CLIMAGIE: A French INRA project to adapt the grasslands to climate change
Jean-Louis Durand, Jerome Enjalbert, Laurent Hazard, Isabelle Litrico, Catherine Picon-Cochard, Marie-Pascale Prud’Homme, Florence Volaire

To cite this version:
Jean-Louis Durand, Jerome Enjalbert, Laurent Hazard, Isabelle Litrico, Catherine Picon-Cochard, et al.. CLIMAGIE: A French INRA project to adapt the grasslands to climate change. 22. International Grassland Congress, Sep 2013, Sydney, Australia. pp.2024. hal-01239525

HAL Id: hal-01239525
https://hal.archives-ouvertes.fr/hal-01239525
Submitted on 7 Dec 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CLIMAGIE: A French INRA project to adapt the grasslands to climate change


A URP3F, INRA, 86 600 Lusignan, France
B UMRGV INRA, Le Moulon, 91190 Gif sur Yvette, France
C AGIR INRA, 31320 Castanet Tolosan, France
D UREP INRA, 63039 Clermont Ferrand cedex 2, France
E EVA INRA_Université de Caen-Basse Normandie, 14032 Caen cedex 5, France
F USC INRA CNRS CEFE, Route de Mende, 34293 Montpellier, France

Contact email: jean-louis.durand@lusignan.inra.fr

Keywords: Climate change, phenology, plant productivity.

Introduction

Climate change in France, central and southern Europe is expected to provoke more frequent and more intense summer water deficits, with increased amplitude in temperatures, exposing the same perennial crops to frosts as well as to heat waves and severe droughts. The impacts on sown monospecific grasslands have been assessed using crop models (Durand et al. 2010) but with less accuracy in extreme situations. Since less work has been done on intra-specific genetic variability there is urgent need to investigate both ranges of climate conditions and genetic variability (Poirier et al. 2012). Phenology and plant productivity responses to water, temperature and nitrogen (N) in particular need to be re-assessed over the full range of temperatures projected in the future.

What is CLIMAGIE?

The multidisciplinary Institut National de la Recherche Agronomique (INRA) research program CLIMAGIE aims to improve our knowledge and provide innovations for adapting grasslands to climate change. Collaboration between community and functional ecologists, eco-physiologists and quantitative geneticians will provide new rules for species and cultivars ecotypes assembling. That framework will be tested experimentally and in silico with the models under construction by our teams. It will contribute to the definition of new ideotypes and breeding schemes of major species, in close collaboration with seed companies on the one hand and directly with end users through participatory breeding programs on the other hand.

Organizing investigations and sharing results

Three integrated groups of tasks (work packages) are defined (Fig. 1):

- Analysis of the genetic intra- and inter-specific variability of the physiological responses to temperatures and droughts in grassland species (legumes and grasses). In particular, the morphogenetic response of various populations in 6 important grassland species to the full range of temperature (5-45°C) will be studied. The evolvability of populations under severe drought conditions will be studied in grasses. New method-ologies for measuring the genetic variability of water use, water use efficiency and summer dormancy will be tested.

- Modelling of the dynamics of the long-term production of sown grasslands. Three models will be tested for: (1) spatially explicit tillering of multispecies grass swards; (2) individual based competition including legumes and grasses; and (3) complex grassland community dynamics using functional ecological modelling.

- Operational selection schemes, ideotypes and assembling rules for mixed grasslands. This includes: (1) novel methodologies to assess and manage of both the ex situ and in situ genetic resources including biogeographical approaches; (2) building of selections procedures for mixed sown grasslands; (3) construction of an internet dynamic data base for assembling cultivars under various management and climate conditions.

References


http://www.inra.fr/climagie

© 2013 Proceedings of the 22nd International Grassland Congress 1325
Figure 1. The Structure of the French INRA Project CLIMAGIE.

Trait identification and mechanisms of adaptation to abiotic stresses (T and water deficits) for Mediterranean and Temperate grasslands.

Breeding grasses and legumes for adapted grasslands to future climate

- ex situ. Breeding for annual production and persistency in zones submitted to marked summer water deficits.
- in situ. Participatory breeding enabling farmers to control the genetic progress locally.

Pre-breeding and resources management tools for seed companies and farmers.

- Open and dynamic Data base for assembling populations for sowing grasslands adapted to Climate change

Production of generic knowledge
- plant populations responses to temperature.
- Intra specific variations in water and nitrogen use efficiency.
- Impact of extreme droughts on under ground processes, soil organic matter and water use.
- Role and expression of functional genetic diversity in complex communities.

Modelling the complex grasslands productivity and persistency.

Ex situ and in situ Genetic resources management.

Modeling
- Model 1. Tillers based model of complex grass swards with StsFrt (Lafarge et al 2005)
- Model 2. Simulation of the competition for Ligt, water and nitrogen in complex sown grasslands (Fig 1)