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Abstract

The determination of the vibration induced by an aircraft impact on an industrial structure requires dynamic studies.
The determination of the response by using classical finite element method associated with explicit numerical
schemes requires significant calculation time, especially during the transient stage. This kind of calculation requires
several load cases to be analyzed in order to consider a wide range of scenarios. Moreover, a large frequency
range has to be appropriately considered and therefore the mesh has to be very fine, resulting in a refined time
discretization.

The purpose of our study is to develop new ways for calculating the shaking of reinforced concrete structures
following a commercial aircraft impact (see Figure (1)). The cutoff frequency for this type of loading is typically
within the 50 to 100 Hz range, which would be referred to as the medium frequency range.

Taking into account this type of problem and assuming that the structure is appropriately sized to withstand
an aircraft impact, the vibrations induced by the shock bring about shaking of the structure. Then these vibrations
can travel along the containment building, as directly linked with the impact zone, but also in the inner part of
the structure due to the connection with the containment building by the raft. So the excited frequency range, due
to the impact of a commercial aircraft, contains two frequency ranges: low frequencies (less than 10 wavelengths
in the structure) and medium frequencies (between 10 and 100 wavelengths). In this context the use of finite
elements method for the resolution of the shaking implies a spatial discretization in correlation with the number
of wavelengths to represent, and thus a long computation time especially for medium frequencies. That’s why
in the case of a coarse mesh the medium frequency range is ignored. For example, a concrete structure with a
characteristic dimension of about 30 m and 1 m of thickness, may not represent frequencies higher than 16 Hz
with a mesh size of 1 m (assuming 10 elements per wavelength). So the medium frequencies can therefore induce
significant displacements and stresses at the level of equipment and thus the causes damage if the structure is not
dimensioning to this frequency range. Our strategy, which is presented in this paper, is inscribed in the context
of the verification of inner equipment under this kind of shaking. The non-linear impact zone is assumed to have
been delimited with classical finite element simulations. So this shock phenomenon which induces a damaged and
localized area around the impact zone, might be considered as dynamic analysis by a concentrated load. In this
paper we only focus on the response of the undamaged part of the structure. This paper shows the gain of our
strategy using appropriate method to medium frequencies compared to conventional method such as finite elements.
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to the shock

Figure 1: Nuclear power plant.

1 Introduction

When a structure is subjected to a brief mechanical shock, as it is the case when a projectile impacts a structure,
several vibration regimes appear function of the observation time (see Appendice A). Assuming that the structure
is appropriately sized to withstand an aircraft impact, the determination of the shaking induced by the impact on
this industrial structure requires dynamic studies on a significant time range after the shock. For the loading of
an aircraft impact on an industrial structure frequency range covers a large area and reach the medium frequency
range ([Hervé et al., 2005], [Hervé et al., 2013]). Figure (2) shows the different frequency ranges. So the response
cannot be completely described using classical methods.

Indeed, finite element methods can be used to properly describe the impact area under the condition that the
elements and the time discretization used are sufficiently refined (a minimum of ten linear elements per wavelength
for good accuracy ([Babuska et al., 1995])). Nevertheless, we can very quickly imagine the prohibitive computation
times of these methods when they apply on entire civil engineering structures, especially if we need to represent all
wavelengths contained in the signal. Finite elements therefore do not allow without significant computation times
to represent the shaking of the structure. As a consequence, the medium frequency range is often ignored in this
type of simulation, what alters the loading that the structure undergoes, which may give wrong predictions from
the simulations.
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Figure 2: Frequency response function of complex structure ([Ohayon and Soize, 1989]).



Today, the low-frequency range no longer poses any major difficulty, at least regarding modeling and calcu-
lation, even for complex structures. In this frequency range, the vibration phenomena induced by the excitation
are characterized by relatively long wavelength compared to the dimensions of the structure and so less than
ten oscillations are observed in this frequency range. Furthermore the structure has a qualified modal behav-
ior. So the eigenmodes are quite separate from each other. As for high frequencies, computational tools quite
different from those used for low frequencies are available, in particular the SEA (Statistical Energy Analysis)
method in which the spatial aspects disappear almost entirely ([Lyon and Maidanik, 1962]). By contrast, the mod-
eling and calculation of medium-frequency vibrations, continue to need numerical issues. The difficulty lies in the
fact that the wavelengths of the phenomena being studied are very small compared to the characteristic dimen-
sions of the structure. Consequently, if one were to extend the low-frequency methods disregarding the serious
numerical difficulties which would occur, the corresponding finite element calculation would still require an un-
reasonable number of degrees of freedom. This situation would be made even worse by the pollution error due
to the extended range of calculated frequencies which would affect the accuracy of the finite element solution
(|[Deraemacker et al., 1999], [Ilhenburg and Babugka, 1995]). Different solutions for that problem have been tried,
such as enhanced finite elements ([Farhat et al., 2003], [Harari and Haham, 1998], [Liu et al., 1991]), specific re-
duced bases ([Morand, 1992], [Soize, 1998], [Sarka and Ghanem, 2002]) or a combination of a wave-based method
with a Trefftz approach ([Desmet et al., 2002]), but most of these techniques require very fine meshes. Difficul-
ties are also experienced when we attempt, as in ([Belov and Ryback, 1975], [Ichchou et al., 1995], [Langley, 1995],
[Lase et al., 1996]), to extend the SEA method (which is appropriate for high frequencies) because most of these
methods require additional information (e.g. coupling loss factors) and specific geometries.

To solve our problem of shock induced vibrations in a reinforced concrete structure we developed a specific
numerical strategy (see Figure (3)).
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Figure 3: Global calculation strategy.

The load is applied on a finite element part of the model of the target structure and its non-linear response is



calculated by finite element method in a non-linear case. The stress induced by the impact of the aircraft on the
structure is replaced by an equivalent force-time function. The loading diagram can be found using the Riera model
([Riera, 1980]) where the data for an aircraft is taken from [Bangash, 1993]. The Riera method can be explained

as follows and using two hypothesis:

e the airplane impact perpendicularly a rigid target,

e the airplane crashes only at the cross-section next to the target (see Figure (4)).

Figure 4: Model aircraft impacting against a rigid surface.

The Riera method uses the Eibl model ([Eibl, 1987]) defining the mechanical impact as a mass-spring system
with 1 degree of freedom (see Figure (5)).
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Figure 5: Eibl shock model.

We consider two rigid solid with m; and my their masses and k; and ko their stiffness associated to springs.
Differential equations of motion are expressed in Equation (1):

mla'él(t) + k1 [.Tl(t) — Z‘g(t)] =0 (1)
mzjg(t) — k‘1 [:Z?l(t) — SL‘Q(t)] + k‘glig(t) =0
If the displacement of the target is very small compared to the projectile, ie if 21 (¢) > x2(t) , then, we taking into

account a soft impact with:

F(t) = kyz1(t) (2)
The Equation of motion (1) becomes:



ma@y(t) + kg (t) =0
maiia(t) + kowa(t) = F(t) (3)

In the Riera method, the buckling load of the cross-section of the aircraft which impact the target allows the
deceleration of the remaining uncrushed aircraft part. The sum of the buckling load and the strength needed to
decelerate the mass of the impinging cross-section represent the total impact force denoted by F(t). Since we
consider an approach in one-dimension, ideal and plastic, it is only necessary to know the buckling load and the
mass distribution (see Figure 6). The equation of motion writes:

dt

where m, is the mass at impact of the uncrushed aircraft per unit length, z., the crushed length of the aircraft,

dflgr the velocity of the uncrushed part of the aircraft and R, the resistance to crushing.

F(t) = Rep(wer) + me(@er) (dx“" ) 2 (4)
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Figure 6: Aircraft normed mass distribution.

The applied forces to each discrete time steps are defined through the numerical method of finite-difference and
nonlinear equations for R.,. and m.. So we can write the deceleration of the uncrushed mass m. as:

Rcr (xcr)n

L
f(‘rcr)n Me (xcr)dl‘cr

Gag=i=— (5)

Finally we use the current force calculated with Equation (4) to determine the force-time history. Figure (7)
shows a force-time history, where we chose a velocity of 120 m/s and 120 tons for the mass. In this case, the impact
force and the time function are normed.
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Figure 7: Force as a function of time.

We can then apply the temporal attenuated signal at the boundary of the damaged area to compute the response
of the rest of the structure, which remains elastic, by a simulation with the VTCR, (Variational Theory of Complex
Rays). The VTCR is a wave-based computational approach dedicated to the resolution of forced vibration problems
at a given frequency. It uses a weak formulation of the problem which enables one to use any type of shape function
within the substructures provided that it verifies the governing equation. Thus, the solution can be approximated
using plane waves, which is very interesting in the medium-frequency vibration domain. This calculation requires
a transformation from time to the frequency domain that is achieved by FFT (Fast Fourier Transform). After
solving the problem in the frequency domain, a time recomposition is performed by IFFT (Inverse Fast Fourier
Transform). A parallel of the proposed approach can be made with [Nieto Ferro et al., 2012] and [Degrande, 2002]

on the propagation of waves within elastic soil media. These methodologies are oriented toward fullthree-dimensional
simulations in unbounded media, as is usually necessary for seismic soil-structure interaction analysis.

The paper is structured as follows: Section 2 presents the reference problem and its solution using the VTCR,
in this section (Subsection 2.6) two examples are used to validate the VIT'CR implementation; the next section
(Section 3) illustrates an application of the strategy on an industrial structure; finally, conclusions and perspectives
are drawn in Section 4.

2 Description of the variational Theory of complex rays (VTCR)

Once the attenuated time signal is obtained in the first stage of the strategy, a FFT (Fast Fourier Transform) process
transfers the problem into the frequency domain. We need to solve a forced vibration problem over a frequency range
which includes the low- and medium-frequency ranges. The low-frequency and medium-frequency ranges are handled

using the Variational Theory of Complex Rays (VICR) ([Ladevéze et al., 2001], ([Ladevéze and Chevreuil, 2005])).
High frequencies that vanish quickly and that do not contain a lot of energy, are not accounted for.



2.1 VTCR nomenclature

Parameters Physical meaning

w pulsation

Q; subdomain ¢

(z,y, 2) cartesian base

r(a, B) position vector

R radius of curvature of the bending lines

n, t normal and tangent vectors to the edge of the subdomain

Ny Nt rotational and translational damping

membrane displacement

stress in the average surface

e

Q

membrane forces

=

>

shell thickness

structural damping coeflicient

3

&

Young’s modulus

Poisson’s ratio

X

Sad approximation basis subspace

Un, Cn,

amplitudes of the local vibration waves in displacements and stresses

[

vector characterizing the direction of local vibration waves

Q

circle for the directions of the waves

Eiot total energy

T kinetic energy

characteristic dimension of the domain

Csv celerity of bending waves

Csh celerity of shear waves



2.2 The reference problem for an assembly of n substructures

We consider the case of homogeneous Kirchhoff-Love’s thin shells which vibrate at the steady state harmonic
vibration at fixed frequency f = 5=. The thickness is denoted by h; and the density p;. Under the Kirchhoff-Love

assumptions, the displacement U, of the average surface becomes:

U, (z,y,2) = u; (,y) + w; (z,y) €3, + 20, ©)
0, (x,y) = —grad wi(z,y) — By, (,y)

where u,; is the membrane displacement of the average surface, w; is the out of plane displacement and él the
curvature tensor. The average surface of the shell is defined by two independent parameters «; and 5;. The
position of a point on the medium surface is defined by the position vector r;(«;, ;) (see Figure (8)).

X

Figure 8: Geometry of a shell ;.

The local tangent plane to the shell in point r,(a;, 8;) is defined by two vectors, % = Ai@i and g? = Bieﬁi
(the vectors e, and ¢p, are unit standard). The vector e3, is defined by e3;, = eq, A s, A common choice of
parameters «; and (; is to be equal to the curvilinear abscissa along the major range of curvature. The curves
a; — 1;(ay, Boi) and B; — 1, (api, B;) are the bending lines, and form a network of orthogonal lines ([Laroze, 1980]).

The base (e%’ €8 ., 631.) is then orthogonal. The curvature tensor is written:
Ca; €8, €3

1
R 00
B,=| 0 -7 0 (7)
0 0

(car,2)
where R,; and Rg; are the radius of curvature of the bending lines.

Considering a domain €2 decomposed into n shells ; with a common border I". The actions of the environment
are modeled on ; by displacement imposed on 0,,; and 0,2;, rotations imposed on d,, ,2;, the imposed line
forces on 0x(2; and On€2;, and imposed line momentum on Oa4§2;. -

Figure (9) illustrates all these actions on an assembly of shells ©2; and ;.
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Figure 9: The reference problem.
The reference problem to be solved writes: find (u,;, w;, Kivﬂm&i) such that:

¢ Kinematic equations

1 _ .
Y ktbi(l-‘rimbi)ﬂi = Uig on 9,8
W — 7@“(1“%1 K; = wiq on 0,8
. . Wi,n + mﬂz &zﬂl : Wi, nd . on 8’“,&91
u; ;= = aijug g+ (14 aig) wi = gy (=N — aiiNj g+ (1 +$u) Kj) onTy (8)
— s N, T _ 1 (K. _—n K - -
w, = —o;w;+ (14 a”)gj n; km;(l-&-inw)( K, — o K+ (1+ alj)ﬂj .@j) on I';;
T4 — _ BT _ 1 (_NT+ _p.NT -
Mi L, - ﬁz]@j EJ ktij(1+intij) ﬁz tz ﬁljﬂj tj) on Fz]
o pa 1 T AT .
Wi = PBijwjn Fori; (tineay) \ L M n; — Bijn; '&j 'ﬂj) on 'y

where a;; = nT n; and Bij = tT i

with ki, kﬂn, nrbz and 7, are respectively the rotational, translational stiffness, rotational and translational
damping of the boundary associated within the subdomain €; ([Dorival et al., 2006], [Dorival et al., 2008]).

where k.5, ktij, nri; and ng; are respectively the rotational, translational stiffness, rotational and translational
damping of the associated boundary I';; between the subdomains Q; and ;.

e Equilibrium equations within ;

N; - B, (dw ) = —piw?h;u, on Q;
div (div M,) + Tr (N,.B,) = —piwthiw; on
N;=N n;—B.. &i-ﬂi =Ny on N
Ki =n/ .div M+ (EI&Z&) , = Hia  on Okl ®)
n] M. .n; = Miq 7 on I

K

7 210
— Sharp corners of 9€;

e Equilibrium equations on I';;

NT n-:aUNTn —(1+a1])KJ on T';;

K; = oz”K (1—}—04”)]\7 n;  on Ly

N t —5”N t on Fij

n M n; = ﬂ” jnj on Fij
P 1( M n)t =0
S (NTn —K) 0



e Constitutive relations

3
M =K X)) o
=CP; (11)

N, =hK e (@Z) on €2;

K =(1+ im)ém are Hooke’s operator in plane stress relating to each area, p; the densities, n; are the

=cp; =
structural damping coefficients of each sub-domain and X and ~ operators defined as:
Eoi vaiFai 0
1-vaivg: 1—vaivg;
: vsiEpi Esi 0
K = (1 + “71’) 1—vaivgi 1—vaivgi
=cp, N

T | (ca, e e,
X (u;) = €(0,) — [ B, elu, +wies,)]

(u;) = e(u; + wies,)

sym

1=

where ¢ is the symmetric part of the gradient operator, E, g; the Young’s modulus, v s; the Poisson’s ratio in e,

and e/gf direction, and h; the plate’s thickness.
—1

2.3 The variational formulation associated with the VITCR

The 1% ingredient of VTCR is a global weak formulation of the boundary conditions in terms of both displacements
and forces. The weak formulation can be expressed as follows: find (Qi,gi) = (u;, w;, Ki,ﬂi,&i) € Sqa,i such as:

S1 (581 (581
All ... ... |=c]] ... (13)
Sn 6871 5Sn

with the following general form:

S1 581 n n
All ...l .0 | =Red —iw Z/ 5Q<.ﬂi.grd5+2/ o .n;.0UdS
o1 Jou T o1 Jope

Sn 0Sn,

+/F WT_l Z?:1 (5%@1-) (Qz)* +5 Zi;ﬁj (5(7@”1) (UJ)* ds (14)

ij

L 681 =Re {—iw [i/ 6a,.n;-UiqdS + i/ F,;.0UdS
0Sn i=1 Y Oufd im1 /09
where:
e the integral part on 0,(); check on average the imposed displacements on €,
e the integral part on J0r(2; satisfy the imposed stresses on £,

e the integral part on I';; satisfy the transmission conditions on the boundary I';;.

Re designates the real part of a quantity and * the conjugate part. Spaces Sgd’i are the admissible fields
associated with homogeneous conditions on the substructure €;: idi =0 i=1, ...,n. In our case, Sgd’i =

Sad,i iil, ey N
More precisely, the boundary conditions are satisfied by the weak formulation that we can see in Appendice B.
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The previous weak equation is projected on an approximation basis subspace S, ; that is composed of shape
functions that satisfies exactly both the constitutive relation (Equation 9) and the dynamic equilibrium equation
(Equation 11).

It is easy to prove that the weak form is equivalent to the reference problem, provided that:

e the reference problem has a solution,

e the Hooke’s operator Kop is positive definite,

Eh

e the damping coefficients are such that n; > 0,

e in the case of flexible interface in translation and rotation, if:
Vi=1,...,nand V j #1i

krinri Z 0
ki > 0
krijnri; >0
keijnig > 0

(16)

2.4 Derivations of two-scale shape functions

The VTCR defined as a Trefftz method where its particularity is the use of Herglotz wave functions to represents
the vibrational field. Those functions are an integral repartition of plane waves in all the direction. So the VITCR
uses a two scale approximation of (U Yo o), that exhibits a strong mechanical meaning. The solution is assumed
to be properly described locally as the superposition of an infinite number of local vibration waves which can be
written in the following manner:

Q = fP ec, Un, P;).ePiXi on Q;

P..X,

g, ( fp C; n P;).e==i on(Y (17)

where both X; represents the position vector. Uy, and Cn contain the amplitudes of the associated n'" order local
vibration waves. P, is a vector characterizing the direction of local vibration waves which is defined by the circle
C;. In order for these local waves (Qi,gi) to be admissible, they must be in S,4, and satisfy the constitutive and
dynamic equilibrium equation. Combining these 2 equations leads to some remarkable shape functions characterized
by various expressions of P,.

Furthermore it is known that the mechanical waves are divided into three families (see in Figure (10)): the P
waves (Primary), SH (Secondary Horizontal) and SV (Secondary Vertical) ([Graff, 1991]). The first corresponds
to the longitudinally polarized waves, the other two to the transversely polarized waves. In the case of plates
(out-of-plane displacement) the SV waves correspond to wave reflections. We therefore seek admissible waves for
tension problem in the other two families.

11
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Figure 10: Three families of mechanical waves.

2.4.1 Out-of-plane bending shape functions

For instance, let us consider the out-of-plane bending motions of thin and homogeneous shells. According to
Kirchhoff’s thin shell theory, the steady-state out-of-plane displacement w; of the mid-surface of §2; is governed by
the following wave equation:

%div (dz_v <£ : i(wﬁ)) + h;Tr ((g : z(gz)) §l> = —pw?h;w; on Q (18)
=CP; =CP;, —

By searching the solution of Equation (18) under the wave form of Equation (17), we can distinguish between
three types of solutions that are respectively related to interior of the shell, the edges of the shell, or the corners of
the shell.

12



So we can obtain the dispersion equation ([Riou et al., 2004]) of the wave vector P;:

12(1 — vaivgi)piw? , 1 12(1 — vaiva:)

pl.p) = pl.p)* - ——— 2P/ RB_.RP,)’ 19

(P )t = s POl (Pl - e (LR B R P) (19)
0 —11Y. . . T

where R = — is a rotation matrix (R° = —R).

Vibration waves, Equation (17) are the first order solutions of Equation (18), if and only if they satisfy Equation
(19). Several observations can be made:

e Equation (19) is an extension to the dynamics of the equation presented in [Steele, 1971],

e if the shell moves towards a plate, the curvature tensor Ql moves to 0, and we find the dispersion equation of
plates:

12(1 — VaiVBi)piW (

P p)* =
(B -2:) (1 +in;)Eq pih?

7 "=

Pi.P;)? (20)
e Equation (21) shows that the first order of the membrane displacement of the mean surface uy, is completely

determined by the 0" order of the out-of-plane displacement wy; = w;. So the unknown to be determined is
w;. The vectors P; and R.P; is a basis on which u;, have been projected.

w1, = AP, + BR.P;
Pr''K .B.P,

D .,

1—va;vgi =cp; '
w,
A = wo; Eo/pi (E?‘BN (21)
. Pl K B .RP,
2E. /i =cp;, "
B = wo, T raivs: (PT.P,)?
Ug; =0

e Only the term w; appears in development. So Equation (19) and Equation (21) are valid when v (u;) =

€(u; + wies, ) It’s valid for the shells theories of Love, Timoshenko, Reissner, Berry, Naghdi, Mushtari,
Donnell, Koiter and Sanders ([Leissa, 1993]).

The waves of the bending problem will be classified into three groups: interior (propagative waves), edge and
corner (evanescent waves). The first family corresponds to propagative wave in the direction P,. The last two are
evanescent waves localized at the edge/corner of the shell.

The complex waves for the interior, edge and corner waves are:

h h P X ]
’wznterwr 7 (Xf“ Pint ,) Wzntemor i (Bint i) Le—int,i =i on Ql

(X5 Pty i) = Wies (Peag ) -e"eto s on (22)

edge,i \=—edg,i

(P ) efeori X on £,

£—cor,i

edge )

wh (Xmgcor 1) Wh

COT"I’LET,’L corner, 7

The interior waves
For the interior waves, the wave vector is searched in the plane of the shell as:

COSPin,i | Pajint,i(Pint.i)-COSPint,i
Pyt i(Pine.i) = —ip 5 Pint, — —i [ Povint,i}Pint,i)-COSPint, 23
7znt,z(<plnt,z) mt ,(somt 1) ( SINYint,i >(ea_765‘) < pﬁjnt,i((ﬂint,i)-SZ’I’LQOint,i )(ea,,eﬁ_) ( )
These modes is solution of Equation (19) if the amplitude p,/3,int,i(¢) satisfies:

2
2 2
pa/ﬁ,int,i4(<pint,i) = pplate,a/ﬁ,i4 - ((Pshell ,i-SINPint. i)+ ( pshell,ﬁ,i.COSgoint’i) )

N

o 12plw (1— DMVBL
Pplate.a/Bi = \ "T+im) Baysih?

12p1w 120101~ vouvs) )

a/ﬁL i

Pshell,a/B,i = (
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Equation (23) shows that P, (gpmt ;) must belong to a new curve Cj,,; defined by the material properties,
the thickness and the radius of the shell. Going through all the curve Cj,; i, all directions of the waves are taken
into account. This complex interior ray corresponds to a bending wave which propagates through the shell in the
direction Pins.iv such waves are visible in Figure (11) for ¢;,;; = 0°, 45° and 90° on a cylinder.

e \\\\\\\‘,

Figure 11: Description of interior waves.

It should be noted that a propagative wave is defined by a wave vector with an imaginary part very large
compared to the real part. Otherwise, the real part of the wave is a strongly decreasing function, and the wave

becomes evanescent. The interior waves are characterized by Pin. Z(met,i) satisfying Equation (23), in which the

real part is negligible compared to the imaginary part.

The edge waves
For edge waves, the wave vector is searched in the form:

Bedg,i(spedg’ﬂ = Et,edg,i (@Ed!}ﬂ')t + Bn,edg,i(@Edg,i)ﬁ (25)

Re(Bn,edg,i) > Im(Bn,edg,i)

where t is the tangent vector to the edge, and n the normal vector. An explicit form for these waves is not easy
to find. The results of [Riou et al., 2004] showed that the choice of edge waves for plates are sufficient to represent
correctly the shell solution. This fact is easily understandable. Indeed, the edge waves have an effect only on the
edge and not inside the structure. So only their oscillatory nature along the edge is interesting, which is correctly
represented by the edge waves of plates.

Following this line, [Ladevéze and Riou, 2005] gives the following form:

Py cagi(Pedqi) = (14 im:)§ {V U sin®(pedg i) = 1 pmer——s } ( p— )( )
€a 568

DPplate,B,i
(26)

Pplate,a,i

Pplate,B,i ><e“‘i’€/3,;)

Et,edgyi(@edgﬂ') = 2(1 + Z."71')is’in(pedg,i (

We can see this kind of waves for a cylinder in Figure (12).

Figure 12: Description of edge waves.
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The corner waves
Finally, the corner waves are searched such that Re(P,,,. ;) > Im(P,,,.;). Again the explicit form is difficult to

find, but the corner waves for the plates are close enough an approximation to represent their effect for the same
reasons as before.

P ((P ) —p COSPcor,i _ DPplate,a,i-COSPcor,i (27)
Ll i\Pcor,i) — . . = .
cort —cor,t StNPcor,i DPplate,B,i-StNPcori
€a 1€B . €o ,EB
—i' — i

These waves can be observed for a cylinder in Figure (13).

Figure 13: Description of corner waves.

2.4.2 The membrane shape functions

Let us consider the in-plane displacement u, for a homogeneous thin shell €2; through Kirchhoff-Love model. The
vibration waves must satisfy Equation (9) and Equation (11) to be admissible. The displacement u; then checks
the dynamic equation:

hil oy (w) —
=cp =

The VTCR uses approximations (u”, N :’ ) with a high mechanical content. Locally we assess considere that the

solution is well described by the superposition of an infinite number of vibration waves, each of which starting from

Equation (17) can be written for in-plane problems as:

<K :X(wi)> = —pw?h;u; on (28)
=cp, —

u; (X;, P;) = fP.eC~ Un, (P;) eLiXi on Q

Ny (X0 P) = [p o Nu (Py)e2eXi on 0 (29)

where X, represents the position vector. P, is the complex wave vector, where the direction is defined by the
circle C;, assoc1ated with the vibration waves in the plane of the shell. up, and N, are nt" polynomials vectors in
X, with coefficients which depend on P;. To be admissible the waves (u;, N i) should belong to the space Sgq:

ﬂi - él (m &Z) = _piwzhiﬂi on Ql

3
Mi = h112 gcp. : é(wi) on (; (30)
N, =hK :v(y) on §;

=cp, =

In the following we consider only 0" order polynomials, up; = u; and Np, = N, because the expwential (fast
scale) variates rapidly to the polynomial part (slow scale). In the previous studies thls approximation was found to
be sufficient.

The P waves
These waves correspond to pressure waves. A field Uo,,,.. ; 18 considered constant and colinear to P, ;-
(x,,P Lpreai X on (31)

:uo

P7 es,i —pres, l) ——pressure,i (Bp’r'es,i)

where
cost
@P’r’essure,i (Bpresﬁi) - uOPTESvi ( Sinepresz. )
pres,i (lia s ) (32)

Bpres,i(eln'es,i) = Z’Bpres’i(epresﬁi) = i(pmpres}i-cos(epre&i)eiai + pﬂ,preé,i~3i”(9preS,i)eji)
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So Equation (30) imposes the following relationship:

2
2 piw* (1 — vaivsi)
pa res,i . 33
e Eo)pi(1+ ;) (3
These waves are propagating. Equation (30) and Equation (31) show that Pores i(ﬂpres,i) belongs to the circle
Cpres,i defined by the materials properties of the shell. Browsing Cp,s; (see Figure (14)), all directions of the waves
are taken into account.

Figure 14: Cpyes,; circle for pressure vibration.

The SH waves
These waves correspond to plane shear waves. Displacement ug , . is considered constant and orthogonal to

Bshea,i and Qz
P X
yshea,i (Xiagshea,i) — @shear,i (Eshea,i) .e—shea,i’=i  On Ql (34)
where
_ _Sinesheayi
Y sheqr (Peheai) = Uosheasi ( c080sheaq,i )( ) (35)
’ eii’eii

Bsheaﬂ'(eshea,i) - ZB (eshea,i) = i(p(x,shea,i-Cos(eshea,i)@i +pﬁ,shea,i-Sin(ashea,i)eii)

shea,i

Equation (30) imposes the following relationship:

2piw2(1 + . /Vm'l/,gi) (36)

p2 .=
«/B,shea,i Ea/ﬂi(l +i77i>

As for the P-waves, these waves are propagating waves. Pohea i(éshem) also belong to a circle denoted by Cipeq,i
(see Figure (15)).
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Figure 15: Cspeq,q circle for shear vibration.

The pressure waves are faster than shear waves. Moreover, flexural waves have a velocity that depends on the
frequency of interest and the thickness of the shell. If an assembly of non-coplanar shells are studied, a coupling
between bending waves and membrane waves appears. It is significant only in the direction bending to membrane
waves. Indeed, if we are interested in the amount of energy carried by each of these waves (Eyr = Eq + T, where
E,,; represents the total energy , Ey the strain energy and T the kinetic energy), bending waves are less energetic
than the membrane waves, because the speed and strength are lower in bending than in tension. So we can conclude
that a membrane wave excites easily a flexural mode, but the opposite effect is insignificant. This assumption is
regularly adopted in studies regarding the bending problem.

2.5 The discretized problem

The displacement of any point of the substructure is generated by a basis of admissible complex waves. The
unknown are the generalized amplitudes U f (P;) of the basis. Accounting for all the directions @int/edg/cor,i (Se€
Figures (11), (12) and (13)) and Op,cs/shea,s (see Figures (14) and (15)) in Cint/edg/cor /pres/shea,i 1€ads to an integral

over Cint/edg/cor/pres/shea,i-
This integral takes the following form:

¢ Bending displacement:

h _ h N\ oPint i (Pint,i).z; L
w;' (z;) —/ Winterior,i (Pint,i)e=int - dpint,i
@int,i€Cint,i
h P Nz
+/ Wedge,i (Spedg’i)efcdg’l(%dg’q) Fidpedg,i (37)
Yedg,i€Cedg,i

h P . cor,i)-L;
+ / Wcorner,i (‘Pcor,i)eicorw(kpcor % d(pcm",i
)

cor,i€Cleor,i

with

. [ Pa,int z‘(tpmt i)'COSSOint i
P» . 1 ;) = —1 ’ ? ? K ’
Lint,i (%nt,z) < pﬁ’mm—(@mt}i).smwmt,i ) (ea_,eﬁ_)

I~

] b ) i i Dplate,a,i

]- + )5 4 \/m — Zm,+ p that)
( 7i) [ (Pedg,i) 47\ [145in2(pedg. ) Dplate,f,i (eav,eﬁ_)
Bedg,i (wedg’i) = =028,
.n

—‘ri(l + ini)%Sin@edg,i ( DPplate,a,i

DPplate,B,i ) <ea .,e/a‘)
=x0ZB;

pplate a,i-COSPcor i

Bcom‘ (‘Pcom‘) = . ’
DPplate,B,i-S1MPcor,i (ea eg)
=X 2P;
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e Membrane displacement:

h = h . Pores,i(Opres.i)-z; .
“ (£Z) - / @PT‘ESS’LLT‘EJ (epTes,z) LeTpres,ittp depres,z
apres,iscpres,i

h I (05 i). 2.
+/ %sheari (Qshea’i) .e—sh,ca,z( khea,f) 71d05hea,i (39)
Oshea,i€Cshea,i ’

with
h N\ cosepres,i
%pressure,i (epres,z) = Uopres,i ( sinf i
pres,i (Ga s )
Ca €8,

Bpres,i (gpres,i) = i(pa,pres,i~Cos(gpres,i)67ai +pﬁ,pres,i~3in(0pres,i)e£i)

. (40)
h ) N —58iM0shea,i
Lj/oshear,i ( shea,z) = U0shea,i 2] .
COSUsheaq,i (ea s
ZepCh,

Eshea,i (95hea,i) = Z.(pa,shea,i'cos(eshea,i)eiai +pﬁ,shea,i'Sin(eshea,i)eii)

Let us note that admissible space S,q,; is of infinite dimension since, for instance for interior waves, all directions
of propagation p, are taken into account. To end up with a finite dimension problem that can be solved numerically,

we need to discretize Suq,; into a finite dimension space S! ;.

The integral in Equation (37) and Equation (39) can be discretized as Dirac functions and we can consider the
approximate amplitude U" (P;(¢i))- The angular distributions of the plane waves for all points in the substructure
are assumed to be well-described by this discontinuous angular distribution. The advantage of this choice is that
all directions of propagation are still represented in the discretized space, though with an approximation on the

amplitude of it.

Approximated amplitudes

Angular discretization

Figure 16: The discretized amplitudes.

The choice of the angular discretization and therefore the number of waves required for solving this kind of
problem is related to the number of waves in the structure and on each edges. But this choice is also linked to the
types of boundary conditions. For example the number n; of bending waves in the characteristic dimension [, /3,
of the shell ; can be calculated using equation Equation (41):

n; = i\la/ﬁz _ Wla/ﬁz _ la/ﬁi@ 4 pzhz (41)
a/pBi TCsva/Bi ™ Da/[%
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where A,/g; is the wavelength in the direction ey, or eg , w the pulsation, ¢sya/p: = Vwy % the celerity
— 3 Il
of bending waves, p; the density, h; the shell thickness and D,/g; the flexural modulus (for a plate D, g; =
Ea/pihi
12(171/,111/;-17;))'

Ea/ﬁi

The number of wavelength n; depends on the celerity of the waves: for pressure waves, c,q/3; = v

d for sh - V BoiLpi
an Or shear waves, Csha/Bi = m

This discretization is related to several parameters, thus it’s difficult to define it analytically. Also you can use
an iterative approach based on a heuristic criterion to reduce errors and verify that the boundaries conditions are
respected. Overall we take a number of waves between 20 and 100.

2.6 Numerical example of VITCR resolution

The VTCR code developped relies on the we developed in [Kovalesky et al., 2012] for acoustic problems. Developp-
ments have been made to treat mechanical problems.

2.6.1 First numerical example : one simply supported plate

In order to study the convergence of our VI'CR code for plate problems, to validate the associated shape functions
and to see the differences with a finite element resolution, let us consider the example ([Riou et al., 2004]) given
in Figure (17). A simply supported isotropic steel plate with the following mechanical properties is subjected to a
punctual shear loading represented by the red arrow at a frequency of 2000 Hz.

e Young’s modulus = 210 GPa,
e Poisson’s ratio = 0.3,
e mass density = 7800 kg/m3,

e damping coefficient= 0.01,

thickness of the plate = 0.003 m.

Figure 17: First example: description of the boundary conditions.

The analytical solution is obtained using the eigenvectors basis of the plate, called ¢,,,, which satisfy (9). So
the analytical out-of-plane displacement is given by:

wanalytical (’I’, y) = Z Z AmnPmn (I’, y) (42)

m=1n=1
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where

Fsm(mziF)sm(inzzF)
Tal,
Ll ph(w?, ,—w?) (43)
o mmx . nwy
Pmn = S1N | 7~ ) 1N Ty)

Amnp =

For the exact solution, the infinite sum has to be truncated:

M N
wsnalytical(x’ y) = Z Z AmnPmn (1‘, y) (44)

m=1n=1
Indices M and N have been chosen with the following assumption: M > % \/ %}3{”2) and N > % \/ %};zﬂ).

A reference solution using the finite element code CAST3M [Cast3m, 1980] was obtained by choosing ten linear
elements per wavelength for good accuracy. To perform an FE calculation the element size should depend on the
wavelength ([Babuska et al., 1995]). In many cases, engineers genrally use ten element per wavelength as rule of
thumb. In [Barbone et al., 1998], this rule is confirmed for low frequencies. In mid frequencies, the occurrence of
pollution ([Deraemacker et al., 1999]) transforms this rule. The product k*h? must remain constant (with k the
wavelength and h the element size), leading to an even more costly FE discretization.

VTCR resolution need to add the particular solution (see Equation (45)) corresponding to the solution of an
infinite plate subjected to a punctual force to take into account this kind of stress.

B —iF 1/ 12w2p(1 — v2)
’U)F,znfmzte(xay) - 8 ER3 12w2p(1—12) [J ( E—hQT)
12(1—v2) Eh?

o af 12w2p(1 — v?)

—iYo( E—hQT) (45)
2 4 12W2l)(1 — V2)

_ K _
T 0( Eh2 T)

where r is the distance to zx and Jy, Yy and K, the 0" order Bessel functions. Since we are only in a bending
problem, also in this case the membrane vibration waves can be taken to zero.

Figure 18 shows the out-of-plane displacement obtained with CAST3M, with an analytical solution (see Equation
(44)) and with the VTCR.

Cast3m Analytical results VTCR
39000 DOFs Equation (44) 100 interior waves
(=~ 10 elements/wavelength) 4*20 edge waves

x 1078

out-of-plane displacement (m

Figure 18: The FE (with Cast3m) solution (left), the analytical solution and the VI CR solution with 180 dofs
(right).
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We can see that the VTCR solution is very similar to analytical solution, even though the VTCR result was
obtained with only 180 DOFs, thanks to its ability to capture analytically the wave phenomena in the rapid scale
X. We can also note an average error of 21,4 % for the finite element solution and 1,4 % for the VTCR solution.
We can easily notice the computational efficiency of the VT'CR in such a structural vibration problem. Figure (19)
shows the proportion of errors for each method. It should be noted that the finite element solution with only 10
elements per wavelength has an uneven error mapping. Indeed in medium frequency, wavelengths are so small and
the vibration waves are so close that the local analysis at one point becomes difficult.

Error on
the max
value

17,5 % 1,9 %

the max 1,4 % 0,7 %
value

Error on
the max 27,2 % 2,6 %
value
-
2 m R
" —
o
Error on
the max 37,6 % 2.3 %
value

Figure 19: VICR and Cast3m error.

2.6.2 Second numerical example :

a wall/floor junction

In order to study the convergence of the VICR method for shell problems, validate the shape functions for shell
structures and appreciate the processing of the weak formulation of boundary conditions between multiple subdo-
mains, we now consider a concrete structure which represents a wall/floor junction, vibrates at a frequency of 200
Hz and where the mechanical properties of concrete are the following;:

e Young’s modulus = 34 GPa,
e Poisson’s ratio = 0.2,
e mass density = 2500 kg/m3,

e damping coefficient= 0.04.

We simplify the geometry of the structure with a shell and circular plate assembly of 0.15 m thick. This structure
is subjected to a out-of-plane loading (see Figure (20)) on one of its free edges. This loading corresponds to the
maximum amplitude for which the structure may be subjected in the case of an aircraft impact equivalent to
the time loading in Figure 7. This example allows us to study a bending and membrane problem as well as the
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membrane to bending energy transfer that occurs in such junctions. A reference solution using the CAST3M code
was obtained with approximately ten linear elements per wavelength for good accuracy.

Load 100MN

Yree eds®?

5
C\'\n\ve‘\ cde

—
PN, '

Figure 20: Second example: the reference problem and the action of the environment.

Figure 21 shows the out-of-plane solutions in displacement obtained with CAST3M and with the VTCR. We can
see that the two solutions are very similar, there is a difference in average of 3% on the out-of-plane displacement
and 7% on the membrane displacement, even though the VT'CR was obtained, as in the first example, with far less
DOFs than the finite element method. For VT CR resolution Figure 21 shows the membrane displacement and the
transfer out-of-plane/membrane in the junction. We can easily notice the computational efficiency of the VTCR
in such a structural vibration problem. Given the general coordinate system used by CAST3M, the representation
of the membrane displacement in this case becomes complicated to extract. However, with our reference problem
and as membrane and out-of-plane displacements are totally dependent, it is possible to understand that a good
out-of-plane field induces a good membrane field.
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VTCR
2400 dofs (Per substructure: 100 interior waves, 4*50 edge waves, 50 pressure waves and 50 shear waves)

x 1071
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Figure 21: The FE (with Cast3m) solution with 49400 dofs and the VTCR solution with 2400 dofs.

out-of-plane displacement of the wall
and membrane displ. of the floor (m

out-of-plane displacement of the floor
and membrane displ. of the wall (m)

3 Numerical application of the method on a Civil engineering structure

In this section we use the VTCR to calculate the medium frequency response of a structure subjected to a time
sinusoidal loading. Given that the open literature provides no shaking and induced vibrations studies on civil
engineering structures, the assessment with available results appears to be difficult. So we have chosen to evaluate
our methodology with results obtained through temporal finite element approach acknowledged in international
rules, [ONR, 2014], for the design of nuclear civil engineering structures. We then consider only the second part of
our initial strategy (see Figure (3)) in this example. The load applied on this Civil engineering structure may be
regarded as the recovered signal at the boundaries of the non-linear area after an aircraft impact. The aim is to
investigate the influence of the FFT-IFFT descretization parameters on the time solution. We calculate first the
discrete Fourier transform of the load. Then the VTCR gives the frequency response at a chosen point (P2) of
the structure specify in Figure (22) for any frequency. The time response is then obtained by the inverse Fourier
transform. We therefore consider a concrete structure where the mechanical properties of concrete are calculated
according to the rules of Eurocode 2:

e concrete B30 =30 MPa,
e Young’s modulus = 34 GPa,

e Poisson’s ratio = 0.2,
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e mass density = 2500 kg/m3,

o damping coefficient= 0.04.

In this study, an hysteretic damping is used. The geometry of the structure is simplified into a plate assembly
of 0.15 m thick.

Our structure is then subjected to an impact applied at the center of a side wall (P1). This impact produces
localized damages on this wall. Here the radius of the non-linearity area is equal to 1 m and the temporal attenuated
signal in displacement across the damaged area is given by Equation (46).

We consider the displacement point-load imposed at point P1 of the form:

wp1 (t) =100 sin (2710t + 10) — 200 sin (2720t + 20)
+ 300 sin (230t + 30) — 400 sin(2740t + 40) (46)

This loading and the boundary conditions of the structure are modeled and described in Figure (22).

I R ——— Pl
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A 3
zom} . 60m 24;m
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60m g

Figure 22: Geometry of 3"¢ numerical example.

As already described the computational strategy is as follows. We calculate the discrete Fourier transform of
the time load and use it to calculate with the VTCR, the frequency response corresponding to each frequency on a
selected point of the structure. The program selects the frequencies having a significant amplitude to describe the
good time loading. The time response is then obtained by applying the IFFT to the frequency response.
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Figure 23: wp; displacement applied across the damaged area.

Figure (24) and Figure (25) show that a special attention should be paid to the size of the time window and the
associated discretization. Indeed for FF'T the two parameters have an influence on the frequency content recovered
after a Fourier transformation. Figure (24) shows the time discretization effect. In this case, we take the size of
the time window at 300 ms (3 periods of the input signal) and we change the time step of this signal. It appears
that this discretization has a significant effect on the frequency window size. The important frequencies must be
included in this frequency window. The discretization frequency remains constant because the number of point of
the FFT (denoted by NFFT) is proportional to the window size. Figure (25) shows the impact of the time window
on the FFT response. The time step of 1 ms and the size of this time window is then modified. In this case we can
observe that this parameters have a significant effect on the frequency content obtained. Indeed, the calculation
of the frequency discretization is directly dependent to this parameter. The response of the FFT will be better
described if the time window is large enough. Here the size of the frequency window is not impacted.

Influence of temporal discretization on the frequency content
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Figure 24: Influence of temporal discretization on the frequency content of the loading displacement wp; .

Influence of temporal window on the frequency content
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Figure 25: Influence of temporal window on the frequency content of the loading displacement wp;.

To conclude this preliminary study it is recommended to take a time step of the input signal sufficiently fine to
take into account all frequencies of interest and a large time window to properly describe the frequency content.

Two hundred waves are sufficient to properly represent the frequency response. Figure 26 shows the solution
obtained in each of four frequencies studied. The boundary conditions are used to verify the quality of the solution.
This is clearly observable where the load is applied and on the structure supports.
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Max/per substructures: 102 interior waves
4*25 edge waves, 50 pressure waves and 50 shear waves
10 Hz 20 Hz

out-of-plane displacement (mm)

out-of-plane displacement (mm)

Figure 26: VTCR solution of 3"¢ numerical example.

Following the VT CR calculation we can recover the amplitude and the phase of each point of the structure in
each frequency and thus reconstruct the time response by IFFT. Then we obtain for the point selected (P2) (see
in Figure (22)), the following results (see Figure (27) and Figure (28)). The VTCR solution obtained was also
compared to the results of finite element calculations. Figure (27) and Figure (28) show the VICR convergence
with 200 vibration waves per substructures. We can also note that the finite element solution requires a mesh
refinement relative to the minimum size mesh recommendations when we increase the number of wavelength in the
structure.
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Figure 27: Displacement amplitude in P2.
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Figure 28: Associated inverse Fourier transform, out-of-plane displacement wpy in P2.

This strategy provides us a solution in a good adequacy with a very low cost in terms of degrees of freedom
used by the VT CR for solving such a problem. Figure 29 compares and validates our study through the temporal
displacement at the same point P2 obtained with our frequency VI CR approach and reconstituted by IFFT, and
so with a conventional temporal approach. This latter approach uses the FE method.
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Figure 29: Comparison of the response of the structure in P2 between the frequency VTCR, approach and classic

temporal approach.

Figure (30) shows the difference in time resolution between VTCR and CAST3M resolution for this problem.
In this figure, the curve with circle markers (VTCR method) shows different points representing the inversion time
required for calculating the solution by increments of 5Hz. The curve with square markers (FE method) provides
the computation time for different mesh densities. This density must be refined enough to properly represent the

solution.
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Figure 30: Comparison between VT'CR and CAST3M in terms of computation time.

To conclude this application of our strategy on a civil engineering structure, Figure (31) shows the gain in
inversion time of the main matrix for each frequency studied. Then we can see the interest of VT CR compared to
finite elements method when the input signal has a high frequency content relative to the structure dimensions.
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Figure 31: Gain in computation time between VICR and CAST3M.

4 Conclusions and perspectives

A new methodology is presented that deals with impact problems and the determination of the shaking induced
on industrial structures. A load equivalent to an aircraft impact is applied on a finite element model of the target
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structure in a non-linear case. So with the non-linear response allows us to determine the radius of the damaged
area and the attenuation of the non-linear area on the input signal. We can then apply the temporal attenuated
signal at the boundary of the damaged area to obtain the response of the rest of the structure by a simulation with
the VT'CR. This methodology involves a transformation from time to the frequency domain by FFT. Then a time
recomposition is performed by IFFT. Comparisons with finite element calculations provide us with the followings
conclusions:

e VTCR discretization exhibits a very rich vibrational content resulting in a very low number of degrees of
freedom compared to FEM, at a given frequency,

e The FFT-VTCR-IFFT process is an accurate way for solving the impact problem over a wide time range and
a wide frequency range,

e The final computation time is far less important than for a FEM explicit scheme calculation (as soon as the
frequency involves medium frequency).

Thanks to the encouraging results obtained for the simple cases presented here, we are able to apply the
methodology to the industrial load case of an actual building being impacted by an aircraft. In this paper and the
examples treated only concrete material is considered. However, prestress tendons and rebars should be considered to
calculate the dynamic response of nuclear containments and other critical concrete structures. In this methodology
the heterogeneous behavior of prestressed and reinforced concrete could be taken into account through global
behavior models like [Kcechlin and Moulin, 2002]. So we need to define the impacted structure. But structures
such as nuclear civil engineering may contain floors with a large thickness compared to these dimensions. In this
framework we must study the impact of this thick structures on the response and so if we need to extend the VICR
shapess functions and the VTCR weak formulation to the Reissner-Mindlin’s thick shells. An other perspective
must lead on the large band analysis. Indeed, taking into account the impact of a commercial aircraft, the excited
frequency range is from 0 to 100 or even 150 Hz. Thus a study one by one frequency considering a sufficiently fine
frequency discretization in order to not overlook some eigenmodes of the structure can be expensive in computation
time in this context of a study of a transient phenomenon. The Proper Generalized Decomposition (PGD) was
considered to perform a large band analysis [Barbarulo et al., 2012]. This method allows to decouple the spatial
field to the frequency content and find patterns that can be likened to the eigenmodes of the structure.
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Appendices

A Forced vibration problem

When a structure is subjected to a brief mechanical shock, as it is the case when a projectile impacts a structure,
several vibration regimes can be separated in terms of the appearance of the displacement field observed. To
illustrate this, we consider the example of a plate timely loaded by a shock F(t). Four vibration regimes that can
be distinguished (see Figure (32)):
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Figure 32: Vibrations of a plate subjected to a mechanical shock.

In very short time after the beginning of the shock, there is a first vibratory regime characterized by the
propagation of a wave in a 3D semi-infinite space (wave suffered no reflection at the boundaries of the
structure, even the thickness is not "seen" by the wave).

In short time after the shock, there is a vibration system which is again characterized by a phenomenon of
wave propagation, but the waves are now guided by the thickness of the plate. This guide phenomenon is
usually seen as a large majority of structures such as beams, plates or shells which have one or two dimensions
lower than the others. In this case, the structure is often referred to a "waveguide".

In the mean time after the shock, depending on the size of the plate, guided waves are propagated to the
edges of this plate, which leads to wave reflection phenomena. The reflected waves interfere with the direct
wave which gives rise to localized vibration waves in some parts of the plate.

Finally, long time after the shock, guided waves are reflected many times at the edges of the plate. Now
these waves interfere with each other on the entire plate and the vibrational behavior of the structure can be
characterized in terms of its natural waves.

Kirchhoff-Love’s thin shells weak formulation

More precisely, in our case of Kirchhoff-Love’s thin shells, the boundary conditions are satisfied by the weak
formulation which consists of the following terms:
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The previous weak equation is projected on an approximation basis subspace S,q; that is composed of shape

functions that satisfies exactly both the constitutive relation (Equation 9) and the dynamic equilibrium equation
(Equation 11).

(48)
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