G. Allaire, Homogenization and Two-Scale Convergence, SIAM Journal on Mathematical Analysis, vol.23, issue.6, pp.1482-1518, 1992.
DOI : 10.1137/0523084

URL : https://hal.archives-ouvertes.fr/hal-01111805

A. Ávila, G. Griso, B. Miara, and E. Rohan, Multiscale Modeling of Elastic Waves: Theoretical Justification and Numerical Simulation of Band Gaps, Multiscale Modeling & Simulation, vol.7, issue.1, pp.1-21, 2008.
DOI : 10.1137/060677689

G. Bouchitté and C. Bourel, Abstract, Multiscale nanorod metamaterials and realizable permittivity tensors, pp.489-507, 2012.
DOI : 10.1103/PhysRevLett.76.4773

G. Bouchitté and D. Felbacq, Homogenization near resonances and artificial magnetism from dielectrics, Comptes Rendus Mathematique, vol.339, issue.5
DOI : 10.1016/j.crma.2004.06.018

. Acad and . Sci, [6] , Homogenization of a wire photonic crystal: the case of small volume fraction, Paris SIAM J. Appl. Math, vol.339, issue.66 6, pp.377-382, 2004.

G. Bouchitté and B. Schweizer, Homogenization of Maxwell's Equations in a Split Ring Geometry, Multiscale Modeling & Simulation, vol.8, issue.3, pp.717-750, 2010.
DOI : 10.1137/09074557X

G. Bouchitté, C. Bourel, and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, Comptes Rendus Mathematique, vol.347, issue.9-10, pp.9-10, 2009.
DOI : 10.1016/j.crma.2009.02.027

G. Bouchitté, C. Bourel, and L. Manca, Resonant effects in random dielectric structures, ESAIM: Control, Optimisation and Calculus of Variations, vol.21, issue.1, pp.217-246, 2015.
DOI : 10.1051/cocv/2014026

A. C?-abuz and A. Nicolet, Frédéric Zolla, Didier Felbacq, and Guy Bouchitté, Homogenization of nonlocal wire metamaterial via a renormalization approach, JOSA B, vol.28, issue.5, pp.1275-1282, 2011.

M. Cessenat, Mathematical methods in electromagnetism, Series on Advances in Mathematics for Applied Sciences Linear theory and applications, p.140914078001, 1996.
DOI : 10.1142/2938

D. Felbacq and G. Bouchitté, Theory of Mesoscopic Magnetism in Photonic Crystals, Physical Review Letters, vol.94, issue.18, p.183902, 2005.
DOI : 10.1103/PhysRevLett.94.183902

URL : https://hal.archives-ouvertes.fr/hal-00437978

D. Felbacq and G. Bouchitté, Homogenization of a set of parallel fibers, Waves in Random Media, vol.7, pp.1-12, 1997.

D. P. Gaillot, C. Croënne, and D. Lippens, An all-dielectric route for terahertz cloaking, Optics Express, vol.16, issue.6, pp.3986-3992, 2008.
DOI : 10.1364/OE.16.003986

URL : https://hal.archives-ouvertes.fr/hal-00360464

O. Hess and L. Tsakmakidis, Metamaterials with Quantum Gain, Science, vol.339, issue.6120, pp.654-655, 2013.
DOI : 10.1126/science.1231254

N. Hua, W. Yia, . Suna, Q. Cuia, S. Song et al., Enhancement of magnetic dipole emission at yellow light in optical metamaterials, Optics Communications, vol.350, issue.1, pp.202-206, 2015.
DOI : 10.1016/j.optcom.2015.03.077

R. V. Kohn and S. P. Shipman, Magnetism and Homogenization of Microresonators, Multiscale Modeling & Simulation, vol.7, issue.1, pp.62-92, 2008.
DOI : 10.1137/070699226

N. I. Lukõyanchuk, S. A. Zheludev, N. J. Maier, P. Halas, H. Nordlander et al., The Fano resonance in plasmonic nanostructures and metamaterials, Nature Materials, vol.102, issue.9, pp.707-715, 2010.
DOI : 10.1038/nmat2810

L. Simon and . Marshall, A periodic green function for calculation of coloumbic lattice potentials, J. Phys.: Condens. Matter, vol.12, pp.4575-4601, 2000.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, All-Dielectric Multilayer Cylindrical Structures for Invisibility Cloaking, Scientific Reports, vol.105, issue.1, 2015.
DOI : 10.1063/1.4887475

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, S. Briggs et al., Large-Scale All-Dielectric Metamaterial Perfect Reflectors, ACS Photonics, vol.2, issue.6, pp.692-698, 2015.
DOI : 10.1021/acsphotonics.5b00148

Y. Moitra, P. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs et al., Realization of an all-dielectric zero-index optical metamaterial, Nature Photonics, vol.71, issue.10, pp.791-795, 2013.
DOI : 10.1038/nphoton.2013.214

A. Moroz and A. Tip, Resonance-induced effects in photonic crystals, Journal of Physics: Condensed Matter, vol.11, issue.12, p.2503, 1999.
DOI : 10.1088/0953-8984/11/12/005

F. Murat, Compacit?? par compensation, Mémoires de la Société mathématique de France, vol.1, issue.5 3, pp.489-507, 1978.
DOI : 10.24033/msmf.265

J. Nédélec, A new family of mixed finite elements in 3, Numer. Math, vol.5088, issue.1, pp.57-81, 1986.

S. O. 'brien and J. B. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals Photonic band-gaps effects and magnetic activity in dielectric composites, J. Phys. Condens. Mat. J. Phys. Condens. Matter, vol.1427, issue.14 15, pp.6383-6394, 2002.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena , Microwave Theory and Techniques, IEEE Transactions on, vol.47, issue.11, pp.2075-2084, 1999.

L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, pp.136-212, 1979.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie et al., Isotropic negative permeability composite based on Mie resonance of the BST-MgO dielectric medium, Science Bulletin, vol.53, issue.21, pp.3272-3276, 2008.
DOI : 10.1007/s11434-008-0475-2

F. Zolla, D. Felbacq, and G. Bouchitté, Bloch vector dependence of the plasma frequency in metallic photonic crystals, Physical Review E, vol.74, issue.5, p.56612, 2006.
DOI : 10.1103/PhysRevE.74.056612

URL : https://hal.archives-ouvertes.fr/hal-00437974