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Abstract. Computer Go is one of the most challenging field in Artificial
Intelligence Game. In this area the use of Monte Carlo Tree Search has
emerged as a very attractive research direction, where recent advances
have been achieved and permitted to significantly increase programs ef-
ficiency.
These enhancements result from combining tree search used to identify
best next moves, and a Monte Carlo process to estimate and gradually
refine a position accuracy (estimation function). The more the estimation
process is accurate, the better the Go program performs.
In this paper, we propose a new approach to extract knowledge from the
Go tree search which allows to increase the evaluation function accuracy
(BHRF: Background History Reply Forest). The experiments results pro-
vided by this new approach are very promising.

1 Introduction

The game of Go is a deterministic fully observable two player game. Despite its
simple rules, it stands for one of the great challenge in the field of AI Game.

Go tactical and strategic decisions are extremely difficult to tackle, since
each move could have a high impact a long time after having been played. A sin-
gle stone move could completely change the board configuration and therefore,
there is no static evaluation function available during the game [22]. Profes-
sional human players succeed where programs fail, thanks to their expertise and
knowledge acquired from their long experience.

Recent developments in Monte Carlo Tree Search allowed to considerably
increase program’s efficiency. These enhancements result from combining Tree
Search used to identify best next moves to a Monte Carlo process based on
random playing attempts to estimate and gradually refine a position accuracy
(estimation function).

Monte Carlo Tree Search programs are able to reach up a professional level
by simulating thousands of pseudo random games [16]. However these program’s
performances does not scale with computational power increasing [2].

A promising way to increase program’s efficiency arises from learning on-line
local knowledge to enhance the relevance of random simulations used to evaluate
positions [1,17,18].

In this context, one can note that the issue is not only focused on the comput-
ing power available, but in our ability to manage additional more sophisticated



self-acquired knowledge. Then, in the rest of the paper, we will focus on this
ability. Further work will propose additional enhancements to optimize the pro-
cess associated to knowledge management in order to decrease the computing-
resources consumption.

In this paper we propose a new approach to collect the knowledge acquired
through the tree search of estimated positions. Our proposal appears as a com-
plementary data structure. As described in section 3, a tree search is used to
define what are the best next moves to play from a completly described current
position. The structure we propose to build addresses a more abstract question:
if a set of relatives moves are played, what to play next ? We show with our
approach presented in section 4 that a natural manner to tackle this question
is to constitute a Background History Reply Forest (BHRF). We then describe
how to build and maintain this generic forest and how to exploit it. These two
points raise new questions, but we show that a first straightforward setup pro-
duces good results. Some promising experimental results are presented in 5 and
show that using BHRF allows to play better.

The next section presents the general structure of knowledge involved in
a learning process. The section 3 focus on the kind of knowledge used in the
existing Go programs. Section 4 introduces a Background History Reply Forest
(BHRF) for the Monte Carlo Tree Search. The last section sums up experiments
carried on the model. A conclusion is presented in 6.

2 Knowledge in computer Go

While a game is running, for each step, a Go player aims at selecting the best
move according to the game overall state. The overall game state involves any
information related to the current game such as the board setup, the history
of played moves, local fights and also the opponent’s level. During the decision
process, players need to select the relevant parts of the game to focus on. Human
players accumulate knowledge by studying standard techniques, watching pro-
fessional games or interacting with other players. Computer programs encode
directly Go expert knowledge (apriori knowledge) or create their own knowl-
edge using machine learning technic. This information is evaluated and stored
in a data structure (knowledge acquisition or learning) for a further exploitation
(knowledge exploitation or planning). Reinforcement learning methods itera-
tively apply these two steps to progressively build an effective policy [21,19].

2.1 Go knowledge acquiring

Knowledge is useful to evaluate a position (current state or targeted state result-
ing from a set of planned moves). Either generic (fitting many cases) or specific
knowledge could be used to do this evaluation.

For instance, understanding the shapes formed by the stones on a Goban is
a relevant way to solve local fights. In this case, local patterns are a powerful
way to encode Go expert knowledge [19,12].



An other way is to consider a knowledge based on high-level characteristics
of the game: groups, groups stability, influences between groups, etc [11]. The
representation can then focus on the intersection around the last move played
to find local replies [22].

The value of this knowledge generally represents the probability to win if we
reach this game state representation. The quality of the estimator determines
the accuracy of the considered knowledge. The value given by poor estimators
are not reliable and have to be considered with caution. Several estimators for
the same knowledge can be combined to produce a more effective estimation.
The knowledge values are computed based on professional game records [4,20],
professional players comments [13] or self-playing [19]. These knowledge values
will be exploited to choose an action according to the current game state.

2.2 Go knowledge exploitation

The policy maps an action to each game state. The action is selected based
on the knowledge matching that game state. A high knowledge value means
a good move but the knowledge nature and its estimator might be misleading.
Therefore uncertainty is generally inserted in the policy to mitigate the influence
of wrong estimations. The ε-greedy policy selects with a probability ε the action
associated to the highest knowledge value otherwise it generally plays a random
move. The softmax policy selects each action with a probability depending on
the associated knowledge value [21].

A policy would be selected according to its context of application. During a
tutorial process, a policy might tolerate exploratory moves but during a challenge
the policy has to select the best possible action.

2.3 Reinforcement learning

Reinforcement learning is a way to manage learning in an autocatalytic way. The
program is not taught what to do and learns therefore by its own experience [21].
Temporal difference learning is one of the most applied method for such problems
and has been successfully applied to computer games. This method dynamically
bootstraps its knowledge from simulated games.

The policy evolves as the simulations runs and will influence the incoming
simulations. Since the knowledge is built on-line, the policy has to deal with ex-
ploiting the accumulated knowledge (exploitation) or gathering more knowledge
(exploration). A good policy should produce accurate simulations to enable the
learning process. A too strong policy can actually lead to a weaker program [21].

TD(λ) methods reinforce their knowledge values according to the estimation
difference of the game state between two time-step. A Monte Carlo method is a
temporal difference method which reinforcement depends on the final game state
of the simulation [19].



3 Monte Carlo Go programs

The main idea of Monte Carlo Tree Search is to build a tree of possible sequence
of actions. The tree root corresponds to the current board situation and each
child node is a possible future game state. The tree will be progressively expanded
towards the most promising situation by repeating the 4 phases: descent, roll-out,
update and growth (Fig.1).

During the descent phase, the simulation starts from the root node and pro-
gresses trough the tree until it reaches a game state outside of the tree.

For each node the program will iteratively select the best action with respect
to the descent policy. Once it leaves the Monte Carlo Tree, the roll-out phase
generates the remaining moves according to the roll-out policy until the game
reaches a final state. The update phase propagates the final game results in the
node reached during the descent and the growth phase appends the first game
situtation ouside of the tree to the overall structure [5].

Monte Carlo Go programs involve two kinds of knowledge to guide the sim-
ulations from the current game state. The Monte Carlo Tree stores knowledge
on-line. This knowledge is exploited during the descent phase. The current best
programs exploit Go domain specific knowledge in the roll-out phase because the
tree knowledge is no more available. In the last section we will present methods
that attempt to dynamically build up knowledge for the roll-out phase.

Fig. 1. General MCTS process



3.1 Monte Carlo tree

In the Monte Carlo tree, each node is a knowledge piece that associates a possible
future board setups with an accuracy value estimated from previous Monte Carlo
simulations. Board setups are very precise game state representations which will
be progressively selected as the simulations run. However the built tree depends
on the current board situation. Local structures are not shared between branches
leading to a new kind of horizon effect [6] and at each new turn only a subtree
is kept. All previously acquired knowledge in other branches is forgotten.

At each step of the descent phase, the policy selects in a greedy way the best
action based on the child’s node value or a default value for the resulting states
outside of the tree [22]. The node’s estimator will have a huge influence on the
policy’s behaviour. Since the policy is not perfect and the estimation sample
is too small, the mean of Monte Carlo rewards (MCTS value) is not a reliable
indicator on the long-term run [8]. The Upper Confidence bound applied to Tree
estimator (UCT value) reveals to be a good trade-off between exploration and
exploitation [15]. Recent results show that, in practice, a combination between
the MCTS value and a biased mean estimator called RAVE ensures a good
exploratory behaviour [10,8] and also minimizes the knowledge lost at each new
turn, but without control.

3.2 Go a priori knowledge

Contrary to the Monte Carlo tree, the Go expert knowledge is independent from
the overall stones disposition and therefore can be exploited for a broader set of a
board setup. The purpose of this knowledge is to guide the simulation after hav-
ing left the tree structure. However the roll-out policy should not be too strong
to do not disturb the learning process [9]. The knowledge encoded corresponds
generally to static Go tactical rules based on the current board configuration.
Sequence-like policies brought a substantial improvement by searching around
the last opponent move [22]. If no rules fit the current situation, the policy plays
randomly. Other roll-out policies use a linear combination of local pattern. The
weights are generally computed with off-line intensive machine learning [9] but
recent works obtained promising results by tuning them on-line [14,19].

3.3 Knowledge collected from Game

Several works aim at dynamically learn knowledge relative to the current game
in order to exploit it during the roll-out phase (see Fig.2). The game chosen
state representations are generally small move sequences or patterns. As for the
Monte Carlo tree, this knowledge will be built in a autocatalytic manner but
this knowledge will persist over the turns.

Pool RAVE [18] exploits the RAVE values in the Monte-Carlo tree to influ-
ence the roll-out. The best RAVE values from the covered nodes (descent phase)
are selected to influence the next roll-out. The roll-out policy proposed for the
game of Go uses first a “fill-board heuristic” [3] to ensure a good exploratory



behaviour and then applies the moves associated with one of the pooled RAVE
values. Hence the selected RAVE value contributes directly to its own reinforce-
ment.

Contextual Monte Carlo [17] stores tiles of two moves played by the same
player. Each tiles has Monte Carlo mean value updated when the two moves
appears in the same simulation. The main idea is to link the expected success
with a couple of moves played by the same player. During the roll-out phase a
ε-greedy policy will select the best move according to the last player’s move.

Last Good Reply Forgetting heuristic [1] associates a reply to each sequence
of one or two consecutive moves. For each encountered sequence the program
stores a single reply. In the update phase all the reply sequences are updated
or forgotten according to the simulation result. Over the simulations the replies
are frequently updated but the most persisting moves are spatially local replies
[6,1]. In the roll-out phase the policy successively tries to apply the reply to the
two previous ones, the reply to the previous move or a move generated from a
Go expert knowledge policy if no appropriate reply is stored.

Fig. 2. Game relative knowledge for MCTS process

4 Proposal

In this paper, we propose a new method to learn knowledge collected from game
(game-based knowledge) persistent over the turns. We actually assume that we
can extract knowledge from the Monte Carlo tree and reuse it during the roll-out
phase. Therefore we build an independent data structure similar to the Monte
Carlo tree to store game based knowledge. The roll-out policy will be modified
to consider this new form of knowledge.



4.1 Background History Reply Forest

A Monte Carlo node represents a future possible board setup. If we consider the
background history of the board rather than the position of the stones, a board
setup is also the sequence of moves played since the beginning of the match.
Hence each child node of the tree is a possible reply to that sequence. Our idea
is to extend the LGRF heuristic to catch the knowledge stored in the tree over
the simulations. The size of the previous sequence will be lengthened and the
reply estimation will be based on the tree values. This knowledge will be more
biased than the one provided by Monte Carlo nodes but it will be exploited in
the roll-out phase and will persist over the turns.

Fig. 3. BHRF knowledge exploitation

Hence we build a forest of search trees such that each tree root is a potential
reply and each child node a previous sequence to this reply (Fig.3). The value
associated to each node comes from the Monte Carlo tree. In the update phase
all nodes corresponding to sequences chosen in the descent phase are reinforced.
The search trees are progressively expanded in the growth phase as done in



the Monte Carlo tree [5]. This knowledge is then exploited during the roll-out
phase, according to the previous moves played. The selected nodes with the
longest corresponding sequences will be the most dependent on the game state.

4.2 BHRF exploitaiton

For each roll-out game state, we choose a reply among all legal positions on the
board. The program progresses through the associated tree search to select the
nodes with the longest previous sequences (up to a maximum size parameter
called depth). The policy computes on-line the UCT value for the nodes with
the same previous sequence according to their last Monte Carlo rewards.

Due to the biased nature of this knowledge and in order not to restrain the
simulation diversity, we implemented a non determinist policy to generate the
moves at each roll-out step. The policy plays the root reply associated with a
selected node among those with the longest matching sequences. If no reply move
was played by the policy, a default roll-out policy is applied.

The softmax policy selects a node according to a softmax distribution based
on their UCT value and plays the associated move with a probability depending
on its UCT value multiplied by a parameter α.

Algorithm 1 softmax policy for BHRF knowledge

curLength = 0
for m in legalMoves do
i = replyTree[m].selectNode(depth,lastmoves)
nodeSelection.add(i)
if n.length > curLength then

curLength = n.length
end if

end for
n = nodeSelection.softMaxUct(curLength)
if randomValue() < α× n.uctValue then

return n.rootReply
else

return defaultRandomMove()
end if

5 Experimental results

We implemented this proposed knowledge-based model on top of the state of
art program Fuego [7]. To prove the effectiveness of our approach we tested the
BHRF player against a Monte-Carlo player using a random roll-out policy. We
disabled the expert heuristics involved in the Fuego roll-out policy except for



the random move generation1. The experimental results were carried out on a
9x9 goban against a baseline program without the BHRF heuristic. The current
implementation is not thread-safe and is time-consuming. Therefore to provide
a fair comparison we removed the clock limitation and each turn both programs
run 10000 Monte-Carlo games on a single thread.
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Fig. 4. BHRF success rate over α against the baseline program

We first study the influence of the parameter α for the softmax policy. This
parameter tunes the involvement of the BHRF knowledge during the roll-out
phase (see Algo. 1). As we see in Fig. 4, the performance increases with α.
The program actually performs better for α = 100 where the BHRF replies are
applied quite systematically if a BHRF node matches (only 2% doesn’t). These
results show that the softmax policy provides a good simulation diversity by
itself.

Hence we next set α at 100 and focus on the depth parameter. The depth
parameter determines the “history relevance” of the selected knowledge. As the
maximum depth increases, the suggested moves should be more accurate. The
experiments were carried out up to a depth of 10 because of time consuming con-
straints. Further experiments will require an optimised BHRF implementation.

1 Fuego default random move generation use heuristics to avoid “suicidal” moves
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Fig. 5. BHRF success rate over depth against the baseline program

The figure 5 reveals that the performance of our algorithm slightly decreases as
the depth parameter grows.

To validate our approach, we compare the performance of the BHRF heuristic
according to the number of Monte-Carlo games simulated at each turn. Table 1
shows that BHRF performs better for 10000 simulations search2. The resulting
Background History Reply Forestfor deep Monte Carlo search produces better
estimators and actually matches to a wider set of game states. About 90% of
the roll-out game states benefit from a BHRF reply when the MCTS algorithm
runs 10000 games against 80% for 1000 games simulated.

Table 1. Comparative between 1000 and 10000 games simulated for the softmax policy

α 1 100

games simulated 1000 10000 1000 10000

success rate % 58.7 ± 2.49 63.4 ± 2.99 58.5 ± 2.49 68.8 ± 2.87

These results show an overall improvement when reusing game-based knowl-
edge, that is extracted from the Monte Carlo tree. As we mentionned before,
our main concern was to build self-acquired knowledge to improve Monte Carlo

2 The results are given with a 95 % confidence interval



simulations. The computing time of this algorithm is still higher than the base-
line algorithm (up to 10 times) but improvements could be made. Indeed the
heuristic searches at each roll-out step among all the potential moves through
the whole board contrary to the Go expert policy which one focuses around
the last played move [22,7]. Furthermore we would like to point out that our
main concern was to show the good impact of Game-based knowledge model.
An optimised version will requires a deep modification of the Fuego libraries.

6 Conclusion

In this paper we present a new approach to complement the Monte Carlo Tree
Search programs. The proposed framework is inspired from the reinforcement
learning paradigm, and aims at distinguishing incorporated knowledge from its
exploitation.

The proposed model extracts game-based knowledge from the Go Tree Search
to introduce more accurate moves through simulations. The incorporated knowl-
edge is based on history data and tends to find a trade-off between the specific
knowledge stored in the tree and more biased game-relative heuristics.

We show with our approach that a natural manner to complement Go tree
search knowledge is to constitute a Background History Reply Forest (BHRF).
We then describe how to build and maintain this generic forest and how to exploit
it. These two points raise new questions, but we show that a first straightforward
setup provides good results.

The first proposed results underline the efficiency of our model, and allows
to outperform the baseline MCTS algorithm with similar setting for up to 2/3
of the considered games. This encourages us to carry on the experiments on a
larger board or with other settings (longer sequences, use of BHRF to compute
initial values of leaf for the Go tree search, etc).
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