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ABSTRACT. 

Temperature-responsive properties of surface-attached poly(N-isopropylacrylamide) (PNIPAM) 

network films with well-controlled chemistry are investigated. The synthesis consists in 

crosslinking and grafting preformed ene-reactive polymer chains through thiol-ene click 

chemistry. The formation of surface-attached and crosslinked polymer films has the advantage of 

being well-controlled without any caution of no-oxygen atmosphere or addition of initiators. 

PNIPAM hydrogel films with same crosslinks density are synthesized on a wide range of 

thickness, from nanometers to micrometers. The swelling-collapse transition with temperature is 

studied by using ellipsometry, neutron reflectivity and atomic force microscopy as 

complementary surface probing techniques. Sharp and high amplitude temperature-induced 

phase transition is observed for all submicrometric PNIPAM hydrogel films. For temperature 

above LCST, surface-attached PNIPAM hydrogels collapse similarly but without complete 

expulsion of water. For temperature below LCST, the swelling of PNIPAM hydrogels depends 

on the film thickness. It is shown that the swelling is strongly affected by the surface attachment 

for ultrathin films below approximately 150 nm. For thicker films above 150 nm (to 

micrometers), surface-attached polymer networks with same crosslinks density swell equally. 

The density profile of the hydrogel films in the direction normal to the substrate is confronted 

with in-plane topography of the free surface. It results that the free interface width is much larger 

than the roughness of the hydrogel film, suggesting pendant chains at the free surface. 
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INTRODUCTION 

Research interest in hydrophilic polymer coatings is due to their wide range of applications for 

materials, biology or medicine fields. For example, wetting, permeability as well as adhesive, 

adsorptive properties can be controlled and improved with appropriate polymers and especially 

stimuli-responsive polymers.
1-3

 Polymer brushes and self-assembled layers (such as layer-by-

layer assemblies) are so far polymer coatings most investigated in this area.
4-9

 Despite wide and 

significant properties demonstrated in the past decades, these coatings have some inconvenience. 

The thickness of polymer brushes ruled by the polymer chain length is restricted to nanometer 

scale. The formation of layer-by-layer assemblies requires many cyclic steps (each layer is 

nanometer-thick) and so, high thickness could be the limitation. Moreover, if stimuli-responsive 

properties with high volume change are aimed, layer-by-layer assemblies are not the most 

suitable coatings. 

Surface-attached hydrogel films are a promising alternative to polymer brushes and layer-by-

layer assemblies as stable responsive polymer coatings.
10-11

 A priori, the thickness of surface-

attached polymer network would not be problematic as it could be widely ranged. Hydrogel 

films would respond to stimuli with high volume change. However, surface-attached hydrogel 

films with stimuli-responsive properties are still scarcely investigated. It is most likely due to a 

lack of common strategy for synthesis of hydrogel films with well-controlled chemistry. 

Actually, hydrogel films can be synthesized by polymerizing and crosslinking monomers by 

radical polymerization as for synthetic hydrogel materials. If molds (usually two substrates 

separated by spacers)
12

 confining the reaction mixture (monomers, crosslinkers and initiators) are 

required, submicrometer-thick hydrogel films are unfeasible. In addition, the radical 

polymerization must be performed under controlled atmosphere to avoid oxygen. It results that 
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the synthesis of hydrogel films at surface is very sensitive (to oxygen) due to a high surface to 

volume ratio. A way to overcome this difficulty is to preform functionalized polymers first and 

then simultaneously crosslink and graft chains to the surface. A few articles from Toomey et 

al.
13-16

 and Kuckling et al.
17-20

 have reported temperature-induced phase transition of poly(N-

isopropylacrylamide) (PNIPAM) hydrogel films. Both groups cautiously synthesized surface-

attached network films using photo-reactive PNIPAM. In detail, Kuckling used 

dimethylmaleimide groups as photo-crosslinkers and Toomey preferred benzophenone groups.  

We propose another approach on the phase transition of surface-attached PNIPAM films and a 

new strategy of synthesis. In particular, we are interested in the swelling-collapse properties of 

PNIPAM hydrogel films on a large range of submicrometric thickness, which would help to 

determine the extent of the effect of surface attachment and confinement. This focus is important 

for some applications in which nanometric layers are involved as well as for other functional 

coatings with micrometric sizes. Another point concerns the synthesis of polymer network films. 

We propose a simple and versatile strategy based on thiol-ene click chemistry to crosslink 

polymer chains. Thiol-ene reaction
21

 chosen here can be activated by thermal heating, which is 

supposed to guarantee a homogeneous distribution of crosslinks in the whole hydrogel film. 

In this article, surface-attached PNIPAM network films are synthesized on a wide range of 

thickness from nanometer to micrometers. The temperature-induced phase transition is 

investigated using ellipsometry, neutron reflectivity and atomic force microscopy as 

complementary surface probing techniques. The effect of confinement and constraints (due to 

surface attachment) on the swelling-collapse phase transition of the polymer network films is 

investigated by two aspects: the one-dimensional swelling in the direction normal to the substrate 

and the in-plane observation of the free surface of the hydrogel. Ellipsometry allows the 



 5 

determination of the (average) swelling ratio. The range of thickness measured by ellipsometry is 

supposed to vary from nanometer to a few micrometers. From neutron reflectivity experiments, 

density profiles are deduced, providing the film thickness and the free interface width. The 

thickness range easily reachable is roughly from 1 nm (the limit is given by the range of wave 

vector) to 150 nm (the limit is given by the resolution of wave vector). The lateral (or in-plane) 

exploration of the free surface of the hydrogel films is achieved using AFM. The topography and 

the roughness of the free surface are confronted with the free interface width. It helps to estimate 

how diffuse (or smooth) is the free interface. 
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EXPERIMENTAL SECTION 

Synthesis of P(NIPAM-co-AA) copolymer. Chemical products purchased in Sigma-Aldrich 

were used as received without any further purification (the purity ratio is more than 98% for all 

products). Poly(AA-co-NIPAM) was synthesized in Milli-Q pure water (18.2 MΩ.cm) by free 

radical polymerization initiated by (NH4)2S2O8 /Na2S2O5 redox couple under nitrogen at room 

temperature. Once 53.5 mg NH4Cl, 10.74 g NIPAM (0.095 mol) and 0.36 g AA (0.005 mol) are 

mixed in 100 ml water, the pH is adjusted to 3-4 with NaOH solution. Then the solution is 

deoxygenated with a bubbling of nitrogen for 1 h before the introduction of initiators (which 

were dissolved separately in 2 ml water and deoxygenated before). The polymer molecular 

weight is decided by the ratio of the (NH4)2S2O8 /Na2S2O5 initiators. For example, a molecular 

weight of 250 kg/mol is obtained for the concentration of (NH4)2S2O8 and Na2S2O5 in water 

equal to 10
-3

 mol/L. The reaction is allowed to proceed for 24 hours. The final solution is 

dialyzed in pure water and the polymer is recovered by freeze-drying. 

 

Ene-functionalization of P(NIPAM-co-AA) copolymer. The P(NIPAM-co-AA) copolymer is 

ene-functionalized by allylamine in Milli-Q water at room temperature in the presence of 

EDC/NHS couple. The molar ratio AA/allylamine/EDC/NHS is set equal to 1/2/2/2. After 5.4 g 

P(AA-co-NIPAM) (0.049 mol, if the ratio of AA in the copolymer is 5%) is dissolved in 150 ml 

water, EDC/NHS couple is added into the solution under stirring. The solution with a pH 
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adjusted to 4.5 is left under stirring for 2h. The acidic conditions promote the protonation of 

EDC, facilitating the coupling reaction. Then, the aqueous solution of allylamine is added to the 

medium, associated with the adjustment of the pH to 10 with NaOH, for the formation of the 

targeted amide bond through the nucleophilic attack of allylamine onto the carboxylic acid. The 

reaction is allowed to proceed for 24 hours. The final solution is dialyzed firstly in 0.1 mol/L 

NaCl solution (to remove the unreacted EDC/NHS) for 4 days, and then in Milli-Q water for 4 

days, solvent being changed twice a day. Finally the polymer is recovered by freeze-drying.  

 

Thiol-modification of substrates. Prior to any chemical modification of the silicon wafers, it is 

necessary to activate the silanol functions of the native layer of silica. The wafers are cleaned in 

a freshly prepared “piranha” solution (mixture of 70 vol% of sulfuric acid and 30 vol% of 

hydrogen peroxide - 35 vol% in H2O - heated at 150°C). The wafers are then extensively rinsed 

and sonicated in Milli-Q water during 1 min and finally dried with nitrogen flow. Silanization 

with 3-mercaptopropyltrimethoxysilane is carried out on the freshly cleaned silicon wafers for 

thiol-modification of the surface. After irradiated by UV-ozone for 15 minutes, the silicon wafers 

are quickly transferred into a sealed reactor filled with N2. The solution of dry toluene with 

3 vol% of mercaptopropyltrimethoxysilane (ABCR Gelest) is introduced into the reactor using 

cannula. The wafers are kept immersed in the solution under nitrogen for 3 hours. The samples 

are then rinsed and sonicated in toluene during 1 min and finally dried with nitrogen flow. 
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Before polymer coating, silicon substrates are thiol-modified with 

mercaptopropyltrimethoxysilane. The thickness of thiol layer measured by ellipsometry is 1 nm 

with a standard deviation lower than 10% of the average thickness. The characteristics of the 

thiol self-assembled monolayer are in good agreement with other fine studies (see for example 

Hu et al.
22

). 

Synthesis of hydrogel films. Surface-attached hydrogel films are synthesized by simultaneously 

crosslinking and grafting reactive PNIPAM by thiol-ene reaction. Preformed ene-reactive 

(functionalized) PNIPAM is spin-coated on thiol-modified silicon wafers with dithiol 

crosslinkers. The mixture of butanol and methanol (V/V = 1/1) containing ene-reactive PNIPAM 

(at different concentrations and various molecular weight) and dithioerythritol crosslinkers is 

dropped onto thiol-modified solid substrates. The ratio of dithioerythritol to ene-functionalized 

copolymer units is 15 times (corresponding to a molar excess of bifunctional dithioerythritol of 

30). The conditions of spin-coating are fixed with the final angular velocity of 3000 rpm and the 

spinning time of 30 seconds. The PNIPAM films are subsequently annealed at 120°C for 16 

hours under vacuum to activate the thiol-ene reaction. The samples are rinsed and sonicated in 

water during 1 min and finally dried with nitrogen flow to remove free chains. The dry thickness 

(corresponding to the polymer amount) remains the same after many steps of immersion in 

solvent, demonstrating that the stability of polymer films is due to covalent bond between chains 

and with the substrate. 

Ellipsometry. To measure the thickness, a spectroscopic ellipsometer Nanofilm EP3 (Accurion 

GmbH, Germany) was used with the wavelength ranging from 360 nm to 1000 nm. The 

resolution of  and  ellipsometric angles is 0.001°. For the measurements in air, we used the 

model with two layers between two semi-infinite media which are the silicon substrate 
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(refractive index equal to 3.87) and the ambient air (refractive index equal to 1). The first layer 

comprises silica and silane (refractive index equal to 1.46) which the thickness was determined 

before anchoring the hydrogel film. The second layer is the PNIPAM hydrogel film which 

thickness    is measured with the refractive index of PNIPAM equal to 1.52. If we take in 

account that water content in PNIPAM film is 10% in air (water content lower than 10% was 

measured for humidity ratio between 20% and 60%), the refractive index of PNIPAM gel is 1.50. 

In fact, the water content is weak so that the thickness of PNIPAM gel film in air can be 

considered as the thickness of dry film. In situ measurements in water are performed using a 

liquid cell with thin glass walls fixed perpendicularly to the light path and the angle of incidence 

is fixed at 60°. The liquid cell is temperature-controllable with a regulation within ± 0.1°C. The 

PNIPAM hydrogel film is modeled as a single layer with the thickness    and a constant 

refractive index between that of water (1.33) and of the polymer (1.52). Since the hydrogel film 

is covalently attached to the substrate, the polymer amount should keep the same when immersed 

in water. So we have:                  
       and      

     with   
  the 

volume fraction of polymer in water. The swollen thickness   , the refractive index of the film 

in water    and the dry thickness    are deduced from the fitting of the experimental data. The 

two equations should provide the same value of   
  to confirm that the fitting is reliable. Each 

data correspond to the mean measure of at least three samples, error bars providing the standard 

deviation from the mean value. 

Neutron reflectivity. Neutron reflectivity measurements were carried out on the time-of-flight 

EROS reflectometer at the Laboratoire Léon Brillouin, CEA-Saclay (France). The wavelengths 

are in the range of 3 to 25 Å (Δλ/λ ≈ 0.1) and the sample-to-detector distance is fixed at 2.0 m. 

The wave vector range from 0.005 Å
-1

 to 0.1 Å
-1

 is achieved with two grazing angles of 0.93° 
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and 1.6° for the measures at air-silicon interface and 1.2° and 2° at silicon-D2O interface. The 

beam size is adapted to the sample size and incident angle: 25 mm wide and 1 mm high. For the 

measures at silicon-water interface, the sample cell consists of the silicon single crystal and a 

temperature-regulated Teflon trough (filled with water) which are sandwiched in a stainless steel 

holder. PNIPAM hydrogels are protonated with a scattering length density equal to 1.0 10
-6

 Å
-2

 

(see discussion in Supporting Information) quite far from that of silicon (2.1 10
-6

 Å
-2

) and D2O 

(6.4 10
-6

 Å
-2

), which provides good contrast for the measures in air and in water. 

The reflectivity raw data is corrected for the direct beam and for the non-specular signal. It is 

then normalized using the position of the total reflectivity plateau. The logarithm of the analyzed 

reflectivity curves are plotted as a function of the wave vector   
  

 
     , where λ is the 

wavelength and θ the grazing angle. The neutron reflectivity is sensitive to the scattering length 

density profile in the direction normal to the interface Nb(z). The determination of Nb(z) was 

achieved by modeling the hydrogel film as a set of three layers, each characterized by a fixed 

thickness hi and a fixed scattering length density Nbi. Error functions of fixed width i allowed 

the connection of two adjacent layers to get a continuous profile. The scattering length density of 

the layer i is written as 










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iii
ii

hz
erf

NbNb
NbzNb


1

2
)( 1 . The procedure consists of 

choosing a profile of scattering length density and finding the corresponding parameters for 

which the calculated reflectivity curve best fits the experimental reflectivity data. The model of 

three layers is for silica layer (with thickness between 1.5 and 2 nm in agreement with the values 

measured by ellipsometry) and thiol self-assembled monolayer (with thickness between 0.7 and 

1 nm) as the two first layers. The third layer is the layer of interest as it corresponds to the 

PNIPAM hydrogel. The monomer volume fraction profile (z) which is the local monomer 
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concentration at a distance z from the interface, is deduced from Nb(z) using 

wp

w

NbNb

NbzNb
z






)(
)(  where Nbw and Nbp are the scattering length density of D2O and PNIPAM 

(respectively equal to 6.4 10
-6

 Å
-2

 and 1.0 10
-6

 Å
-2

). The dry thickness of the polymer layer    

which corresponds to the integral of the monomer volume fraction profile 



0

)( dz zha   is 

systematically compared to the value obtained by ellipsometry. The relation between the dry 

thickness    and the swollen thickness    as      
     (  

  for the average volume 

fraction of polymer in water) is still used to judge the reliability of the data fitting.  

Atomic Force Microscopy. All the images were acquired with a Bruker ICON microscope 

controlled by a Nanoscope V. The surface of hydrogel films in air can be easily probed with 

tapping mode. Cantilevers have a resonance frequency of about 300 kHz and a typical stiffness 

of 40 N/m. The working conditions were the following: free amplitude of about 20 nm, 

amplitude reduction equal to 0.95, scan frequency of 0.5 Hz and images acquired with 

512 x 512 pixels. We checked that all the images were acquired in repulsive mode. To probe 

hydrogel films in water, we used the QNM mode (Quantitative Mechanical Measurements) 

where the cantilever height above the surface is periodic. This mode can be viewed as a 

succession of approach-retract curves at high frequency (1 kHz in our case), the amplitude being 

limited by the maximum set force. The QNM images in water were obtained using a cantilever 

of stiffness of 0.02 N/m, with a typical Force Set Point equal to 1 nN. The size of the images is 

10 m. The mean roughness is estimated from the half width of the height histogram of each 

image. 
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RESULTS AND DISCUSSION 

 

Preparation of PNIPAM network films 

Surface-attached polymer network films with well-controlled chemistry were prepared by using 

a simple and versatile approach based on click chemistry. Thiol-ene click reaction was chosen to 

simultaneously crosslink preformed polymer chains and graft them to surface. The preformed 

ene-reactive PNIPAM chains provide the temperature-responsive properties of the hydrogel 

films. Surface-attached hydrogel films are obtained by coating reactive polymer with dithiol 

crosslinkers on thiol-modified substrate (Figure 1). Thiol-ene reaction was selected for many 

reasons. It is advantageously performed without any added initiator and can be activated by 

thermal heating. The thermal activation rather than UV irradiation is supposed to guarantee 

homogeneous distribution of polymer crosslinks in the whole network film whatever the 

thickness. Many thiol molecules are commercially available for polymer crosslinking and surface 

functionalization. Dithiol (here dithioerythritol) was used as crosslinkers and mercaptosilane 

(here mercaptopropyltrimethoxysilane) as surface modifiers. Ene-reactive PNIPAM can be 

synthesized without difficulty and carefully characterized before coating. The synthesis of ene-

reactive PNIPAM is carried out in two steps: (i) free radical polymerization of acrylic acid (AA) 

and N-isopropylacrylamide (NIPAM) and (ii) ene-functionalization of the copopolymer by amide 

formation using allylamine. The first stage is the free radical copolymerization of AA and 

NIPAM using ammonium persulfate/sodium metabisulfite redox couple as initiator. The 

molecular weight of polymer chains is ruled by the concentration of the reducing agent as shown 

by Bokias et al.
23

 Free radical polymerization is the best option as facile polymerization 
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technique because the control of the molecular weight distribution is not required as polymer 

chains are aimed to be crosslinked. The second step is the ene-functionalization of P(AA-co-

NIPAM) by grafting allylamine in the presence of EDC/NHS couple, EDC being the dehydration 

agent and NHS the addition agent used to increase yields and decrease side reactions.
24

 Both 

radical polymerization and amide formation are advantageously performed in water at ambient 

temperature as all the chemicals used are water-soluble. The ene-functionalized polymer can be 

easily purified by dialysis against water and recovered by freeze-drying to be characterized by 

Size Exclusion Chromatography and NMR spectroscopy. Three polymers were synthesized in 

this article. The molecular weight are equal to 66 kg/mol, 254 kg/mol, 405 kg/mol and 

681 kg/mol with polydispersity index around 2. The ratio of ene-groups are equal to 2% (details 

are provided in Supporting Information). 

 

 

Figure 1. Schematic of hydrogel films synthesis: ene-reactive polymer is spin-coated on thiol-

modified substrate with dithiol crosslinkers. Thiol-ene click reaction allows simultaneous 

polymer chains crosslinking and surface attachment. 

SH SH SH SH SH SH
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Spin-coating was chosen as coating technique to synthesize polymer films with a wide range of 

thickness from nanometers to micrometers. The spin-coating technique has also the advantage to 

require a little polymer, for example, a polymer concentration of 1 wt% needs only 2 mg of 

polymer (one cm
2
-surface can be covered by 0.2 ml of solution at the maximum). The solvent 

blend selected has to solubilize both ene-functionalized polymer and dithiol crosslinkers and also 

allow the spreading of polymer film on thiol-modified substrates by spin-coating. The mixture of 

butanol and methanol (V/V = 1/1) is the most suitable solvent blend.  

 

Figure 2. Dry thickness of PNIPAM hydrogel films as function of polymer concentration in the 

spin-coating solution for various molecular weights (66 kg/mol: red markers, 254 kg/mol: blue 

markers, 681 kg/mol: green markers, the solid lines being guides for the eye).  
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Figure 2 shows the variation of the thickness of surface-attached PNIPAM network film with the 

change of polymer concentration and molecular weight. This calibration curve gives evidence 

that the thickness can widely range from nanometers to micrometers using spin-coating 

technique. As expected, the film thickness increases with the viscosity of the polymer solution, 

and so with polymer concentration or molecular weight. For molecular weight of 66 kg/mol, 

submicrometer thickness can be obtained with a good precision (below 5% deviation) by varying 

the concentration below 10 wt%. If higher molecular weight is used, the films have a bigger 

deviation of the thickness (up to 10%) but the advantage is the large range with the formation of 

micrometric films.  

 

Temperature-induced phase transition 

The temperature-induced phase transition of surface-attached PNIPAM hydrogel films was 

investigated by measuring the thickness of the hydrogel films in water at various temperatures 

(Figure 3). The swelling ratio is defined as the thickness of hydrogel film in water (swollen 

thickness) to that in air (dry thickness). The data are obtained with hydrogel films which are 

supposed to have same crosslinks density. This assumption seems reliable as the synthesis of 

hydrogel films is performed with the same reactive PNIPAM (2% ene-functionalized) and same 

excess of dithioerythritol cross-linkers (30 times the ene-reactive groups). If same experimental 

conditions were used except the thickness, hydrogel films can be supposed to be the same 

chemically. The crosslinking is likely uniform without any gradient in the direction normal to the 

surface as ene-functionalized polymers and dithiol-crosslinkers are homogeneously mixed before 

spin-coating. It is not possible to determine the crosslinks density, and specially the crosslinking 
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gradient, by spectroscopic surface probing techniques such as X-ray Photoelectron Spectroscopy 

(XPS) or Infrared Spectroscopy in Attenuated Total Reflection (FTIR-ATR). As XPS technique 

can only probe nanometric layers (the standard penetration depth is about 5 nm), it cannot 

provide the chemical composition of the whole hydrogel films. FTIR-ATR method with 

micrometric penetration depth could be more appropriate. Unfortunately, the crosslinks ratio is 

too weak to be quantified by ATR, the maximum being 2% (which corresponds to the ratio of 

ene-reactive groups determined by 
1
H NMR). Anyway, the absorption peak which is 

characteristics of thiol-ene reaction (S-C bonds) is positioned about 700 cm
-1

, i.e. in the wave 

number range of high absorbance of the silicon waveguide (below 1600 cm
-1

). In fact, the 

measure of the thickness in the swollen state is a way to control the synthesis of hydrogel films 

since it is related to the crosslinks density. The swelling ratio is higher for weaker crosslinks 

density.  

Unlike macroscopic polymer networks, surface-attached hydrogel films are expected to swell in 

one direction normal to the substrate (the dimension of the lateral surface is infinite compared to 

the perpendicular direction). As shown by Toomey et al.
13

 the linear swelling of surface-attached 

hydrogels can be simply described by Flory-Rehner theory
25

 for the swelling of hydrogels 

extended to one dimension. The degree of swelling in surface-attached network is a power law of 

the degree of swelling in the free network with the exponent 5/9, and not 1/3. They determined 

the swelling ratio (or linear degree of swelling) as function of the proportion of the photo-

crosslinkable units from 0.5% to 14.3% for 100 nm-thick films. We found a swelling ratio of 4 

found with 2% ene-functionalized polymer. The same value of 4 was found by Toomey et al. 

with 2% of photo-crosslinkable units. It means that thiol-ene chemistry and photo-crosslinking 

strategy provide same crosslinks density of surface-attached PNIPAM hydrogel films, which is 
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2% at the maximum. The swelling ratio of 4 obtained at ambient temperature (below the LCST 

of PNIPAM) is independent of the thickness in the whole range from 100 nm to 1 m, indicating 

that the crosslinks density is probably identical for all these submicrometer PNIPAM films. 

 

Figure 3. Swelling ratio of PNIPAM hydrogel films as function of temperature for various dry 

thickness of the films (using PNIPAM chains with the molecular weight equal to 254 kg/mol). 

Blue data: 150 nm, red data: 250 nm, green data: 420 nm, solid lines are guides for the eye.  

 

For high temperatures above the LCST, the value of swelling ratio of 1.5 is found. Water is not 

entirely expulsed from the collapsed PNIPAM hydrogel which roughly 30% of water. It is in 

good agreement with the results from Kuckling
17-20

 and Toomey
14

. They found that collapsed 

PNIPAM hydrogels are not free of water no matter the crosslinks density. It was not only 

observed for collapsed hydrogels but also for collapsed PNIPAM brushes by Yim et al.
26-29
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comparison of the swelling ratios of the PNIPAM hydrogel in the swollen and collapsed states 

shows that the phase transition is quite high amplitude (almost 3), which is interesting for 

applications using thermo-responsive properties. Another point which could be attractive for 

applications is the sharp transition within a temperature range of 3°C (from 33°C to 36°C). The 

same sharp transition with high amplitude is observed for surface-attached PNIPAM films in the 

whole range of thickness from 100 nm to 1 m.  

 

Figure 4. Swelling ratio of PNIPAM hydrogel film as function of temperature. The data are 

shown for polymers with various molecular weight used for the synthesis of the hydrogel films. 

Blue data: 66 kg/mol (the dry thickness of the film is 93 nm), red data: 405 kg/mol (80 nm), 

green data: 681 kg/mol (83 nm), solid lines are guides for the eye. 

The sharp transition was also found for PNIPAM hydrogels synthesized from different molecular 
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obtained with molecular weight varying from 66 kg/mol to 681 kg/mol were investigated. The 

same temperature-induced phase transition was observed. If the sharp transition is identical to 

that displayed in Figure 3, the amplitude of the transition is slightly different. The swelling ratio 

for collapsed hydrogels at high temperature above the LCST is around 1.5 (0.2), which is 

similar to the value found for thicker films as shown in Figure 3. The difference is the swelling 

ratio at ambient temperature which is lower than 4. If PNIPAM hydrogel films swell less while 

they are supposed to have the same crosslinks density, it could be explained by the effect of the 

surface attachment, as demonstrated in the next part. 

 

Density profile determined by neutron reflectivity 

Ultra-thin films below 150 nm were investigated by neutron reflectivity. The thickness range 

easily reachable is roughly from 1 nm to 150 nm. The inferior limit is fixed by the range of wave 

vector and the superior limit by the resolution of wave vector. Also, we chose neutron 

reflectivity technique to characterize PNIPAM hydrogel films which thickness in air 

(respectively in water) varies from 6.7 nm to 36.4 nm (respectively up to 110 nm). Neutron 

reflectivity allows the determination of the density profile, i.e. the thickness and the width of the 

free surface of the hydrogel film. 

Figure 5 shows the experimental reflectivity curves and their best fitting as well as the 

corresponding density profiles of PNIPAM hydrogel films at various temperatures. Temperatures 

are fixed at 25°C (below the LCST), 34°C (within the transition range) and 40°C (above the 

LCST). As temperature increases, the reflectivity curve displays more obvious Kiessig fringes, 

suggesting that corresponding density profile is sharper. Experimental data can be satisfactorily 
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fitted with a model of one layer for PNIPAM film (a model of two or more layers do not allow 

the improvement of the fitting). It should be noticed that it changes from the study of polymer 

brushes by neutron reflectivity where the data fitting requires model with several layers for the 

smooth density profile of polymer brushes.
26-32

 In Figure 5 with the density profiles, it can be 

observed that the thickness of PNIPAM hydrogel decreases with temperature, which is consistent 

with the temperature-induced phase transition. The average volume fraction is close to 0.3, 

which corresponds to a swelling ratio of 3 for the swollen hydrogel at 25°C. The volume fraction 

is a little higher than 0.6, indicating a water content of about 30% in the collapsed hydrogel at 

40°C. The density profiles are comparable to those obtained by Toomey et al. on 25 nm-thick 

PNIPAM hydrogel.
14

 Moreover, it should be noticed that the free interface width of of the 

hydrogel decreases with temperature. It is observed for surface-attached PNIPAM hydrogel films 

of any thickness. Reflectivity curves and density profiles of PNIPAM films with thickness in air 

equal to 7 nm and 12 nm are displayed in Supporting Information. All the parameters extracted 

from the fitting of neutron reflectivity curves which are characteristics of PNIPAM hydrogel 

layers (thickness in air and in water, volume fraction, interface width…) are additionally 

compiled in Supporting Information. 

The same tendency described above is noted for the three hydrogel samples no matter the 

thickness: decrease of the thickness in water with temperature, swelling ratio between 2.5 and 3 

for the swollen hydrogel at 25°C, water content of about 30% in the collapsed hydrogel at 40°C. 

For experiments in air, the interface width  increases with the hydrogel thickness h but if it is 

normalized by the thickness, the relative interface width is the same for any thickness and is 

quite weak (/h < 10%). The relative interface width is higher in water than in air. It varies with 

temperature and also with film thickness as it is weaker for thicker films. At 25°C, /h decreases 
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from 0.36 (for 6.7 nm-thick film measured in air) to 0.17 (for 36.4 nm-thick film). At 40°C, /h 

decreases from 0.25 (for 6.7 nm-thick film) to 0.06 (for 36.4 nm-thick film). Surface-attached 

PNIPAM hydrogels look like more diffuse at the free surface when they are in the swollen state 

below the LCST than in the collapsed state above the LCST. This point is discussed in detail in 

the next part. 

 
 

Figure 5. (Left) Neutron reflectivity curves of PNIPAM hydrogel film (with dry thickness equal 

to 36.4 nm) in water at three temperatures 25°C, 34°C and 40°C. Also are shown the best fitting 

of the experimental data. Circles are for data and lines for fitting. (Right) Volume fraction 

profiles corresponding to the best fitting. The same color code as the left figure with reflectivity 

curves is used: blue for 25°C, purple for 34°C and red for 40°C. 
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As ellipsometry, specular neutron reflectivity provides information on the slice of the film or in 

the direction normal to the substrate considering the composition of the x-y plane homogeneous. 

Actually, neutron reflectivity cannot distinguish a diffuse film from a rough film if the size of the 

in-plane irregularities is much smaller than the coherent length of neutrons. For thermal neutrons 

(with a typical wavelength of a few Ångström), the coherent length is a few microns. It is then 

helpful to compare the roughness of the surface of the gel film determined by AFM and the free 

interface width deduced from neutron reflectivity.  

The height images of surface-attached PNIPAM gel films are displayed on Figure 6. The surface 

of the hydrogel film is probed in air with tapping mode. The QNM images were obtained in 

water using a cantilever of stiffness of 0.02 N/m with a typical force set-point equal to 1 nN. The 

size of the images is 10 micrometers. The mean roughness is estimated from the half width of the 

height histogram of each image. Precision on AFM imaging conditions is provided in Supporting 

Information. In the dry state (in air), the roughness of the film is subnanometric, which is small 

in comparison with the thickness of the film equal to 250 nm. When immersed in water at 25°C 

(< LCST), the roughness slightly increases to 5 nm with the vertical swelling of the hydrogel. At 

40°C (> LCST), it is about 3 nm as the PNIPAM hydrogel collapses. Although the roughness 

(slightly) changes, it remains much lower than the film thickness so that PNIPAM hydrogel films 

can be considered as flat whatever the conditions in air and in water. The morphologies shown 

here are quite different from the instabilities observed by Toomey et al. with photo-crosslinked 

PNIPAM coatings.
16

 They analyzed blisterlike or foldlike (also called sulci) instabilities resulting 

from the free surface buckling when surface-attached hydrogel films synthesized in dry state 

were exposed to solvent. Actually, in-plane swelling is frustrated in constrained hydrogel films. 

As the swelling occurs perpendicularly to the constraining surface but not laterally, in-plane 
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compressive stress is generated. Under sufficient stress, the free surface becomes unstable and 

deforms out of plane. They demonstrated that the characteristics of the instabilities such as the 

wavelength, the width and the amplitude increase with the film thickness. For example, they 

found amplitude of 10 nm for 250 nm-thick PNIPAM film exposed to water, which is a little 

higher than our roughness value (5 nm). Indeed, the morphology shown in Figure 6 is similar to 

that obtained by Toomey et al. for thinner films. The difference is probably due to the synthesis 

of surface-attached PNIPAM hydrogel films. In our case, the crosslinking of polymer chains and 

their attachment to the surface are thermally activated instead of photo-activation. The annealing 

occurs at high temperature (120°C) so that the crosslinking is homogenously distributed in the 

whole film. In contrast, the photo-crosslinkings is performed at ambient temperature in the 

glassy PNIPAM layer, leading to disparity in crosslinking (or modulus) of the polymer network 

and promoting surface instabilities.  
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Figure 6. Height AFM images of PNIPAM hydrogel films in air (left), in water at 25°C (middle) 

and in water at 40°C (right). Images are obtained in air with tapping mode and in water by using 

QNM mode with a cantilever of stiffness 0.02 N/m. The thickness of PNIPAM hydrogel film is 

250 nm in air, it is equal to 960 nm in water at 25°C and 360 nm at 40°C. The corresponding 

height histogram is displayed on the top. Roughness is determined from the half width of the 

peak. 

Samples h (nm)  (nm)  (nm) /h or /h 

SN36-air 36.4 3.0  8% 

SN36-25°C 110.7 18.8  17% 

SN36-40°C 55.5 3.5  7% 

SN36-air 36.0  0.8 1.6% 

SN36-25°C 110.0  1.1 to 2.0 1.8% 

SN250-air 250.0  0.8 0.3% 

SN250-25°C 960.0  5 0.5% 

SN250-40°C 360.0  3 0.8% 

 

Table 1. Main characteristics extracted from AFM and neutron reflectivity experiments. The 

samples are named as SNx-y where x stands for thickness in air and y for experimental 

conditions. Are reported the thickness h of the film, the free interface width  deduced from 

neutron experiments and the mean roughness  determined by AFM. The relative interface width 

/h and relative roughness /h are also calculated. 

 

The main characteristics extracted from AFM and neutron reflectivity experiments are 

summarized in Table 1. The free interface width  deduced from neutron experiments and the 
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mean roughness  determined by AFM, are compared with normalization to the film thickness h. 

The relative roughness /h, is much lower than the relative interface width /h, in any condition 

and in particular in water a 25°C. Note that /h values shown here for the 36 nm-thick film are 

the smallest in comparison with those reached with thinner films (6 nm- and 12 nm-thick films). 

The gap between /h and /h is the proof that the smoothness of the free surface is not only due 

to the (in-plane irregularities) roughness but also to the diffusion of the interface. The free 

surface is the most diffuse when the surface-attached hydrogel is swollen. The diffuse surface 

might be explained by the presence of pendant chains at the outside edge of the film. The 

peripheral chains are more likely to penetrate into the aqueous environment (rather than into the 

network, which is entropically unfavorable) giving rise to a diffuse interface. 

 

Effect of the surface attachment 

Ellipsometry and neutron reflectivity allows the determination of the (average) swelling ratio of 

the hydrogel films in the direction normal to the substrate. The thickness range easily reachable 

by neutron reflectivity experiments is roughly below 150 nm as the limit is given by the 

resolution of wave vector. We used ellipsometry to characterize the swelling of hydrogel films 

which thickness in water ranges roughly from 300 nm to 1500 nm. In this range, the number of 

oscillations, for  and  ellipsometric angles versus wavelength, is high enough to validate the 

relevance of experimental data fitting (for ultra-thin hydrogel layers, the oscillations are not 

obvious and especially in water with very smooth free interface). 
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In Figure 7, the swelling ratio of surface-attached PNIPAM hydrogel films is plotted as function 

of the dry thickness (in air). Data shown for three temperatures (25°C, 34°C and 40°C) were 

extracted from ellipsometry and neutron reflectivity experiments which combination allows the 

plot on a large range of thickness from nanometer to micrometer. At 40°C for collapsed gels, the 

swelling ratio is 1.5 on the whole range of thickness, which was already discussed. Collapsed 

PNIPAM hydrogel films are not free of water and contain roughly one third of water. At 25°C, 

the swelling properties of hydrogel films show clearly two regimes with a changeover around 

150 nm. For thin films below 150 nm, the swelling ratio increases (from 2.5 to 4) with the film 

thickness and it is equal to 4 above 150 nm. The same is found at 34°C with lower swelling ratio 

(from 2 to 3). If the distribution of crosslinks is supposedly homogeneous in the whole hydrogel 

film for any thickness, it gives evidence that the surface attachment has a strong effect on the 

swelling of films. Nanometric hydrogel films swell on average less than micrometric layers as a 

result of the constraint due to the surface attachment. Actually, all concentration profiles 

measured by neutron reflectivity show a very dense layer next to the surface which is additional 

to the swollen hydrogel layer (data not shown). However, it is tricky to determine the 

characteristics of this dense layer with high precision as it is blended with thiol monolayer (of 

equivalent scattering length density). The additional layer which is required for the data fitting of 

hydrogel films in water (but no needed for samples in air) is roughly one nanometer-thick.  
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Figure 7. Swelling ratio of PNIPAM hydrogel films as a function of the film thickness in air, at 

three different temperatures: 25°C (blue data), 34°C (purple data) and 40°C (red data). Data with 

ha < 100 nm are from neutron reflectivity experiments, those between 100 nm and 1 m are 

provided by ellipsometry and the data above 1 m are from microfluidics measurements. 

 

The data reported for 1.2 micrometer-thick films were obtained by using microfluidics 

technology. Briefly, the thickness of the hydrogel film was deduced from the measurements of 

the hydrodynamic resistance through microchannels in which surface-attached hydrogels were 

embedded. Although microfluidics experiments are not the purpose of this article, these 

measurements are intentionally mentioned to demonstrate that the regime of unvarying swelling 

is also valid for micrometric films. 
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CONCLUSIONS 

Submicrometric films of surface-attached PNIPAM network films with well-controlled 

chemistry were synthesized with a new and simple strategy based on thiol-ene click chemistry. 

The strategy consisted in preforming ene-functionalized polymer chains first and then 

simultaneously crosslinking and grafting the chains to the surface by thiol-ene reaction. The 

thermal activation of thiol-ene reaction is supposed to ensure that crosslinks are homogeneously 

distributed in the whole hydrogel film whatever the thickness. Temperature-induced phase 

transition of PNIPAM hydrogel films was investigated by determining the one-dimensional 

swelling in the direction normal to the substrate and in-plane topography of the free surface. The 

maximum of swelling is obtained for temperature below 32°C and the maximum of collapse 

above 35°C. It is shown that collapsed PNIPAM hydrogels are not free of water (it contains 

roughly one third of water). Two regimes of swelling were clearly shown. In the first regime, the 

average swelling of PNIPAM hydrogels is strongly affected by the surface attachment for 

ultrathin films below approximately 150 nm with less swelling on average for thinner films. 

Thick films above 150 nm swell equally. The comparison of the topography of the free surface 

and the density profiles demonstrates that the hydrogel layer is more diffuse than rough 

suggesting existence of pendant chains at the free surface. This study is the starting point for 

applications exploiting stimuli-responsive properties of hydrogel thin films such as in 

microfluidic devices.  
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SUPPORTING INFORMATION AVAILABLE. 1/ Characterization of ene-functionalized 

polymers by 
1
H

 
NMR spectroscopy. 2/ Characterization of PNIPAM hydrogel films by neutron 

reflectivity: additional experimental and fitted curves as well as corresponding density profiles. 

3/ Characterization by AFM: precision on AFM imaging conditions. 
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