀S, S′ ∈ Max�(R′) : S′ 6�st S

At line 8 of the algorithm, Max� operation eliminates from R′ the states that
are simulated by others. When no new state is produced (line 9), the algorithm
terminates and the task set is deemed schedulable.

As long as it terminates, the correctness of Algorithm 1 can be proved fol-
lowing the same scheme as in [17]. We skip the details here.

Moreover, we can also define Max⊇(R′) as

∀S ∈ Max⊇(R′) :6 ∃S′ ∈ R′ s.t. S′.l = S.l ∧ S′.C ⊃ S.C
∀S, S′ ∈ Max⊇(R′) : ¬(S′.l = S.l ∧ S′.C ⊇ S.C)

This is a common and very basic strategy to eliminate unnecessary states during
state space exploration. If we replace Max�(R′) with Max⊇(R′), we obtain a
version of SA-SA that does not use the simulation relation, which is a normal
reachability analysis procedure. In Section 8.1, we will compare the efficiency
of these two versions of SA-SA, with and without simulation relation. As �st
does not require the equivalence of location names between two states such that
s1 �st s2 and convex region inclusion is a special case of convex region prevail-
ing, there is Max�(R′) ⊆ Max⊇(R′). We will investigate how much efficiency
improvement the schedulability analysis can obtain through simulation relation
enhancement.
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Unlike previous exact analysis techniques in discrete time domain, SA-SA
works in continuous time domain, which makes it less sensitive to the values of
task parameters. For example, given the task set T1 = {(C1, D1, T1), . . . , (Cn, Dn, Tn)},
we enlarge every task parameter by multiplying by 10 and obtain T2 = {(C1 ·
10, D1 · 10, T1 · 10), . . . , (Cn · 10, Dn · 10, Tn · 10)}. When we apply SA-SA on T1

and T2, the number of states generated at each step will be exactly the same
for the two cases, whereas this may not be true for the method in [5] and [17].

We have implemented SA-SA in the software FOrmal Real-Time Scheduler
(FORTS)([27]).

Algorithm 1: Schedulability Analysis in SA (SA-SA)

1: R← {S0}
2: while true do
3: P ← Post(R)
4: if P ∩ F 6= ∅ then
5: return NOT schedulable
6: end if
7: R′ ← R ∪ P
8: R′ ← Max�(R′)
9: if R′ = R then

10: return schedulable
11: else
12: R← R′

13: end if
14: end while

In general the reachability analysis of LHAs is not decidable. However,
specific LHAs may be analysable in a finite number of steps. We now prove
that the problem under investigation is indeed decidable.

7 The Decidability Interval

In this section, we formulate the concept of decidability interval, a bounded time
interval starting from time 0 (that is the beginning of the schedule) such that
a set of sporadic tasks is schedulable if and only if there exists no configuration
of release patterns that provokes a deadline miss inside this interval. In other
words, we must check the schedules generated by all possible patterns of releases,
but each one only inside the decidability interval.

We then propose a formula for computing the decidability interval for G-FP
scheduling of sporadic tasks with constrained deadlines, and we show that this
interval is indeed quite short. Note that the concept of decidability interval
is applicable to scheduling of sporadic tasks and does not rely on the system
automaton SA.
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In the end, based on the decidability interval obtained for G-FP schedul-
ing, we prove the decidability of SA-SA algorithm with respect to constrained-
deadline sporadic tasks. In the remainder of this paper, by default we assume
that all tasks have constrained deadlines.

7.1 System statuses and the dominance relation

We first introduce some preliminary concepts and properties that will be used
for defining and deriving the decidability interval.

The task status δi(t) of a task τi at time t is defined as a pair δi(t) =
(pi(t), ci(t)).

• pi(t) is the activation variable and records the time passed since τi’s latest
activation.

• ci(t) is the execution variable and represents the unfinished computation
of τi at time t.

Clearly, pi(t) and ci(t) here mimic their respective counterparts (pi variable
and ci variable) in the task automaton TA. Please refer to Section 5.1 for a more
detailed explanation on these variables. At any time t, there could be infinite
possibilities of task statuses δi(t), subject to different task release patterns.

The system status ∆(t) at time t for the task set T = {τ1, . . . , τn} is defined
as the composition of all its tasks’ statuses, ∆(t) = (δ1(t), . . . , δn(t)). A system
status ∆(t) maps to a concrete state (l, ν) in SA, as all the values of pi(t) and
ci(t) for each task: 1) on one hand represent the valuation ν in a state, and 2)
on the other hand encode corresponding location information l.

Let Tk, with k ≤ n, be the subset containing the first k tasks from T . We
define ∆k(t) as the partial system status of the tasks in Tk.

We say that a task τi is active under the system status ∆(t) if in the cor-
responding task status δi(t) there is ci(t) > 0. A∆(t) denotes the set of active
tasks under system status ∆(t). If at time t there is pi(t) = Di and ci(t) > 0,
then τi misses its deadline.

If a task τi is released at time t, then task statuses for τi before and after
the release are also different. Prior to the release, there is pi(t) ≥ Ti and
ci(t) = 0; after the release, we have p′i(t) = 0 and c′i(t) = Ci. To make an
explicit distinction between the two cases, we use p′i(t) and c′i(t) to denote the
latter. Such a convention also applies for task status δ′i(t) and system status
∆′(t).
(The initial configuration) We assume ∆(0) is the initial status of the system.
Tasks in the system are released asynchronously and we do not know when the
first instance of a task is released. Thus, we configure the initial system status
as

∀τi ∈ T pi(0) ≥ 0 and ci(0) = 0

This means that the pi(0) could be an arbitrary non-negative value.
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(The dominance relation) Given two task statuses δi(t) and δi(t
′), at time

t and t′ respectively, we say δi(t) dominates δi(t
′), denoted as δi(t) � δi(t

′), if
the following conditions hold.

• pi(t) ≥ pi(t′).

• ci(t) ≥ ci(t′).

The relationship can be lifted to system status: given two system statuses ∆(t)
and ∆(t′), we say ∆(t) dominates ∆(t′), denoted as ∆(t) � ∆(t′), if ∀τi ∈ T
there is δi(t) � δi(t′). The dominance relation can naturally be applied between
partial system statuses.

The dominance relation between system statuses mimics the slack-time pre-
order relation in system automaton SA but without the underlying LHA model.
By understanding this, the following property is straightforward.

Lemma 2. Assume there are two system statuses ∆(t) and ∆(t′) at t and t′

respectively and ∆(t) � ∆(t′). Suppose ε be an arbitrary non-negative value and
∆(t′ + ε) be a system status at (t′ + ε) such that from ∆(t′) to ∆(t′ + ε)

• there is no task activation;

• or, there is exactly one task activation at time (t′ + ε).

Then, there exists a system status ∆(t+ ε) such that ∆(t+ ε) � ∆(t′ + ε).

Proof. We first consider the case that from ∆(t′) to ∆(t′ + ε) there is no new
task release. As tasks are activated sporadically, there exists a system status
∆(t + ε) such that from ∆(t) to ∆(t + ε) there is also no new task arrival.
In such a case, all activation variables continuously increase. For any task τi
there is pi(t + ε) = pi(t) + ε and pi(t

′ + ε) = pi(t
′) + ε. As ∆(t) � ∆(t′), for

any task τi, there is pi(t) ≥ pi(t
′) and ci(t) ≥ ci(t

′); this further implies that
pi(t+ ε) ≥ pi(t′ + ε).

Now, it is the turn to analyze the execution variables. If τi is not an active
task in ∆(t′), as there is no new task arrival, there will be ci(t

′) = ci(t
′+ ε) = 0;

thus, ci(t + ε) ≥ ci(t
′ + ε) trivially holds. On the other hand, if τi is indeed

an active task in ∆(t′), then it is also an active task in ∆(t). Suppose π and
π′ be the higher-priority interference that τi suffers from t to (t + ε) and from
t′ to (t′ + ε) respectively. Since ∆(t) � ∆(t′), A∆(t) ⊇ A∆(t′) and for any task
τj ∈ ∆(t′) its unfinished execution in ∆(t) is no smaller than its unfinished
execution in ∆(t′) as ci(t) ≥ ci(t′). According to the G-FP scheduling policy, π
will not be smaller than π′, i.e., π ≥ π′. Suppose that ci(t

′ + ε) > 0 (otherwise,
ci(t + ε) ≥ ci(t

′ + ε) will trivially hold). There is actually ci(t
′ + ε) = ci(t

′) −
(ε− π′) = ci(t) + π′ − ε; on the other side, ci(t+ ε) = ci(t) + π − ε ≥ ci(t′ + ε).
As a result, we have ∆(t+ ε) � ∆(t′ + ε).

Now, let us consider the second case, that is some task τk is activated task
at time (t′ + ε). That is, before τk is released, there is pk(t′ + ε) ≥ Tk; after τk
is activated, there is p′k(t′ + ε) = 0 and c′k(t′ + ε) = Ck. From t′ (t) to (t′ + ε)

22



((t+ ε)), tasks that are different from τk can be analysed in the same way as in
the above discussion. Thus, We are going to concentrate on the task τk.

As ∆(t) � ∆(t′), there is pk(t) ≥ pk(t′). From t to (t + ε), if τk does not
release a new task instance, there is pk(t + ε) = pk(t) + ε ≥ pk(t′) + ε ≥ Tk.
So, at time (t+ ε), a new instance from τk is eligible to be released, which will
result in p′k(t+ ε) = 0 = p′k(t′ + ε) and c′k(t+ ε) = Ck = c′k(t′ + ε). As a result,
∆′(t+ ε) � ∆′(t′ + ε).

Hence, the lemma is proved.

Then, we generalise the above Lemma 2 as follows.

Theorem 6. Suppose ∆(t) and ∆(t′) are two system statuses such that ∆(t) �
∆(t′). Then, for any non-negative value Θ and for any system status ∆(t′+Θ),
there exists a system status ∆(t+ Θ) such that ∆(t+ Θ) � ∆(t′ + Θ).

Proof. From ∆(t′) to ∆(t′+ Θ), the time interval [t′, t′+ Θ] can be divided into
a finite number (let us say N) of successive sub-intervals [t′, t′+ ε1], [t′+ ε1, t

′+
ε2], . . . , [t′ + εN−1, t

′ + Θ] such that in each such sub-interval there is no new
task arrival or there is exact one new task arrival and it happens at the end of
the sub-interval. Note that in case there are multiple task arrivals at a single
time point, we can build multiple sub-intervals with length 0. Then, Lemma 2
can be applied successively to each sub-interval and the Theorem is proved.

7.2 The decidability interval for G-FP scheduling

First, we formally define the decidability interval for a set of sporadic tasks
under G-FP scheduling as follows.

Definition 7. (Decidability Interval) The decidability interval is defined as
a time interval [0, L] such that the schedulability of task set T on m processors
under a G-FP scheduler can be decided inside it. That is, the task set T is
schedulable if and only if no task will miss its deadline in the interval [0, L].

In order to compute the decidability interval for G-FP scheduling, we need
to introduce another concept called dominant interval.

Definition 8. (Level-k Dominant Interval) For the task subset Tk ⊆ T , its
level-k dominant interval is defined as a time interval [0, Lk] such that for any
t′ and for any system status ∆k(t′), there exists t ∈ [0, Lk] and there exists a
system status ∆k(t) such that ∆k(t) � ∆k(t′).

A level-k dominant interval must be a decidability interval for Tk. Suppose
that a task τi ∈ Tk misses its deadline at time t′ under system status ∆k(t′),
i.e., pi(t

′) = Di and ci(t
′) > 0. Given the definition of a level-k dominant

interval, there exists ∆k(t) with t ∈ [0, Lk] such that ∆k(t) � ∆k(t′). That is,
pi(t) ≥ pi(t

′) and ci(t) ≥ ci(t
′); this implies that τi also misses its deadline at

time t. The decidability interval and level-k dominant interval can be bridged
through the following two theorems.
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Theorem 7. Let [0, Lk] be the level-k dominant interval for Tk. Then, [0, Lk +
Dk+1] is the decidability interval for Tk+1.

Proof. Task τk+1 cannot interfere the execution of higher-priority ones from Tk,
and Tk is schedulable if and only if no task from it misses a deadline in the
interval [0, Lk] ⊂ [0, Lk +Dk+1].

As for τk+1, we will show that if there is a deadline miss for it after the time
point (Lk +Dk+1), there exists also a deadline miss for τk+1 inside the interval
[0, Lk +Dk+1].

Since Lk is the level-k dominant interval, for any time t′ > Lk and for any
∆k(t′), there exists time t ∈ [0, Lk] and there exists ∆k(t) such that ∆k(t) �
∆k(t′). Suppose that task τk+1 is released at an arbitrary time t′ > Lk, after
which there is p′k+1(t′) = 0 and c′k+1(t′) = Ck+1. If we consider the time
t ∈ [0, Lk] with ∆k(t) � ∆k(t′), as tasks are sporadically activated and at
the initial time the activation variable can have any value, then there exists
a situation in which pk+1(t) ≥ Tk+1; this means the task τk+1 can also be
activated at time t. After τk+1 is released, there will be also p′k+1(t) = 0 and
c′k+1(t) = Ck+1.

Thus, for any release of τk+1 at any t′ > Lk, there also exists the release for
τk+1 at some time t ∈ [0, Lk] such that after the release ∆′k+1(t) � ∆′k+1(t′).
Suppose that there exists ∆(t′ + Dm+1) such that τk+1 misses its deadline,
i.e., pk+1(t′+Dk+1) = Dk+1 and ck+1(t′+Dk+1) > 0; according to Theorem 6,
there also exists ∆k+1(t+Dk+1) with ∆k+1(t+Dk+1) � ∆k+1(t′+Dk+1), which
implies pk+1(t+Dk+1) = Dk+1 and ck+1(t+Dk+1) ≥ ck+1(t′+Dk+1) > 0, i.e.,
τk+1 also misses its deadline at time (t+Dk+1).

For any release of τk at time [0, Lk], its absolute deadline is bounded by
(Lk + Dk+1). That is, the task τk+1 is schedulable if and only if there is no
deadline miss in the interval [0, Lk +Dk+1]. In conclusion, [0, Lk +Dk+1] is the
decidability interval for Tk+1.

The above Theorem 7 demonstrates how to derive a decidability interval from
a dominant interval. On the contrary, the next theorem shows that a decidability
interval can itself be also a dominant interval as long as the following property
is verified.

Theorem 8. The decidability interval [0, Lk + Dk+1] in Theorem 7 is a level-
(k + 1) dominant interval if τk+1 is schedulable.

Proof. We are going to discuss two cases given the task status δk+1(t′) of τk+1

at time t′ > Lk +Dk+1: ck+1(t′) = 0 or ck+1(t′) > 0.
(Case 1: ck+1(t′) = 0) Because that Lk is the level-k dominant interval,

there exists t ∈ [0, Lk] and ∆k(t) such that ∆k(t) � ∆k(t′). As for τk+1, given
the initial configuration and the sporadic activation behaviour, there exists task
status such that pk+1(t) ≥ pk+1(t′) and ck+1(t) = 0 = ck+1(t′). As a result,
∆(t)k+1 � ∆k+1(t′).

(Case 2: ck+1(t′) > 0) For such a system status ∆k+1(t′) with ck+1(t′) > 0,
the corresponding τk+1 is released at time (t′ − pk+1(t′)), denoted as t′0. Be-
fore the release, there must be pk+1(t′0) ≥ Tk+1; and after the release, there
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is p′k+1(t′0) = 0 and c′k+1(t′0) = Ck+1. Then, there exists t0 ∈ [0, Lk] such
that ∆k(t0) � ∆k(t′0) and pk+1(t0) ≥ pk+1(t′0) and ck+1(t0) = 0; this im-
plies, by triggering the release of τk+1, ∆′k+1(t0) � ∆′k+1(t′0). According to
the Theorem 6, after pk+1(t′) time elapsing, there must exist system status
∆k+1(t0 +pk+1(t′)) ≥ ∆k+1(t′). Let us denote with t = t0 +pk+1(t′). As τk+1 is
schedulable and ck+1 > 0, there is pk+1(t′) < Dk+1; together with t0 ∈ [0, Lk],
we have t ∈ [0, Lk +Dk+1).

In conclusion, ∀t′ > Lk+Dk+1∀∆k+1(t′), there exists t ∈ [0, Lk+Dk+1] and
∆k+1(t) such that ∆k+1(t) � ∆k+1(t′). That is, [0, Lk +Dk+1] is a level-(k+ 1)
dominant interval.

Theorem 7 and Theorem 8 provide a recursive way to construct the decid-
ability interval for a given task set T . However, the starting point of such a
procedure is still missing. The following theorem fills in the gap.

Lemma 3. The level-m dominant interval is [0, Lm] with Lm = max
τi∈Tm

{Ci}.

Proof. Suppose that m = 2 and T2 = {τ1, τ2}.
Given any time point t′ > L2, the system status ∆(t′) is in one of the

following situations.

• Both τ1 and τ2 are active such that 0 ≤ p1(t′) < C1, c1(t′) = C1 − p1(t′)
and 0 ≤ p2(t′) < C2, c2(t′) = C2 − p2(t′).

• τ1 is active and τ2 is not active such that 0 ≤ p1(t′) < C1, c1(t′) =
C1 − p1(t′) and p2(t′) ≥ 0, c2(t′) = 0.

• τ1 is not active and τ2 is active such that p1(t′) ≥ 0, c1(t′) = 0 and
0 ≤ p2(t′) < C2, c2(t′) = C2 − p2(t′).

• Both τ1 and τ2 are not active such that p1(t′) ≥ 0, c1(t′) = 0 and p2(t′) ≥
0, c2(t′) = 0.

For any of the cases listed above, it is not difficult to find a time point
t ∈ [0, Lm] with a configuration ∆(t) such that ∆(t) � ∆(t′). For example, in
case both τ1 and τ2 are active, the corresponding scenario is depicted in Figure
5, where τ1 and τ2 are released at time r1 and r2 respectively. At time t′, there
is c1(t′) = C1−t′+r1, p1(t′) = t′−r1, c2(t′) = C2−t′+r2, p2(t′) = t′−r2. Note
that p1(t′) = t′− r1 and p2(t′) = t′− r2 are upper bounded by Lm = max

τi∈Tm
{Ci}.

Then, let us consider the time t ∈ [0, Lm] such that t = max{t′ − r1, t
′ − r2}.

There exists the task release of τ1 at time (t−p1(t′)) and the task release of τ2 at
(t−p2(t′)) such that at time t we will see p1(t) = p1(t′) and p2(t) = p2(t′). This
implies that c1(t) = C1 − p1(t) = C1 − p1(t′) = c1(t′) and c1(t) = C1 − p1(t) =
C1 − p1(t′) = c1(t′). As a result ∆(t) � ∆(t′).

In case there is an active task (let us say τ1) and an inactive task (let us
say τ2, i.e., p2(t′) ≥ 0 and c2(t′) = 0) at time t′, for the active task the above
analysis still can be applied, and the time t ∈ [0, Lm] can be found such that
c1(t) = c1(t′) and p1(t) = p1(t′). For the inactive task τ2, we remind that, at
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t′

r1

r2

Figure 5: Both τ1 and τ2 are active

time 0, c2(0) = 0 and p2(0) can be any non-negative value; when there is no
new task arrival, an activation variable will monotonically increase. This means
that at time t, there must exist a task status δ2(t) for τ2 with p2(t) ≥ p2(t′) and
c2(t) = 0. As a result, ∆(t) � ∆(t′).

In the last case, both tasks are inactive. There exists ∆(0) such that ∆(0) �
∆(t′). Moreover, if we consider a general m ≥ 2, it is simply a matter of
expanding the list for combinations of active and inactive tasks.

Starting from the level-m dominant interval and by repeatedly applying
Theorems 7 and 8, we are able to compute the decidability interval for any task
set T .

Theorem 9. For a task set T = {τ1, . . . , τn} with n tasks running on m pro-
cessors, its decidability interval is [0, L] with L =

∑
1≤i≤m

Ci +
∑

m<i≤n
Di.

Proof. Suppose that T is not schedulable. Let us say τk is the highest-priority
task among all non-schedulable tasks. According to Theorem 7, Theorem 8 and
Lemma 3, the decidability interval for Tk is [0,

∑
1≤i≤m

Ci +
∑

m<i≤k
Di], which is

contained in [0, L]. This implies that if T is not schedulable, then there exists
necessarily a configuration of releases such that a deadline miss happens in the
interval [0, L]. Thus, [0, L] is the decidability interval for T .

Given the fact that a task will never have its job run for more than its
WCRT, we could refine the formulation of a decidability interval.

Lemma 4. For a task set T = {τ1, . . . , τn} with n tasks running on m proces-
sors, its decidability interval can be further refined as [0, L] with L =

∑
1≤i≤m

Ci+∑
m<i≤n

min{Ri, Di}.

Proof. By replacing Di with min{Ri, Di}, the proofs for Theorem 7 and Theo-
rem 8 still hold. In the end, the new decidability interval length is valid.

Discussion A concept called feasibility interval has been extensively studied
in [13], [14], and [15] for multiprocessor scheduling of periodic tasks. For a
set of periodic tasks, its feasibility interval is a finite interval such that if all
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jobs released within it can meet their deadlines, then the system is schedulable.
Such a result benefits from the determinism of tasks’ periodic activations and
its complexity is sensitive to the tasks’ hyperperiod. The hyperperiod for a task
set is defined as the least common multiple among all tasks’ periods.

On the other hand, the concept of feasibility interval cannot be applied
to multiprocessor scheduling of sporadic tasks. In fact, we are not aware of
any work for bounding a time interval for exact multiprocessor schedulability
analysis of sporadic tasks.

The decidability interval proposed in this work is the first result that pro-
poses a small bounded interval to check the schedulability of a set of sporadic
tasks in global multiprocessor scheduling. Moreover, as shown in Theorem 9,
the computed decidability interval for a task set could be much shorter than its
counterpart for multiprocessor periodic tasks, as it does not rely on the value
of hyperperiod.

7.3 Decidability for SA-SA algorithm

Now, we are going to answer the decidability question (in the end of Section
6.4) for the SA-SA algorithm. Thanks to the decidability interval computed
by Theorem 9, we know that in case of a set of constrained-deadline tasks, it
is enough to perform the reachability analysis of DeadlinMissed location in the
bounded time interval [0, L].

The reachability analysis of a generic LHA is undecidable ([1]), even in
bounded time ([10]). However, [10] proposed a subclass of LHA, subject to well
defined language restrictions, for which the reachability problem in bounded
time is decidable. More specifically, clock variables must all be monotonically
increasing or stopped. The class of Stopwatch Timed Automata falls in this
category.

Since our model is equivalent to a Stopwatch Timed Automaton (with an
appropriate transformation of variables), it can be seen that the reachability
problem of SA in bounded time is also decidable.

Theorem 10. The termination of Algorithm 1 (SA-SA) is guaranteed in case
of sporadic tasks with constrained deadlines.

Proof. It follows from Theorem 9 in our work and from Theorem 1 in [10].

8 Experiments

In this section we evaluate the runtime performance of SA-SA by applying the
algorithm to randomly generated schedulability problems. Each task set in the
experiment is characterised by a tuple (m,n,U), where m = 2 is the number
of processors, n ∈ {5, 6} is the number of tasks in the task set and U is the
total utilisation of the task set (i.e. U =

∑n
i=1

Ci

Ti
). Given the number of tasks

n and the total task set utilisation U , the utilisation of each task is generated
according to Randfixedsum algorithm ([16]). Task periods are distributed in
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Figure 6: SA-SA v.s. SA-SA-WoS

the range [100, 1000]. After selecting a task period Ti, the WCET is computed
as Ci = Ti · Ui; the relative deadline is then randomly sampled from Ci to Ti,
After a task set is randomly generated, priorities are assigned to its tasks by the
Deadline Monotonic strategy; that is, a task with shorter deadline is assigned
higher priority.

Discussion It is important to underline the advantages of our methodology
with respect to the methods proposed in [5], [17], [9]. These methods typically
assume task parameters such as WCETs, deadlines and periods to be rather
small integers. For example, for testing their method, [17] restricted tasks to
have period no larger than 8. This is mainly due to the fact that they use
discrete time model checking, with integer time values. Thus, these methods
are sensitive to the absolute values of task parameters. On the other hand,
relying on the formalism of LHA in continuous time domain, we are able to
apply exact schedulability test on more general task configurations.

8.1 SA-SA algorithm with and without slack-time pre-
order relation

First, we demonstrate how much the slack-time pre-order (�st) can benefit the
reachability analysis in system automaton SA, by comparing the SA-SA algo-
rithm and the SA-SA Without weak Simulation (SA-SA-WoS). We randomly
generate 100 task sets with m = 2, n = 5 and utilisation randomly chosen
in [0.5, 2.0]. Then we apply SA-SA and SA-SA-WoS to each task set, and we
respectively record state space size for the two to decide the schedulability of
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every task set. Without the enhancement of slack-time pre-order, SA-SA-WoS
faces the danger of going out of memory for some task sets. So, we put an upper
threshold of 40000 for the symbolic state space size during the test of a task set
by SA-SA-WoS. When the number of generated states exceeds this threshold,
we stop the analysis and return with error.

Results are reported in Figure 6. Each point in the graphic represents a task
set: the x-axis value records the number of states generated by SA-SA-WoS for
checking the schedulability, and the y-axis is the state space size generated by
SA-SA. As shown in the figure, by employing the slack-time weak simulation
relation �st, the size of state space for schedulability check is reduced signifi-
cantly. In most cases, state space sizes resulted by SA-SA and SA-SA-WoS can
differ by an order of magnitude.

8.2 Runtime complexity of SA-SA algorithm

In Theorem 10, we have proved the termination of schedulability analysis by SA-
SA. In this part, we will evaluate the factors that could affect SA-SA’s runtime
performance.

All simulations are conducted in a MacBook with 2.5 GHz Intel Core i5 and
8 GB memory. At first, we consider 2 processors (n = 2) and 5 tasks (m = 5).
More specifically, we randomly generate a series of task sets with U uniformly
distributed within [0.5, 2].

By applying SA-SA on these task sets, we record the time consumed and
final state space size for each test.

The results are shown in Figure 7a that displays the state space size of
all tests by SA-SA. Each point in the figure is a task set, which is further
distinguished by being schedulable and not schedulable. The x-axis denotes the
utilisation of the task set and the y-axis counts the final state space size by SA-
SA to decide its schedulability. Similarly, Figure 7b reports the time cost (in
minutes) to decide a task set’s schedulability and Figure 7c shows the relation
between state space size and time cost.

As we can observe, most tests terminate in a short time with a relatively
small state space size. However, with an increase of the task set utilisation, we
may experience cases with a rather high runtime cost, with respect to states
generated and time spent. This is due to the fact that a higher task set utili-
sation has a larger chance to result in a longer decidability interval (Lemma 4),
within which there could be more complex task execution interleavings, thus
complicating SA-SA’s reachability analysis.

Furthermore, we run simulations with m = 2 and n = 6. This time, we fix
several different utilisation levels for generating task sets. The time spent and
state space size on each task set by SA-SA are plotted in Figure 8. Note that we
manually stop the procedure when analysis time exceeds 7 hours (upper bound
on the maximum time cost we experienced for 5 tasks running on 2 processors),
and we use black colors to denote these cases in Figure 8a. In the same figure,
we use red colors and blue colors for schedulable and unschedulable task sets
respectively. Still, a task set with higher utilisation tends to complicate the
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Figure 7: Runtime complexity of SA-SA for m = 2 and n = 5
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analysis by SA-SA, and this is compatible with our observation from m = 2
and n = 5. On the other side, we must understand that for the unschedulable
task set, SA-SA may terminate without exploring the complete state space, as
long as the corresponding deadline miss condition is encountered. Thus, the
schedulability check of an unschedulable task set may finish very soon. When it
comes to the simulation results, as the total utilisation keeps increasing, there
will more unschedulable task sets. In fact, the average runtime performance
(time cost and state space size) of SA-SA improves in the high utilisation end
of our simulations, as shown in Figure 8b and Figure 8c.

8.3 Comparison with state-of-the-art over-approximate ap-
proach

In this part, we assess the pessimism of state-of-the-art over-approximate schedu-
lability test for sporadic tasks under G-FP policy. The analytic test we use is
the Response Time Analysis with Carry-in Enumeration (RTA-CE) proposed
in [30]. Although being the most accurate over-approximate schedulability test
for G-FP scheduling problem to date, RTA-CE is still pessimistic. That is,
RTA-CE may judge a schedulable task set as not-schedulable. It is interesting
and meaningful to see how much gap there is between the approximate result
of RTA-CE and the exact result of SA-SA.

We pick up the task set utilisation U from the set {0.5, 0.6 . . . , 1.5, 1.6} with
m = 2 and n = 5. Then, for each U we generate 100 task sets, for which RTA-CE
and SA-SA are applied. The number of schedulable tasks discovered by RTA-
CE and SA-SA on each utilisation level are recorded respectively. Results are
plotted in Figure 9. The x-axis shows the utilisation and the y-axis represents
the percentage of schedulable tasks over the total number of randomly sampled
tasks (at each utilisation level).

As shown in Figure 9, there is still a considerable number of schedulable task
sets that RTA-CE failed to find. Such a gap could be seen as a motivation to
further develop more precise approximate schedulability analysis.

8.4 Exact schedulability analysis for periodic tasks in G-
FP

Finally, we would like to discuss the difference in complexity between exact
analysis of periodic tasks and sporadic tasks.

In the case of single processor, for the fixed-priority scheduling, the schedu-
lability analyses of sporadic tasks and synchronous periodic tasks are not really
different, as they share the same worst-case scenario. When it comes to multi-
processor, no worst-case scenario has even been found for sporadic or periodic
tasks under G-FP. Therefore, to perform an exact analysis we need to analyse
all possible task activations and interleavings, for both sporadic and periodic
tasks.

As we proved in Theorem 9, the exact analysis of sporadic tasks can be done
in a decidability interval, which is relatively small. Therefore, the complexity
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Figure 8: Runtime complexity of SA-SA for m = 2 and n = 6
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of analysing sporadic tasks comes from the non-deterministic activations, which
produce many different arrival patterns that need to be analysed. As for periodic
tasks, they have deterministic activation patterns, and the complexity of an
exact analysis is affected by the length of the feasibility interval, which is directly
related to the hyperperiod of the tasks.

In this section, we refer to [20] and [21] for the exact test for periodic tasks.
Both works adopt the discrete approach to model the schedule of a set of pe-
riodic tasks running on multiprocessor. Even though [20] builds the model by
Timed Automata, the continuous time is discretised by using a global clock.
Thus, they restrict the absolute values of task parameters to small integers. Ac-
tually, in both cases the authors choose task periods in a range [8, 20] for their
experiments.

In principle, the analysis scheme for periodic tasks considers all possible
combinations of tasks’ initial offsets; for an arbitrary combination of initial
offsets, tasks’ periodic activations are fixed, the system is simulated and any
deadline miss is checked.

In the following, we replicate the experiment in [21], where there are 8 tasks
running on 4 processors. Our goal here is not to solve the exact schedulability
analysis of periodic tasks, but rather to demonstrate the different runtime com-
plexity. Therefore, we consider all offsets to be equal to 0, so all tasks arrive at
the same time.

We randomly generate 1000 periodic task sets. The system automaton for
schedulability check for periodic tasks can be generated similarly as the SA for
sporadic tasks: in Figure 2, the guard on the transition from Idle to Waiting is
set to p = T . We also restrict ourselves to tasks with constrained deadline (i.e.
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Figure 10: The exact analysis for periodic tasks

D ≤ T ), so we remove all guards and actions from the transitions from Waiting to
itself, and from Running to itself. Finally, we do not use our simulation relation,
because it is only valid for sporadic tasks and cannot be easily extended to
periodic tasks.

In the end, we use FORTS to check the schedulability of each task set and
records the time cost for deciding the schedulability. Results are reported in
Figure 10. The x-axis denotes the length of the hyperperiod of a task set
and the y-axis denotes the size of the state space when schedulability check is
completed for the task set. As we anticipated, the number of states to explore
increases with the length of hyperperiod. The maximum time we experienced
for deciding a task set’s schedulability is less than 3 minutes. It follows that,
deciding the schedulability of a set of periodic tasks is in average easier than
checking the schedulability of a set of sporadic tasks.

9 Conclusions and future work

In this paper, we formally model the exact G-FP scheduling on a multiprocessor
platform; we propose a weak simulation relation for reducing the complexity of
state space exploration. Then, we formulate SA-SA algorithm for the exact
schedulability test. Even though the reachability problem in LHA is undecid-
able, we prove the correctness and termination condition for SA-SA. Compared
to previous works on exact analysis, our methodology allows more complex task
sets: we are able to analyse tasks with arbitrary values of parameters. On the
other hand, our simulation relation work can be regarded as a general approach
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to mitigate the complexity brought by sporadic events when modeling real-time
systems with a formalism like Stopwatch Timed Automata.

However, as task set size increases, the complexity of exact analysis is still
too high even with our approach. We are working on other ways of reducing the
complexity: first, we would like to use a different representation for the symbolic
states (e.g. Octagons ([26]) or Difference Bound Matrices ([25])), which requires
an approximate analysis similar to the ones used for Stopwatch Timed Automata
and Time Petri Nets ([11]). Second, we are investigating the possibility to
enhance and extend our simulation relation, so to further reduce the state space.

Furthermore, although exact critical instants for G-FP scheduling are not
known, [30] proved a class of release patterns that could lead to worst-case
response time. By exploring the advanced study in scheduling theory, we may
achieve simpler models or even faster state space analysis methods.

Finally, we proved that the schedulability analysis of a sporadic task set
could be done in bounded time. To our knowledge, this is the first paper to
demonstrate the decidability of the problem and to formulate such an upper
bound. It will be interesting to see if we can apply this result to further enhance
the approximate schedulability analysis methods.
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