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SUMMARY

This paper focuses on the modelling of fluid-filled poroelastic double porosity media un-
der quasi-static and dynamic regimes. The double porosity model is derived from a two-scale
homogenization procedure, by considering a medium locally characterized by blocks of poroe-
lastic Biot microporous matrix and a surrounding system of fluid-filled macroporesor fractures.
The derived double porosity description is a two-pressure field poroelastic model with memory
and viscoelastic effects. These effects result from the ‘time-dependent’ interaction between
the pressure fields in the two pore networks. Itis shown that this homogenized double porosity
behaviour arises when the characteristic time of consolidation in the microporous domain is
of the same order of magnitude as the macroscopic characteristic time of transient regime.
Conversely, single porosity behaviours occur when both timescales are clearly distinct. More-
over, it is established that the phenomenological approaches that postulate the coexistence of
two pressure fields in ‘instantaneous’ interaction only describe media with two pore networks
separated by an interface flow barrier. Hence, they fail at predicting and reproducing the
behaviour of usual double porosity media. Finally, the results are illustrated for the case of
stratified media.

Key words: Geomechanics; Microstructures; Permeability and porosity; Elasticity and
anelasticity; Wave propagation; Mechanics, theory, and modelling,

1 INTRODUCTION

The fluid-solid coupling effects in porous geological formations are key phenomena in various fields of applications of earth sciences. These
include oil, groundwater, environmental, geothermal, geotechnical, geophysical engineering, where a clear understanding of the physical
mechanisms governing fluid flows, heatand mass transfer, consolidation and wave propagation are very important. For instance, the knowledge
of seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks (see the review Miiller et al. 2010) is crucial in
petroleum engineering or in hydrogeology (e.g. Pride 2005) to assess reservoir properties such as porosity and permeability from the inversion
of geophysical data. In oil extraction or CO, storage, a decrease or increase in pore pressure may result either in a sudden induced seismicity,
or a slow phenomenon of subsidence or inverse subsidence. At larger scale, similar phenomena are reported in seismology, where the pore
pressure diffusion appears to be a triggering mechanism of some earthquake swarm (Parotidis et al. 2003). In these examples, the records of
micro tremors, micro seismic data or the monitoring of non steady state phenomena are used to extract physical properties of porous rocks
by inversion (Shapiro 2000). Thus, the relevancy of geotomography imaging by down-scaling strongly depends on the poroelastic model
used in the inversion procedure. The reference model established by Biot (1956a,b) is perfectly appropriate for geological formation that
present a quasi-uniform pore distribution, that is, a single porosity structure. However, geological porous formations often exhibit a variety of
heterogeneities such as fractures, fissures, cracks and macropores or interaggregate. The double porosity of these media is a consequence of
either the geological processes themselves or from industrial fracturing which aims at recovering more efficiently oil, hot water, or gas. Thus,
the existence of accurate models for predicting double porosity effects is of particular practical interest, see for example Brajanovski et al.
(2006), Grechka et al. (2010). Double porosity modelling has thus become the subject of vast research since the introduction of the concept
and first models Barenblatt ef al. (1960), Barenblatt (1963).

The focus of the present study is on the fundamentals of poroelastic double porosity media, that is, fluid-filled elastic media that consist
oftwo interacting porous systems of significantly different permeabilities: a microporous matrix continuum of low permeability and a fracture
or macropore continuum of high permeability. Biot's theory (Biot 1956a,b) which describes single porosity poroelastic media (Auriault &
Sanchez-Palencia 1977), (Auriault 1980), generally fails in reproducing the behaviour of double porosity media. This is due to the permeability
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contrast which induces different pressure fields in the micropores and macropores. This generally results in two pressure fields that interact
at the macroscale and, therefore, in an enriched Biot description.

Among the significant amount of literature devoted to double porosity modelling, two main approaches to modelling double porosity
media may be distinguished, that is, phenomenological and upscaling approaches. The former ones are based on postulating the model
directly on macroscopic scale, while in upscaling approaches the macroscopic model is deduced from the governing equation at the local
scale. Phenomenological modelling of double porosity media was initiated in Barenblatt e al (1960), Barenblatt (1963) using the theory of
mixtures for modelling fluid flow in rigid fractured porous media. This model was further modified by Warren & Root (1963) to account for
permeability contrast. In these models, the coexistence of two pressure fields in linear instantaneous interaction is directly postulated on the
macroscopic scale. These models were then extended to poroelastic double porosity media by combining Biot’s theory with either Barenblatt
or Warren and Root models (Wilson & Aifantis 1982; Beskos & Aifantis 1986; Bai et al. 1993; Berryman & Wang 1995). In all of them, the
influence of the microstructure on the macroscopic behaviour is postulated via the coupling term between both pressure fields. Their validity
is thus conjectured, but not rigorously proven.

Regarding upscaling approaches, the homogenization method of multiscale asymptotic expansions (Sanchez-Palencia 1980) allows
to explicitly linking the microstructural behaviour with the macroscopic description. The first results related to double porosity using the
homogenization method are those developed in Auriault (1983), and then in Arbogast (1989) and Arbogast et al. (1990), where two-scale
upscaling was performed on rigid media presenting a high contrast in thermal conductivities or permeabilities, respectively. In Auriault
& Boutin (1992) and Auriault & Boutin (1993), the deformation of the skeleton is accounted for by considering an elastic hierarchical
porous structure. A three-scale medium with three separate scales was considered. These scales were the microscale (associated to the
micropores), the mesoscale (related to the macropores or fractures) and the macroscale which is the scale of the global phenomenon. Instead
of a hierarchical morphology, a medium locally characterized by blocks of poroelastic Biot microporous matrix and a surrounding system
of fluid-filled macropores is considered in Murad et al. (2001), where a two-scale homogenization procedure together with a two-level finite
element approach was applied. The common result ofthese works on double porosity poroelastic media is a model with two pressure fields ‘in
time-dependent interaction’ obtained when the microscale/mesoscale ratio is of the same order of magnitude as the meso/macro scale ratio.
This two-pressure field model suggests that the micropore pressure is inhomogeneous while the macropore pressure is homogeneous. Due
to the fluid-solid interaction the inhomogeneity of the micropore pressure gives rise to an apparent macroscopic viscoelastic behaviour of
the microporous matrix. This double porosity model reduces to single porosity Biot models when the micro/meso and the meso/macro scale
ratios are of distinct orders of magnitude. Two single-porosity models are thus obtained, which are distinguished by their effective elastic
properties, and depend on whether the micro/meso scale ratio is smaller or larger than the meso/macro one (Auriault & Boutin 1992, 1993).
Note that these rules in terms of the respective orders of magnitude of the scale ratios can easily be expressed as orders of magnitude of the
permeability contrast between the micropores and the macropores. The above analysis highlights the key role of the permeability contrast in
double porosity modelling. Similar homogenization approaches have then been applied to study poroelastic dynamics (see for example in
Auriault & Boutin 1994; Pride & Berryman 2003, where the volume-averaging method was used), highly compressible fluid flow (Royer &
Auriault 1994), acoustics of air saturated rigid porous media (Boutin et al 1998; Venegas & Umnova 2011), and solute transfer in porous
media (Auriault & Lewandowska 1995). In the latter two contexts the theory has been experimentally validated (Olny 1999; Olny & Boutin
2003; Ngoc et al. 2007; Lewandowska et al. 2008).

The aim of the present paper is to analyse the above cited homogenized poroelastic double porosity models, paying particular attention
on their effective parameters properties and on the interpretation of their domains of validity. To do so, the three following main points are
addressed:

(1) The study carried out in (Auriault & Boutin 1992, 1993) is revisited using atwo-scale instead of a three-scale homogenization procedure.
As shown in the original works, the micro/meso upscaling leads to a Biot model for the microporous medium on the mesoscopic scale. Hence,
the study can be reduced to a two-scale approach by considering the meso/macro upscaling of a heterogeneous medium made of connected
macropores (or fissures) surrounded by a Biot material. This two-scale homogenization formulation significantly simplifies the derivation
of the macroscale model, the identification of the key dimensionless parameters and the determination of the symmetry properties of the
description.

(2) The physical meaning of the models’ domains of validity is analysed. As shown in Royer & Boutin (2012) for fluid flow and solute
transport in rigid double porosity media, the model's domains of validity—which from the raw results of the homogenization procedure arise
as a function of the magnitude of the length-scale ratio (or permeability contrast)—can be expressed as a function of the magnitude of the
timescale ratio. It is thus shown that a given double porosity medium may either behave as a single or as a double porosity one according to
the considered timescale. Single porosity behaviours occur at short term (only the macropore porosity is accounted for) or at long term (the
total porosity of the double porosity medium is taken into account), while double porosity behaviour arises whenever the timescale of the
global phenomenon is of the same magnitude as the timescale of the local phenomenon in the microporous domain.

(3) The validity of the usual phenomenological double porosity models is commented in light of the results provided by homogenization
theory. It is worth mentioning that it has already been pointed out that homogenized and phenomenological models do not match or only
partially match (Hornung & Showalter 1990; Auriault & Royer 1993; Royer & Auriault 1994). This issue is tackled by showing that double
porosity phenomenological models correspond to homogenized models obtained for media made of two distinct permeable domains separated
by an interface flow barrier.



1696

The paper is organized as follows. In Section 2, we briefly introduce the principles of the homogenization method. Then, Section 3 is devoted
to the formulation and the analysis of the physics at the local scale. The macroscopic description is derived and presented in Section 4.
Since the focus is put on the influence of double porosity microstructure, these developments are performed in quasi-static regime. Section 5
deals with a time analysis used to determine the domains of validity of the models while Section 6 aims at comparing homogenized and
phenomenological models. An example of a stratified medium is considered in Section 7. Finally, Section 8 is devoted to the extension of
the results to dynamic regime and gives a simple numerical illustration of the theory. The calculations details related to the homogenization
procedure and to the properties of the effective parameters are reported in Appendices A and B.

2 PRINCIPLES OF THE HOMOGENIZATION METHOD

The aim of homogenization techniques is to model an heterogeneous medium as an equivalent continuous medium, whose description is
valid at a very large scale compared to that of the heterogeneities. The homogenization of a medium with a high density of heterogeneities
is only possible if we consider regions containing a large number of them. In other words, the continuum macroscopic representation of
an heterogeneous medium makes sense only when a separation of length scales exists. This implies that Auriault (1991), Auriault et al.
(2009): (i) the material is regular enough so that a representative elementary volume (REV) of characteristic size / can be identified at the
heterogeneity scale. This will be referred to as the microscopic, or local scale, as opposed to the macroscopic scale, which is the scale the
equivalent continuum is defined at; (ii) the physical variables driving the phenomenon vary according to the macroscopic size L, which is
much greater than /.

With the asymptotic two-scale homogenization method (Sanchez-Palencia 1980), the above requirements are mathematically expressed
as follows. First, the medium is assumed to be periodic and made of identical cells  of size £. Thus, the REV is simply the periodic cell.
Note that the periodicity assumption is not a restriction when looking for the structure ofthe macroscopic description and the properties of the
effective parameters, since non-periodic and periodic media are equivalent when homogenization is possible, which occurs when the length
scales are separated (Auriault et al. 2009). Second, two space variables are defined to describe the variations on both distinct length scales L
and £: x for the macroscopic variations, y for the microscopic variations. The key parameter of the method is the scale ratio defined as

e=l/LLl, 2.1)
The space variables are linked by
y= s"x, (2.2)

and are from now on treated as two independent space variables. Finally, the unknown fields (e.g. pressure p, solid motion  and so on)
are looked for in the form of asymptotic expansions in powers of £ and are Q2-periodic in variable y, as a result of material periodicity and
length-scale separation:

px.y)=) ep(xy) with p(x.y) Q-periodiciny. (23)
0

The method consists in expressing the local governing equations into a dimensionless form, which gives rise to dimensionless parameters.
The orders of magnitude of these dimensionless parameters are estimated in power of the scale ratio £. Introducing these estimates into the
two-scale set of partial differential equations—where the spatial derivative 8 reads £ '8, + 8,—provides the rescaled equations on which the
homogenization process is performed. Identifying the terms of the same power in £, and solving the boundary value problems obtained in
series yield the first non-trivial balance equation. This defines the homogenized model and effective parameters valid up to the leading order.
Energetic consistency between micro and macro descriptions is ensured by the method itself.

3 LOCAL DESCRIPTION OF POROELASTIC DOUBLE POROSITY MEDIUM

3.1 Problem statement

We investigate the behaviour of a fluid-saturated deformable elastic double porosity media (see examples on Fig. 1). The local structure is
periodic with period Q=qugQ » (which is therefore the representative elementary volume REV). Here Q2 is the fluid-saturated microporous
domain, £2, is the pore space occupied by the fluid and I' = 882 N 992, represents the surface of the microporous matrix. The same fluid
occupies both the microporous domain and the pore space. We denote by £ and L the characteristic size of the period (i.e. the microscopic
size) and the macroscopic characteristic size, respectively. The porosity of the microporous domain is denoted by ¢, while the pore porosity
is defined as ¢, = |ﬂ,,|/|ﬁ|. Consequently, the total medium porosity is given by: ® =¢, + (1 — ¢, )¢. We investigate the behaviour of the
medium when subjected to a harmonic regime of frequency f= w/2x. Note that the time-dependent term ¢ is omitted in all the equations
because of the linearity of the problem. Since our objective is to focus on double porosity effects, the detailed developments are performed
in a quasi-static regime, that is, for a frequency which is sufficiently low so that inertial effects are negligible on the macroscale. The double
porosity features of the behaviour are thus clearly highlighted. Extension to the derivation of the model in dynamic regime is straightforward,
as it will be shown in Section 8.
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Figurel. Examples ofmorphologies of doubleporosity media considered by homogenization. Left: fissured microporous matenal, Right: microporous medium
with pore network.
3.2 Governing equations in the microporous domain

We consider that the microporous matrix is a poroelastic medium which satisfies the classical Biot single porosity model (Biot 1956a,b;
Auriault 1980): The governing equations are the following ("stands for time derivative):

div(¥)=0

E=c:e(u)—ap

; (3.1)
divlg) = —a: o) — 7

4= 0t ~i0 = =3 groilp)

These four equations express the momentum balance (3.1-a), the poroelastic constitutive law (3.1-b), the conservation of fluid mass (3.1-)
and Darcy’s law (3.1-d), respectively. The distinct quantities involved in the model are defined as follows:

(i) « represents the symmetric and positive Biot coupling tensor. For isotropic microporous matrix, « = I, where« = 1 — K/K, is Biot's
coefficient, and K and K represent the bulk moduli of the empty (or drained) microporous matrix and of the elastic material forming the
microporous matrix, respectively. Note further that: ¢ <« <1:

(ii) 1/M s Biot's bulk modulus: §; = %% + £, where K; is the fluid bulk modulus;

(iii) ¢ is the effective elastic tensor of the empty (i.e. dry or ‘drained’) microporous skeleton. As an elastic tensor, it satisfies: (1) the
ellipticity condition (3a > 0 / Ve; e:c:e > ae:e); (2) minor symmetry(cyu = s = Cyg) and (3) major symmetry (¢ = Cxs;). For an isotropic
matrix, it reduces to the Lamé coefficients A and u. The bulk modulus of the empty matrix K, and the Poisson ratio v are denoted K = A +
2p/3, v=2/2(A+ p), respectively. In what follows, we will also make use ofthe ‘consolidation’ bulk modulus B, defined as % = "-l + %,
and of the short-term (or ‘undrained’) parameters A, = A + o’ M, Ko, = Ao + 24¢/3 and v, = Aoo/2(Ae + H);

(iv) u is the solid displacement of the microporous matrix, while v; stands for the mean fluid velocity within the volume of the micropores. In
harmonic regime, it is convenient to introduce the mean fluid motion: i wu; = v;. Darcy’s fluxis thus given by: ¢ = ¢(vy — 1) = iwxp(u, — u);

(v) e(u) is the strain tensor, while £, ¢ = ¢ : e(u) and p represent the tensor oftotal stress, the tensor of effective stress (i.e. the mean stress
in the solid skeleton), and the interstitial pressure, respectively:

(vi) n is the fluid viscosity and K the tensor of intrinsic permeability, which for an isotropic microporous matrix is such that K = KL

3.3 Governing equations of the fluid in the pore domain £,
In the pore domain £2,, the fluid motion is governed by the following linear differential set of equations:
div(e ;) =0
0, =—ppI+2nD(y,) 32)
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These equations express the momentum balance (3.2-a), the viscous constitutive law (3.2-b) and the conservation of fluid mass (3.2-c),
respectively. Note that all fields in the pore domain £2, are indexed by ,. In the above equations, o, and p, stand for the stress tensor and the
pressure of the fluid respectively; v, = iwu , represents the fluid velocity and u , is the fluid displacement; D(v,) = iwe(u,,) is the strain rate
tensor.

3.4 Boundary conditions over the interface I' between microporous matrix and pore domain

Over the interface, we express the continuity of normal stresses (3.3-a), of pressures(3.3-b), and of the fluid mass fluxes (3.3-¢) as:

In=0,n
P=Pr (3.3)
gn=¢(u,—wn=(y,-wn=gq.n

3.5 Order and scale estimates

From former studies (Auriault & Boutin 1992, 1993), it is known that the above local description gives rise to three homogenized models:
a double porosity model and two distinct single porosity models. But as particularly emphasized in the review (Royer & Boutin 2012), the
double porosity model is more general, since it can reduce to either of the single porosity models. Mathematically, this reduction consists in
a simple continuous passage and corresponds to the order of magnitude variations of the key physical parameters. Here, our objective is to
a priori identify, by means of physical arguments, the conditions under which a double porosity macroscopic model is obtained.

To describe non stationary regimes at the macroscale we determine the macroscopic characteristic time first. From single porosity studies,
it is known that this corresponds to a consolidation process characterized by fluid flow and solid deformation mechanisms of comparable
importance. More precisely, this occurs whenever the rate of volume variation

div(@) = O(p,/|BI),
with

O(BI™y=0M "+ e[ ™),

in which B accounts for both fluid and solid moduli, is balanced by the Darcy’s flow
divig,) = (K,/n)div(grad(p,)) = O(K,/mO(py/L?).

Hence, in transient regime, the macroscopic characteristic time 7" (of associated angular frequency @ = 2x /T) is linked to the macroscopic
length L by the following relationship:

r=0 (2n——2) (3.4)

Letus now focus on the permeability contrast, which is a key parameter since it determines the fluid flow interactions between both porous
networks. Indeed, an extremely high contrast entails an apparent quasi-impervious microporous matrix. As a result, the fluid flux in the
microporous matrix g is not triggered by the pore pressure p,. Consequently, there is no apparent microporous fluid flow. Conversely, a low
permeability contrast leads to identical fluid pressure fields in the microporous matrix and the pore domain. Actually, the case of interest is
the intermediate situation. Then, both fluid fluxes coexist which means that the permeability contrast is not extremely high; and two pressure
fields coexist which requires a high enough permeability contrast. We thus now analyse the fluid flows under this two pressure field regime.
Because of the separation of scales, variations of pore pressure p, are such that the pore pressure gradient at the macroscale is of order
O(p,/L). Now, since p = p, over boundary I" between the microporous matrix and the pore volume, a pressure gradient, of order O(p/£) =
O(p, [£), exists within the matrix if p differs from p, in the microporous domain. The existence of this local gradient induces a local transient
regime and this means that the microporous domain is out of equilibrium. In other words, transient regimes simultaneously reached at both
spatial scales suggest that the timescales are the same. On the other hand, the characteristic time of consolidation within the microporous
matrix is given by:

n &
=0 —=. 35
’ (2” 1B] K) (35)
Therefore, equating both characteristic times t and 7 leads to the following estimate of the permeability contrast

Kﬁ = O((t/LY) = O(?). (3.6)

P
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Hence, Darcy fluxes in the microporous and in the pore volume are respectively given by

- P = Pr
g=0(k3). lgl=0(kF).
This allows concluding that the flux in the microporous matrix is one order of magnitude smaller than the flux in the pore domain:
KplL
=lg|l0|—=—=)=0 37
lgl=1q,| (K,, p,,z) (elg D 3.7)

Consequently, applying the homogenization procedure, we will consider the following asymptotic expansions for the fluxes:
K, 0 1
q,(x.¥)= —T.tﬂ(pp) =¢,(x M+ £g (x.y)+-
(3.8)
&K 1

qg(x,y)= == grad(p) = eq (x,¥) +- -
The double porosity macroscopic behaviour is thus associated with the permeability ratio of eq. (3.6). Considering that both permeabilities
can be estimated through the micropore a and pore a, characteristic sizes as K = O(a*) and K, = O(ai), the estimation (3.6) corresponds
to the scale ratio a/a, = &. This is precisely the scale ratio considered in Auriault & Boutin (1993) to derive the double porosity model by a
three scale homogenization approach.

We should also consider estimates associated with the constitutive law (3.2-b) for the fluid in the porous domain. The macroscopic
pressure gradient must be balanced by viscous forces that vary at the pore scale:

Pp Up
2o ()

This is a classical result of the normalization or rescaling procedure associated with the homogenization method of asymptotic expansions
(Boutin & Auriault 1990; Auriault 1991). This leads to the classical rescaling of the constitutive law (3.2-b) (Auriault 1980):

op = —ppl +2n6" D) (39)

4 DOUBLE POROSITY POROELASTIC HOMOGENIZED DESCRIPTION

4.1 Main steps of homogenization process

Below, we summarize the main intermediate results of the homogenization procedure. The detailed developments of the problems of successive
orders are reported in Appendix A. The leading order leads to uniform solid motion U(x) of the microporous matrix and to uniform pressure
in the fluid-saturated porous domain P(x). Then, the next problem in the pores is the usual local problem leading to Darcy’s law. Thus, after
averaging over the pore domain, it reads:

#, —i01) = =22 grad (), @1

where ¥V, is the mean fluid velocity in the pores and K, denotes the tensor of intrinsic permeability related to the pore network. In the
microporous domain €2, the first order problem takes the form

div (c:(e.(U) +e,') —ap’) =0 nQ

(c: (e(U)+e(') —p’)n=—Pon onl

div, ('-‘.gmd (po)) - iw [a (@ +e, W) + 5 p°] n 2)

n——

p’=P, onl

u' and p° @ —periodic
This differential set describes a non stationary local regime forced by both the macro deformation of the solid matrix e, (L) and the pore
pressure P,. In Appendix A3.3, ananalysis based on the definition ofthe particular local fields is carried out. It yields the following solution:

=T+ ul = Eo() +E(. 0): (1) — (€, () + L. )Py, l
P =F+P, =0y, 0) : () +(1 - F(y, 0)P,.

In the above equations, the particular local fields are decomposed into their long-term part (i.e. when @ = 0, namely, §4(y) and ¢ (y)) and
their transient part, namely, E(X ), z(y_ ), 5(1 ) and 5’(2, ®). We shall underline that both pressure fields differ, except at zero frequency

(43)
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(i.e. atlong term). We further note that the micropore pressure is not uniform, except at both limits of zero frequency (i.e. at long term) and
of ‘infinite’! frequency, (i.e. short term). In this latter case, a boundary layer arises at the pore/micropore interface I', which enables the sharp
transition between both uniform pressure fields.

Finally, the macroscopic model is established by deriving the momentum and mass balances, from the local second order problems in
both domains. Integrating the momentum balance over each volume, while accounting for the boundary condition and periodicity leads to the
balance equation governing the macroscopic total stress tensor S in the double porosity medium:

div (S) =0, S= ,fli/ dQ — ¢, Pl 44)
Q
where £ = c : (e,(U) +e,(u')) — e p°, and u' and p° are given by (4.3). Hence, the constitutive law for the macroscopic total stress tensor
reads:
S =C(w): e.(U) — A(w)P,. 4.5)
Similarly, the macroscopic mass balance is obtained by integrating the mass balance over each volume, and by accounting for the boundary
condition and periodicity. This leads to:
0

¢pdiv, (V- ioU) = iw (—¢,, (div,(_Q) + ﬁ) - -,1-/ (a : (ey(u') + e, (U)) — divy(u') + p_) dﬂ) .

’ Ke) 19l Ja M
Replacing the local fields (u!, p°) by their expressions given by (4.3), the macroscopic mass balance governing the double porosity medium
takes the form:

P,
¢pdiv, (V, — iwl) = i (—B(w) te () — M(pw)) . (4.6)

4.2 Features of effective quantities

Effective tensors C(w), A(@), B(w) and scalar 1/ M(w) are directly related to the local particular fields and their expressions are given in
Appendix A. In addition, the symmetry (minor and major) of the effective tensors C(w), A(w) and B(w), and the equality A(w) = B(w)
are established in Appendix B through the variational formulation of the local problems. This latter result reveals the symmetrical coupling
between the pressure and solid deformation, even in a transient local regime. This is an erratum to the papers (Auriault & Boutin 1992, 1993),
where a mistake on a volume integration led to the erroneous conclusion of non-symmetrical coupling in double porosity media.

The tensors C(w), A(w), and the scalar 1/ M(w) can be decomposed into elastic parts, Cy, Ay and 1/M, thatcorrespond to the long-term
elastic response, and frequency-dependent parts e(w), X(w), and 1 /J\‘Z(w), that is,
1 1

C(w) = Co+ C(w); Aw) = Ag+ Aw); @) = M + o) @.7)
Furthermore, the analysis at low frequency shows that
&(w) - inaCo; A(w) - iwnhe; ﬁl(j) - '%’ when @ —> 0, 48)

where Cg, A&, and M, are frequency independent, dimensionless and real valied.
Alternatively, C(w), A(w) and 1/ M(w) can be decomposed into their elastic short-term parts (high-frequency limit, purely elastic, hence
real) C,,, A, and 1/ M, and frequency-dependent parts C(w), A(w) and 1/ M(w), that is:
_ 1 1
M@ ~ M.+ M@
The analysis of the behaviour at high-frequency shows that C(w), A(w) and 1/ M(w) account for the boundary-layer effect. Indeed, focusing
on the isotropic case, we obtain

C(0) =Co +C@);  A(@) = As + Aw); 4.9)

1 N 8r1
M) 2 My
In the above expressions, § denotes the ‘complex thickness® of the frequency-dependent boundary layer defined as

Cw) ~ %—Cm; Aw) > %—AN; when @ — o0 (4.10)

§= g, (4.11)
iwn

where K represents the isotropic microporous intrinsic permeability, B is the consolidation modulus and C, A~ and M., are frequency

independent, dimensionless and real valued.

! Although “infinite” frequencies are physically impossible, high-frequency regimes can be modelled by mathematically considering that w —» oo. For simplicity,
here and in the sequel, “infinite’ frequency indicates the high-frequency limit behaviour of the model.
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4.3 Homogenized model

To summarize, and assuming the presence of harmonic macroscopic volume forces F and of a harmonic density of fluid injection V, the
description of the double porosity medium in harmonic regime is given by the following set of equations, in which the index 0 indicating the
leading order, and index x indicating the macroscale derivation have been omitted:

div(S)+ £ =0

S=C(w): el)) - A(w)P,

¢pdiv(V, —iwg)+iwv—iw(—A(w)-e@_ Py ) (4.12)
P B T M@
¢p(¥, —iwl) = —%.ﬂxp,,)

This set is formally similar to the classical biphasic Biot model described by the motion of the macroporous domain U and the pressure
P, of the pore domain (as well as the mean fluid velocity ¥_ in the pores). However, due to the transient regime at the microporous
scale, the effective tensor of stiffness C, the coupling tensor A and the compressibility M are complex and frequency dependent. This
corresponds to a Biot porous medium with a viscoelastic skeleton and where the fluid appears to be viscous Newtonian, but with a viscoelastic
compressibility.

4.3.1 Memory effects and apparent viscoelasticity

In order to investigate these effects, we first separate the transient and long-term responses of C, A and M by incorporating expressions (4.7)
into the macroscopic description (4.12):

div($) + £ =0

S =[Cy + C(w)) : () — [Ag + A()) P,

. . . —_ > iy . 1 1 1 (4‘13)
$pdiv(V, —iol) + 0V = —iw[As + A@)): (V) —iw [E NP =(a»)] &

K
4, = i0l) = ~=L.grad(P,)

Then, we come back to the time domain by inverse Fourier transform. We thus obtain the following integro-differential model with memory
effects:

divS,) + £ =0

S, =Cy:e(U,) — AgPy +Cyie(U,) — A, * Py

' o Py o = (4.14)
Opiv(V y —U)+ Vs =~ eU) = 7=~ K,ze,) ~ M, » Py

K
Ol = U) =~ =L grad(Py)

where time-dependent variables are indexed by ,, and in which E(t), X(t) and ﬁ(t) are defined by means of convolution products. For
example

&= / " @) exp—iondo;  C(r):e(U) = l &) eUt - 1) dr.

The memory effects resultin an apparent viscoelasticity, which induces both creep and relaxation phenomena. The assessment of the retardation
effects requires the knowledge of local fields which are determined from the microstructure and the mechanical parameters of the constituents.
In general, numerical methods are necessary to solve this local problem. However, some simple morphologies can be investigated analytically.
Exact derivation can, indeed, be performed in the academic case of fluid/microporous stratified media as described in Section 7 ; and for
the case of a medium made of spherical pores embedded in a microporous matrix can be investigated using a self-consistent/geometrical
approximation approach. This latter problem is the subject of a subsequent paper.



1702

The spectral decomposition described in Appendix A (Appendix A3.4) provides an alternative manner to account for the apparent
viscoelastic effects without introducing convolution products. According to eqs (A29-a), (A43-a) and (A52-a) transposed in the time domain,
the behaviour of the double porosity medium can be described as follows

div(S:)+F, =0
S, =Co:eU,) — APy + Y an(s; — aPy)

I
: . P Pr
pdiv(U,, —U )+ Vi = —Ao: e(U,) — M _Z,:ah (Bl + 70) (4.15)
¢P(.Q.pl - .Q:) = _%'MPF)
o+ (= + D1y d +Y Dyay=—(D;: U)+DP—”'
nah o 1) an 1y = rie (U, IM

JAI
where s;, Py, By, Dyy, Dy, D; are defined in (A29-b), (A43-b) and (A52-b).

Inthisform, the additional variables a; (x , ) are the instantaneous amplitudes of eigenfunctions corresponding to microscopic descriptors.
They are introduced instead of keeping only the macroscopic variables U and P,, which require to deal with convolution products. Thus, both
the microscopic descriptors and macro variables can be determined in parallel by solving the coupled linear differential set governing their
time/space evolution. Such a formulation is usual in the framework of generalized continua where the microstructural effects are ‘condensed”’
into additional variables governed by specific equations of evolution (Eringen 1968; dell’Isola et al. 1997a). The multiscale identification
method (dell'Isola et al. 1997b) based on the identification of micro and macro Lagrangians and on suitable micro-macro correspondence of
kinematical descriptors is somehow similar to the spectral approach.

The formulation in terms of microscopic descriptors may be convenient for computational methods (see for example, Liu et al. 2009;
Carcione et al. 2010). In fact, the use of microscopic descriptors (i) avoids the difficulties associated to the numerical treatment of convolution
products, which requires to store the data of the preceding steps of calculation Arbogast (1997), (ii) does not require multi-scale mesh,
conversely to the ‘square’ finite element method (FEM?). In fact, local fields are pre-integrated within parameters s;, Py, By, Dy, Dy, Dy,
which are determined fromthe eigenmodes calculations in the microporous domain. Furthermore, the relevant number of eigenmodes required
for the calculations can be adapted according to the frequency spectrum content. Double porosity media differ from ‘standard’ generalized
continua, mainly by the fact that the time evolution of each microscopic descriptor is ruled by differential equations of the first order, with
a forcing term related to the macroscopic variables. Consequently, the descriptors can formally be determined as a function of the macro
variables and their combination constitutes the kernel of the convolution product. For this reason, a;(x, f) are hidden variables in the usual
description formulated in terms of the macroscopic variables U and P, only.

The kernel of the convolution product can be explicitly expressed when the eigenmodes are fully decoupled (i.e. not only for pressure
but also for the associated motions). In that case, Dy; = D;8;; and the amplitudes a; satisfy:

Ky 1 . . o Pp,
Fan + (V + Dll) ap =— (Dl re(U,)+Dr M) . (4.16)
Hence, the free time variation of ay, is an exponential decay of characteristic time

1 n 1 1Y\ &y £y
g (M * ”) P ((M * |c|) |x|1) (IKIBI)

and integrating leads to

_ 1 ! _ _t - u . Ppu
= Lﬂ exp( - )[D, (U, + Dr 2 ]du. @.17)

This shows that the kernel ofthe convolution product is the sum of the impulse responses of each amplitude a;. According to the characteristic
time of variation 7. of the macroscopic variables, a; simplifies into:
ap(x,t)= -1 (Dl re(U,)+ Dy i) if >»u
Ky M
1

,'-7 + Dy

(4.18)

P,
a;({, I)N - (D] : e,(l_l,)+ D; Vp') if . <1

4.3.2 Case of a rigid skeleton

In case of a rigid skeleton, or of a skeleton with a modulus much larger than the fluid bulk modulus, then the solid motion vanishes and the
description reduces to the combination of a simplified mass balance with Darcy’s law. Eliminating the flux, and in the absence of a source
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term, the description becomes:

. (K ® 4 1 .
dw(—n’?.gid(Pp)) - (K—'; 7 m) iwP, @19)

where ¢ =¢(1 —¢,) and M reduces to K/¢,.
Using the spectral decomposition, the description can be rewritten as:

. (K opte ¢
dw(Tp'MPpl))=Ppl L +K—le:ahpl

K
f (4.20)
an+ ne a =_n¢D:P
e Kfl(] o KfK] "

5 TIMESCALE RATIO VERSUS PERMEABILITY CONTRAST AS KEY PARAMETER
FOR PREDICTING DOUBLE POROSITY EFFECTS

As already noticed in pioneering works Auriault (1983) and Arbogast (1989), the order of magnitude of the thermal conductivity or of the
permeability contrast that gives rise to a macroscopic model with two interacting fields is: -KE; = O(&?). Following the reasoning adopted in
Section 3.5, a higher contrast, that is, é’- < 0(g%) implies that the micropore fluid flux is smaller than the pore fluid flux by two orders of
magnitude lgl = 0(62|4_;_p|). As a consequence, the micropore fluid flux at the local scale is too small to balance the volume variation of the
microporous domain. Hence, instead of eq. (4.2-c) we have

0=iw [a (e (U)+ e,(u")) + %p"] (5.1)

which leads to the same description as that obtained for the high-frequency case.
Comversely, a weaker contrast, that is, -KE; > O(g), facilitates the fluid flux in the micropores, so that the pressure gradient in the
microporous domain is of the same order of magnitude as that in the pore volume. Consequently, the flux is estimated as

9= 0(xf)

Furthermore, the fluid flow gives now rise to macroscopic volume variations of the medium. These are greater by one order of magnitude
than both the volume variation due to solid deformation and the fluid compressibility. Hence, the mass balance of the Biot model is rescaled
as follows:

j K
div(g)=s[—a:e(g)—§] with  gx,y) =~ grad(p) = eg'(x.y) + -

In this situation, the local scale eq. (4.2-c), is replaced by
K
divy (7.ﬂy(p°)) =0 (52)

which, together with the associated boundary conditions, leads to p° = P, and therefore to the low-frequency description.

As discussed for similar problems in Royer & Boutin (2012) (see also Boutin et al. 1998), this analysis shows that the order of magnitude
of the permeability ratio is in fact linked to the temporal regime experienced by the microporous domain. This regime is determined by the
ratio of the intrinsic characteristic time of consolidation in the microporous domain, t ¢f eq. (3.5), to the macroscopic characteristic time 7'
of the considered phenomenon. Consider a ‘two permeability’ medium with a given value of permeability contrast ,% < 1. The behaviour is
conditioned by the timescale ratio:

(1) if T/t = O(1): the double porosity model (4.12) with memory (or viscoelastic) effects applies. In this case, both the microporous and
the macroscopic domains experience a transient regime and two distinct and interacting pressure fields coexist.

(2) if T/t > O(1): the low-frequency limit of the double porosity model applies. The microporous matrix behaves locally as a Biot medium
in drained condition, but remains in quasi-static state regime, while the macro domain experiences a transient regime. The pore and the
macropore domains undergo the same pressure, and the behaviour is described by Biot’s model, but with the elastic effective properties of
the dry double porosity structure.

(3) if T/t « O(1), the high-frequency limit of the double porosity model applies. In this situation, the fluid in the micropores has not
enough time to flow throughout the medium. Hence, the microporous domain is unable to be excited and behaves locally as a Biot medium in
undrained condition, while the macro domain experiences a transient flow regime. Macroscopically, the medium is described by a Biot model
whose effective elastic tensor takes into account the fact that the microporous domain is saturated by a static fluid.
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These definitions of the model domains of validity trough the timescale ratio are consistent with those deduced from the permeability
contrasts, which are intrinsically linked to length scales. As previously mentioned, 7'is associated to the macroscopic characteristic length
L=¢""Lby

n Lz) r K1L?
Tr=0|2n——) this —=——. 53
("|le, B ITRE (53)
Hence, for a given dual permeability medium, the following orders of magnitude of the permeability contrast f"- > 0(g%), K—‘; = 0(s%),
K—‘; & O(g%), will lead to the slow, T/t < O(1), the intermediate, T/t = O(1), and the fast, T/t 3> O(1) evolutions, respectively. The slow
and fast variations are the limit cases of the intermediate description. However, for extremely slow variations the permeability contrast appears
to be O(1). In this case the effective permeability should include the flow in the microporous domain, regardless of its small magnitude.

6 HOMOGENIZED VERSUS PHENOMENOLOGICAL MODELS

Although homogenized and phenomenological models—as in Barenblatt et al (1960) (herein after denoted ‘BZK’) or in Warren & Root
(1963) (*WR’)—both involve two distinct pressure fields, both types of models are strongly distinct, as already noticed in Hornung &
Showalter (1990), Auriault & Royer (1993), Royer & Auriault (1994) and Royer et al (1996). As neither the skeleton elasticity, nor the
possible anisotropy are essential factors for the pressure regime, it is sufficient to focus on rigid isotropic porous media for analysing this
mismatch. Therefore, throughout this section we assume B= M = K;/¢,.

In the homogenization method, the micro morphology of double porosity media is explicitly described and the corresponding family
of models, according to the permeability contrast value, is rigorously established. Now, regardless of the up-scaling procedure, identical
microscopic morphologies must lead to the same macroscopic behaviour. Consequently, and conversely to the widely accepted postulate, the
BZK and WR models do not correspond to the same double porosity / double permeability morphology as that derived by homogenization.
In fact, since the phenomenological models are directly stated at the macro scale, by principle, one can only conjecture the micromorphology
that these models are able to describe.

A relevant micro morphology responding to the phenomenological models can be identified, if, when treated by homogenization, a
description identical to the phenomenological models is obtained. Let us remind the BZK formulation expressed in the frequency domain
(with similar notations as in this paper, and s being an undetermined area parameter)

K K
Bopr, =20, - Ep-p)
n Ky sn
K . X 6.1)
—AP= Y iwP+ —(P—-P
S AP = fioP+ (P~ F)

Transposed to thermal conduction problems, the BZK model corresponds to composites with high thermal contact resistance as studied
in Auriault & Ene (1994). The BZK model incorrectly describes double porosity media, as defined in this paper. However, it is correct in
describing a medium with two pore networks, with permeabilities K and K, and porosities ¢, ¢, of the same order, separated by a thin
layer of thickness e of much lower permeability &, see Auriault et al (2009). This is illustrated in Fig. 2. After homogenization, this inner
interface gives rise to (i) the coexistence of two macroscopic uniform fields of pressure, and (ii) a flux between the two networks driven by the
difference of pressure P — P, and an effective parameter % = 0(%), see Royer & Auriault (1999) for the case of transfer of compressible

Figure 2. Elementary representative volume aQ corresponding to BZK and WR phenomenological models. Left: fissured microporous material. Right:
microporous medium with pore network. In both cases the microporous domains are separated from the pore (or fissure) domain by a thin layer of high
hydraulic resistivity on I".
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gas. In this model both networks play symmetrical roles which is not consistent with the assumption of contrasted permeabilities. For this
reason, in the WR model the smallest permeability is discarded and set to zero. Therefore, the pressure in the more permeable network forces
the pressure in the less permeable one.

Kear, = iup, - —(P Py
1 K,
0 6.2)

As the BZK model, the WR model (and its extensions to poroelasticity) would rigorously be obtained by homogenization for media having
two pore networks, but with contrasted permeabilities (i.e. K < K), separated by a thin layer of much smaller permeability. Two distinct
uniform pressures coexist at the local scale with an inner flow between the two networks. With this morphology the area parameter s is in the
order of s = 0(‘%!1:-).

Despite the permeability contrast, this micro morphology also differs from that of double porosity media. Nevertheless, due to the
unsymmetrical role of the pressures, the WR model is ‘closer’ to the double porosity model than the BZK model. In addition, at low frequency
P — P, and at high-frequency P — 0 which is also consistent with the homogenized model. Besides, we can eliminate pressure P to obtain

K 1
—LAP, = &+ —— |iwP,. (6.3)
n " O\Kr Epiepz) T
[ N
This form enables a direct oomparison with the homogenized double porosity model (4.19). An exact match would be obtained if the terms
fvl +iwng)™ and J’; + -—— were equal in the whole frequency range.
At low ﬁ'equency, as M s:mphﬁes into 'v—’ according to the results of Appendix A5

¢ 1 4 ion ¢lag
K—I+ﬁksK—f[l+K—f K ] when w—0 (6.4)
where o is a dimensionless parameter O(1) determined from the low-frequency local problem (¢f Appendix A3.5), and I' is the area of the
pores/microporous domain interface. Thus, at low frequency, a match at the first and second order can be obtained by setting the undetermined
area parameter of the WR model to s = o¢I". With this approximation, both models expressed in the time domain reduce to

K, n ¢log
ZaB~ ((¢,,+¢)ap rog B ) 65)

This low-frequency representation is valid in the frequency range » & 2/t = O(; 7 K’K )
At high-frequency, that is, when @ — oo, we have, respectively, and aocordmg %o the results of Appendix A5 (o, is a dimensionless
parameter O(1)):

(K, )" K
+ion= ~
iawns
Kf KFam
M Kf iwn

Because of the frequency dependence in 1/ instead of 1/,/@, the WR model cannot match the homogemzed double porosity model. Hence,
the WR description provides erroneous description of double porosity media for frequencies @ > 0( ) This comes from the fact that the
flux between the two networks is in general not instantaneous as assumed in the WR model. The reader can refer to Auriault & Royer (1993)
where an improvement at low frequency of the WR is proposed through a time-dependent transfer law. For the whole frequency range, the
only way to reach a perfect match between both approaches would be to introduce a frequency-dependent transfer parameter ig':l such that

s(@) ¢ 1N\ K
wn’ (K,*’M) - ©7)

(6.6)

It is pertinent to remind that function J\‘Z(w) is specific to each morphology. However, its determination can be simplified by observing
that the kernel doesn’t present poles on the real axis, and M is therefore a smooth continuous function. Thus, from calculations at low and
high-frequency only, a reliable expression for the whole frequency range can be approximated in the following form, that matches the low
and high frequencies behaviours:

M(w)——[ +—“1+Wﬂn], = w‘,

f iw*
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where the critical frequency w,, separating the low- and high-frequency behaviour of the double porosity medium, and the dimensionless
form factor F are defined by

=L K . g2
Yon ¢y’ VITFog0

Finally, the possibility of matching the homogenized and WR models applies only for the pressure field in the pores and the mean flux stem
from the microporous domain. However, the pressure in the microporous domain is uniform in the WR model while it is non-uniform in
the homogenized model. Consequently, in the case of elastic skeleton, the WR model cannot take into account the consolidation within the
microporous domain, which requires an inhomogeneous pressure. Hence, the viscoelastic effect cannot be described when adopting the WR
model for the fluid transfer, as it is done in most of the phenomenological double porosity poroelastic models (see for example Wilson &
Aifantis 1982, 1984).

7 STRATIFIED DOUBLE POROSITY MEDIA

To illustrate the viscoelastic properties of double porosity media, consider now the simple case of a stratified periodic medium. This is made
of parallel layers of an isotropic microporous material, of thickness & = (1 — ¢,)¢, separated by fluid layers of thickness ¢, £. The normal of
the layers is oriented along the y;-axis (or equivalently x,-axis) and, because of the invariance along y; and y; axes, the local fields depend
only on y,. The fluid layer undergoes a pressure P,. According to the plane geometry, y; and y; play the same role. Therefore, we investigate
the response under macroscopic in plane kinematics defined by U = U, (x,, x3)a,. It corresponds to the macroscopic strain tensor involving
both volumetric (E);) and deviatoric strains (E}3):

Ey 0 Ep
e=| 0 o0 o |. (7.1)
Eysy 0 0
Because of the local invariance along y, and y; axes, the local fields depend only on y, that is, u' = u}(y;)a;, and
0 uji, 0
eu)=| ju, wui, jul,|. (12)
0 jui, 0

Thus, the effective stress o°(x,, »2. X3) in the microporous skeleton reads:
Ey %“:,2 En
0’ = MEn +up,M4+2p | dul, wl, 1ul,|. (7.3)

En 112 uj, 0

7.1 Long-term and short-term behaviours

Consider the local problem (A6), defined in Appendix A3.1 and which describes the long-term (or zero-frequency) response. The momentum
balance equation div(o'j) = 0 leads to:

a&u =0, i=1,273.

Now;, using the boundary condition we derive the constant values
agu = agn =0; agn =(-1+a)P,.
Consequently, we obtain:

Uy = _).:ZME“ - ffzi
This implies that for this stratified medium, we have:

A
A+2u

P,

P

T L 0
Ug , = Ugy, =0

1 . 3 _ . —
£ =- na Ey =0 =550



The macroscopic total stress tensor reads:
S=(1—-¢,No° — alP,) — ¢,1P,
and the non-zero components are

S||=(1—¢p)( AiZ +2M)E||—(1+(“—1)A+2 )P

Sn = _Pp,
m
Py,
A+2u) ?
Sin = Sy =(1—¢p)2uE.

Hence, the effective parameters at low frequency read:

+Il~
A+ 2u

S_u:(l ¢p)A).+2 E“—(l+(a—l)

M= (1 - g Mu— s Col=0

Gl =(1—¢,2u———: Gl =(1 —¢,)2u

A
A+2u
2u
Aoln=Aoln=1—-(1—-¢X1 —a)m; Aoz =1

L _% eyl =P
M-k ¢ ¢’)(M+A+2M)
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(7.4)

(7.5)

Following the reasoning adopted in Appendix A3.2, the short-term behaviour can be derived in a similarly way, by changingcinto ¢ + M ® o
and modifying the forcing pressure by I — « in eq. (A6). In the isotropic case, this means that the Lamé coefficient A becomes A, = A +

«*M, and that the forcing pressure is reduced by a factor 1 — . Consequently, the effective parameters at high frequency read:

cm|::=(1—¢p)4u£++2‘;; Colll = i = 0
Colli = (1 == Call}=Coll} = (1 - 920
Acln=Axln=1-(1- ¢p))~x+2' Agln=1
b, 1m0

M.~ K, T hnton

(7.6)

Note that the response under macroscopic shear is identical at both short and long terms, since the pressure does not interact with the deviatoric

part of strains.

7.2 Frequency-dependent behaviour

Consider the local problem (A17) defining the response (i, P) at any frequency. In the stratified case with in-plane kinematics

U = U\(x), x3)a,, y: is the single variable. The differential set of equations thus becomes:
(A+2u)iiy 22 — P =0; pihypn=pihn=0 for|y| <h/2
()s +2M)172.2 —aﬁ = 0, [lsil‘z = [1473‘2 =0 fOl'}Q = ih/2

A a—1 1
—af1- 2 _ — 4+ — ) P, fi h
“( A+2u)E"+(aA+2u+M) p  forlyal=h2

p=0  fory ==xh/2

==t

K 52 —ad
—ra 22
ion

Using the isotropy of « and the fact that uy = £)' Eyy — { P,, theterma : (e, (U) + €,(uq")) simplifies into:

-1
P

. . A o
i@+ a6y Bn - g, = o (1= 5557 ) Bt g

(1.7
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From (7.7-a,b), we deduce that %7, = i, = 0 and that (A+2u)u
governing equation for pressure 7, where we shall remind that 1 5=

o

e pu-t=pws Pw=ai-

iwn

A
A+2u

a—
A+2u

Integration of this equation with boundary conditions (7.7-d) gives:

Blya) = — : =1 cosh02/d)
PO =-D@BI 2 ['0n) =1~ —mmmess

Coming back to the expression of D, we derive

" = —«B (1
x+2

Integrating equality (A + 2u)i » = «p gives the associated local displacement field

1 B

£ =i+ (l A+2 )f(”)a; £ =0

in which
sinh(y/8)

TO9 =0 = @y

and thus
h

F(w)= %/_:Zf(m)dn =1—%m(2—8).

)f()&) =0, &= B(

a—1

A+2p

L
T

a1
e

)%

M

ﬁ) 62

ap. This latter relation substituted in (7.7-c) gives the following

(7.8)

The normalized distribution of pressure f'();) and motion f{y;) are shown in Fig. 3 for low, intermediate and high frequencies. Note that
the pressure and motions are of weak amplitude and in phase quadrature (real parts are almost zero) at low frequencies. At intermediate
frequencies, the fields become complex and non-homogenous Finally, at high frequency the fields are almost real and homogeneous except

within the boundary layer on the interface.

Figure 3. Normalized distributions within the microporous layer, of pressure f'(y2) (continuous line), and of motion f{y) (dashed lines); Real parts are
in thick lines, while imaginary parts are in thin lines. The distributions are displayed for low frequency w/wg, = 0.02 (top left), intermediate frequency
@ fwgy = 2 (top right) and high frequencies w/wg = 20 (bottom left), w/wy, =200 (bottom right).
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Figure 4. Normalized viscoelastic part F of the effective parameters versus dimensionless frequency ;‘:—’. Tick line: real part; thin line: imaginary part.

The knowledge of the local fields enables the determination of frequency-dependent parameters (see Appendix Ad):

2u
A+2u
a—1 1

F Ap=0 9
A+2u( ).+2u+M) @ Al @9)

2
C|||—Co|33—(l—¢p)023( ) F@y CL=&l2=0

Alp=Aln=—~1-¢JaB——

-1 l
-1 I
B =~ -8 (ah + 1) P
The frequency dependence of the kernel function F(w) is plotted on Fig. 4. The low- and high-frequency variations of F(w) simply read:

1/ h\? iogh* _ iw
Flw)=~ - — hen 0
@) (23) KB~ @y @

F(‘l’)*‘l———l—- =1- ‘f @ — 00
Vtwn

where wg, = (12KB)/(nh?) and F = 1/ /3 are the characteristic frequency and the form factor of the stratified double porosity medium,
respectively.

Tensors C and A vamsh at zero frequency and tend to real values at high frequency. Furthermore, simple algebra enables to verify
that C.|}} = Col}l + CI (@ — o0) and similar equalities for the components of A and for M~'can be found. Again, the response under
macroscopic shear is pressure independent, and therefore frequency independent. Consequently, the retardation effects arise only in response
to variations of volumetric strain and pore pressure. Furthermore, all the frequency dependent parameters presentthe same frequency variation
as F(w).

(7.10)

7.3 Relaxation phenomenon

Relaxation functions are the time history ofthe effort inresponse to a Heaviside loading, for example, a homogeneous macroscopic extension,
Uy, (t) = Ey(f) = H(t), or a homogeneous pore pressure P(f) = H(f). Consider, for instance, a uniform jump of deformation without
pressure change, i.e, Ey; = H(t)and P(f) = 0. Then, the normal effective stress and the uniform volume injection required by the mass balance
reads:
Sut)= Gl H(t) + (Cali} — Coli}) F (1)
(7.11)
V(1) = Aol H(t) + (Accliy — Aal11)F(1)

where:

F(t)= /_ : aq,(—iw:)%‘:’)dw. (7.12)
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Using the residue method for inversion, the relaxation function F (1) is given by:

o— 8§ SXP (_ r(b-'—l)l) h*n
? == — — = — .

© Z.: 2 @n—1¢ ° ' @nyKB (.13)
The characteristic time of decay that arises from the mechanism of consolidation in the microporous domain is of order O( r) (see Fig. 5), and

is directly related to the permeability of the microporous domain, the bulk compressibility and the size of the layer.

8 DYNAMICS OF DOUBLE POROSITY MEDIA

In order to focus on double porosity effects, we have neglected the inertial terms while establishing the poroelastic double porosity model in
Section 4. The extension to dynamics can be performed by simply adding inertial terms as in Auriault & Boutin (1994), provided that the
condition of scale separation is still satisfied. The local description in dynamics is then written as follows.

(1) in the microporous medium
div(E) = (1 — §)p,it + dpsi,
Z=c:e(w)—apl

div(g) = —a : e(i) — % @1
K
g =d —i)= —%wld(p)w@

where p, and py are the density of the solid and the fluid, respectively, and where K(w) represents the dynamic permeability which accounts
for both viscous and inertial effects on the flow in the micropores.

(2) in the pores
Q—V(ap) = pfi’.p
0, = —ppl+ 2nD(y,) (8.2)
. Pp
div(y ) = — =2
@) =-¢-

The boundary conditions between both domains remain unchanged and described by eq. (3.3), and the rescaled asymptotic expansions (3.8)
and eq. (3.9) still apply. As the inertial terms are of zero order, the homogenization process is almost unchanged (¢f. Appendix A6). The main
differences are the following:

(1) since the pore flow involves inertia, it is now governed by a dynamic Darcy’s law, characterized by the dynamic permeability KO, (w):
(2) the local problem in the microporous domain is formally identical to (4.2) except that the real intrinsic permeability K is replaced by
the complex dynamic permeability K(w):
(3) the mean inertial terms appear in the macroscopic balance equations.
As a consequence, the dynamics of double porosity media is described by the following set of equations:

div(S) + F = —o*(1 — ¢p)[(1 — ¢)p. + ¢p/)U +iwgpp, ¥,

$=C@.K) : e(U) - A@, K)P,1
P, ) (8.3)
M(w, K)

$p(¥, —il) = —%.uﬂm) — apyU]

The effective tensors C(w, K), A(w, K), M(w, ) are determined exactly in the same manner as for C(), A(@), M(w), except that Kbecomes
K(w). Therefore, the symmetry properties can be established as in the quasi-static case. Note that, strictly speaking, these tensors are of
elasto-visco-inertial nature.

In practice, due to the weak permeability of the micro-porous domain, in most cases the flow regime in the microporous domain remains
driven by viscosity, while the flow in the pores may be significantly affected by the inertia. Indeed, the characteristic frequencies characterizing
the ratio of viscous to inertial terms in the pore and in the micropore network are:

o Mo M Kié,
T K ey © O Klpy K, lé

dpdiv(V, —iol) + iV =iw (—A(w,K) re(U) —

thus @, /0. = < 1.
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Table 1. Usual parameters for porous fractured rocks.

¢ ép ps (kgm™?) o kgm™) K: (Pa) Ky (Pa)
02 0.02 2.7 x 10? 10° 7 x 10 2 x 10°
A (Pa) w(Pa) o M (Pa) K(m?) K, ()
5x 10 66 x 101 086 9.1 x 101 12 x 1072 2x 1071
TF
10,
08
06}
04}
02}
0.0 !
0 5 10 15 20 25 .

Figure 5. Relaxation function ?(t) versus dimensionless time ¢/ 1.

Consequently, in the dynamic description (8.3), X, may take complex values (when @ > @,,) while K presents a weak imaginary part (as
@y < @ < ,)so that, practically K~ K. Hence, as first approximation (of increasing accuracy as @ is lower than w,), the tensors C(w, ),
A(w, K) and M(w, ) can be replaced by C(w), A(w) and M(w), in the description (8.3). This situation leads to a description similar to
a dynamic Biot's model characterized by the dynamic permeability of the pore network K, and made of viscoelastic constituents, whose
effective tensors are identical to those established in the quasi-static development.

In this context, the features of the complex wave celerity ({w) of the P1 compression wave in isotropic double porosity media has been
calculated. The derivation of the wave celerity Re(((w)) and attenuation Im(C(w))/Re( C(w)) is performed by following the same steps as
in a single porosity Biot porous medium (Deresiewickz 1960) and is not detailed here. Calculations have been done with the data displayed
on Table 1, which correspond to usual properties of fractured sandstone or limestone oil reservoirs. The frequency range of calculation is
limited to @ = 750 Hz so that the inertial flow effect is negligible. Hence, intrinsic permeabilities have been used. For simplicity, we use the
frequency-dependent viscoelastic function (7.8) deduced for the stratified case. Figs 6 and 7 show wave dispersion and attenuation in two
distinct fractured porous rocks made of the same porous matrix with fracture spacing of & = 4m and h = 2.3m, respectively, corresponding
to characteristic frequencies w4, of 100 Hz and 300 Hz, respectively. The comparison with the values for the (single-porosity) porous matrix
highlights the double porosity effect:

(1) Double porosity enhances the dispersion of the P1 wave. However, this perturbation is of the order of 1 per cent and can be neglected
in practice.

(2) Double porosity enhances the attenuation of the P1 wave of a factor of about 3 in a frequency range associated to the characteristic
double porosity frequency. Note further that, conversely to the P1 attenuation in the single porosity Biot model, here the attenuation is not
proportional to the frequency. This difference is a consequence of the significant fluid/solid relative motions which are induced inside the
microporous domain and which give rise energy dissipation by viscous effect. Conversely, in a single porosity medium, the fluid and solid
motions are almost identical under the propagation of a P1 wave and the dissipation is smaller. This additional attenuation is a possible
explanation of the observed attenuation of seismic waves which cannot be adequately accounted for by the classic Biot model.

For more general applications of the theory to practical cases a numerical implementation is required. In the frequency domain this task
should be relatively easy by introducing the complex effective parameters. In the time domain much efforts are necessary to address the
induced memory effects. A comprehensive analysis of these complex numerical aspects is a specific topic itself, which is out of the scope of
this paper.
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Figure 6. Dispersion of the P1 wave velocity Re(C(w))/ ((0) of two fractured porous rocks characterized by wg = 100 Hz (thick line); 300 Hz (nomnal line).
The dispersion corresponding to the constitutive (single porosity) porous matrix is given for comparison (dashed line). The reference celenty deduced from
values of Table 1,is C(0) = 2.66 x 10* ms™'.
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Figure 7. P1 wave attenuation /m((Q(w)) /Re(C(w)) of two fractured porous rocks characterized by awgp = 100 Hz (thick line); 300 Hz (normal line). The
attenuation corresponding to the constitutive (single porosity) porous matrix is given for comparison (dashed line).

9 CONCLUSION

This work presents the links between between (i) the micro/meso morphology and (ii) the timescale of evolution and the corresponding
structure of the model for double porosity poroelastic media.

The dual-porosity macroscopic behaviour, that is, the two-pressure-field macroscopic behaviour is obtained by homogenization when
the characteristic time of consolidation in the microporous domain is of same order as the macroscopic characteristic time of the transient
regime. This corresponds to a permeability ratio K /K, = &2 < 1. The coupling tensors of the dual-porosity poroelastic model are shown to
be equal, which proves the symmetrical coupling between pressure and solid deformation. Consequently, the macroscopic model is similar to
the classical biphasic Biot model, but with complex-valued and frequency-dependent effective stiffness, coupling tensor and compressibility,
that correspond to apparent viscoelastic properties of the solid and the fluid. In transient regime, these viscoelastic effects lead to retardation
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Table 2. The relevant behaviours and their effective parameters according to the frequency @ compared to the three
characteristic frequencies of the micropore diffusion process wg,, and the flow regime inthe pores w,p, and in micropores
w,. Top: Quasi-static case model (4.12), Bottom: Dynamic model (8.3).

Quasi-static Model (4.12) ; wgy < i

o € wdp o= Nwdp) wdp € @ < wep Wep < @ < We
Single porosity Double porosity Single porosity
Drained micropores Transient regime Undrained micropores
Co, Ag, My o), Alw), M(w) Cooy Ano, Mo
Viscous regime of pore and micropore flow Dynamic pore flow
K, Kp(w)
Dynamic Model (8.3) ; wgp = Nagp) < @
@ Lwgy w=0Nogp)=Nwog) gy X @
Single porosity Double porosity Single porosity
Drained micropores Transient regime Undrained micropores
Co, Ag, My Clw, K), Ao, K), M, K) Cooy Ano, Mo
Viscous flow in pores (and micropores) Dynamic regime of pore (and micropore) flow
K, K Kp@) (K@)

effects expressed in terms of convolution products. It is also shown how the use of a spectral decomposition allows to take into account the
apparent viscoelastic effects without introducing convolution products, which is more convenient for computational issues. When considering
a higher permeability contrast K/K,, < &, the corresponding description is the high-frequency limit of the above mentioned double porosity
model. Conversely, a weaker contrast /K, > £ leads to the quasi-static description. This shows that the permeability scaling is in fact strongly
related to the regime experienced by the microporous domain. This regime is characterized by the ratio between the characteristic time of
consolidation in the microporous matrix t and the characteristic macroscopic time of the phenomenon 7

(1) if T/t = O(1): the double porosity model with memory (or viscoelactic) effects applies. Both the microporous and the macroscopic
domains experience a transient regime and two distinct pressure fields coexist.

(2) if T/t > O(1): the low-frequency limit of the double porosity model applies. The pore and the macropore domains undergo the same
pressure, and the description is the usual Biot’s one.

(3) if T/t < O(1): the high-frequency limit ofthe double porosity model applies. The medium is described by a Biot model whose effective
elastic tensor takes into account the fact that the microporous domain is saturated by a static fluid.

In other words, the double porosity behaviour is reached when a transient consolidation process arises within the microporous domain.
Conversely, for long (respectively short) time evolution the microporous domain behaves in drained (respectively undrained) conditions, and
usual Biot descriptions applies (with different effective parameters). The frequency range of validity of different behaviours are shown in
Table 2.

The time-dependent interaction between both porous networks is an essential feature of the behaviour of double porosity media with
contrasted permeability. Conversely, an instantaneous interaction is assumed in the phenomenological models extending the BZK or WR
models to deformable solids. We have shown that the instantaneous assumption does not describe a double porosity microstructure but a
medium with two pore networks of contrasted permeabilities, separated by a thin layer of much smaller permeability which constitutes an
interface flow barrier. In practice, this specific morphology is less usual than the actual double porosity one. Furthermore, these models fail
at predicting and reproducing the behaviour of usual double porosity media.

These results are of particular interest in reservoir geophysics, ultrasonic and seismic exploration. Indeed, the models enable to characterize
the seismic response of geologic formations. For instance, the frequency spectra of the loss mechanisms occurring in single porosity, double
porosity or media with interface flow barrier are of different natures. The model introduced in this paper provides an interpreting tool for
identifying the actual morphology of complex saturated porous media.

In dynamic regime, the results are very similar to those derived in quasi-static regime, provided that the scale separation requirement
is satisfied. It is worth reminding that the results established in this paper for periodic materials with separated scales formally apply to
non-periodic materials for which a REV can be defined (Auriault et al. 2009). Note however, that the determination of the effective parameters
is then not reducible to a well-defined problem to be solved ina periodic cell. Finally, the models can also be extended to patchy porous media
with highly contrasted permeabilities.
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APPENDIX A: HOMOGENIZATION PROCESS

Introducing the asymptotic expansions into the set of governing equations, while taking into account estimates presented in Section 3.5, we
get the following boundary value problems of successive orders of magnitude of &.

A1l Leading order problemsin 2 and 2,
In the microporous domain, the leading order problem simply reads:
div, (c:e,")) =0 nQ
(c:eyw”)) =0 onI’ (A1)
u®, Q- periodic
This is a classical local problem for an elastic porous skeleton whose solution is (Auriault 1980) :

u’(x, y)=U(x) (A2)
For the pores at the leading order we have div ( —pgl) = —gidy(pg) =0, thus
Pa(x. y) = Py(3). (A3)

A2 Local problem in the pore domain £,
In the pores, the second-order problem reads:

—grad (p}) —grad (P,) +nA,(15) =0 inQ,

div(¥)) =0 inQ,
y_g—iw_ll:o onl"

This is the well-known local problem defining the Darcy’s law; from which we obtain:

g:, —iol = ko grad (P,).

=
The particular sohnioml_r’p corresponding to grady;(Pp) = 8;; (8 is the Kronecker symbol) are real valued. Defining the mean fluid motion
in the pores and the tensor of intrinsic permeability respectively by

1 1
V, =— 0 dQ; K,=— | k,d2 Ad
= ﬂ,,./n,!’d’ P ﬂ,,,/gppd (Ad)
we get the usual Darcy’s law :

. K
¢V, —ial) = —T’.grad (Fp). (AS5)

A3 Next order local problem in the microporous domain 2

The first order problem in € is given by the set of equations (4.2). Note that, as expected, this frequency-dependent problem is the one
obtained using the three scale approach in Auriault & Boutin (1993). Before investigating the solution at any frequency, let us consider the
long- and short-term responses reached at zero and ‘infinite’ frequency respectively.

A3.1 Low-frequency (long-term) local response
When o = 0, eqs (4.2—¢,d) lead to the trivial solution p%(@ = 0) = P,(x). Thus, denoting u' (@ = 0) = u}, (4.2-a,b,e) become:
div, (c: (e,(U) +e&,l) —aP) =0 inQ
(c: (ex(W) + ey(u))) —e)P,) m=—P,n onTl (A6)

-~
1

uy, 2 —periodic
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The microporous domain reacts with the skeleton elastic tensor ¢ to the macroscopic strain e, (L)) and pore pressure P,, both acting as forcing
terms. The equivalent variational formulation is derived by taking the scalar product of eq. (A6-a) with a -periodic test field w defined over
€2, and then by integrating over £2. The Q-periodicity provides:

Vuw Q — periodic / [(e: (e, ) +e,(uh) — aP,) .nlwds =0 (A7)
st

Then, using the divergence theorem, the symmetry of ¢ and e, and boundary condition (A6-b) on I" and periodicity (A6-c), we obtain:

Vw £ — periodic / e (w):c:eu)dR = — / [e,(w) : c: e (U) +e,(w) : (I- )P, ]dR. (A8)
a a

Thus, owing to the ellipticity and symmetry of ¢, the Lax-Milgram lemma ensures the existence and uniqueness ofu}(x, ) (modulo a uniform
translation field). The local field is real, independent of the frequency and takes the form:

up(x. y) = §0(y) : &x(U) — Lo(y)Pp = ! exij(U) — £, () Py (A9)
Solutions _E_‘o’ and_{o, of zero mean value on €2, correspond to e,;;(U) = (8;; + 8;;)/2 and P, = 1, respectively.

A3.2 High-frequency (short-term) local response
When @ — o0, denoting p°(@ — 00) = p,, and u'(w — 00) = u!_, the mass balance (4.2-c) implies that:
P = —Ma : (e.(U) + e,(u)) (A10)
Reporting this expression in (14-a,b) provides (® denotes the tensorial product) :
div, ([c+ Ma @] : () +&,(u,) =0 i Q
([c+Me®@a]: (ex(U)+e,(u'))n=—Pn onl (A1)
ul, Q — periodic

This means that the microporous domain behaves as a medium with elastic tensor ¢, = ¢ + Ma ® . From the periodicity we have:

Vuw Q — periodic [ m“_)[(cm  (ex(U) +ey(uly)) n).wds = 0 (A12)
and applying the same reasoning as above, the variational formulation reads:

Vw § — periodic Le,(g) e eyl )d2 = —/n[e,.@ ! Coo 1 €x(U) + Ppdiv, (w)]d2. (A13)
Hence, the local field is real, independent of the frequency and takes the form:

WX, )= () &) — &P, = en;(D) - §_()P, (A14)

where _E_‘a’a and Qm’ are of zero mean value on £2, and correspond respectively to e,;;(U) = (§;; + §;;)/2 and P, = 1. The pressure can then be
written as

Poo(X, y) = 0(y) 1 & (1) + (1 — m(y)) Py
0 =—Ma :(e,(§x)+1) (A15)

l—wm=M¢:e,(£m)

A3.3 Local response at any frequency @

By virtue of linearity, the solution (x', p°) at any frequency can be decomposed into the sum of the long-term solution (u,, P,) and of the
frequency-dependent fields (i(w), p(w)):

W =ul i@y pP=Py+ Bl (A16)
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We then deduce that (%, ) is solution to the following set of equations:
div, (c:ey@) —ap)=0 nQ
(c:ey@—eap).n=0 onl
1, . P e Pr Al7
mdw,.(l(,grad @) =a:e @)+ yreE@+ew)+ 2 nQ (A17)

~

p=0 onI’

% and P, $ —periodic

To formulate the solution, let us first relate i to 7. For this propose, we take the scalar product of eq. (A17-a) with any Q-periodic field w
defined on €2, and then integrate over 2. From the Q-periodicity we have:

Yw @ — periodic / (e : (@ — F) n)wds = 0, (A18)
annaq

Using the divergence theorem, the symmetries of ¢ and e, and the boundary condition (A17-b) on I" we derive that:

Vw @ — periodic / e(w):c:e(i)d2 = / e, (w)pdR. (A19)
Q Q

Thus, owing to the ellipticity and symmetry of ¢, the Lax-Milgram lemma insures that i exists and is uniquely determined once p is defined.
Consequently, we can write:

i =1u(p) (A20)
and for any ﬁ-periodic pressure field r defined on £2, we have

Vr Q — periodic / e,(ti(n)): c: e, (u(p)d2 = / o e, (i(r))pdQ. (A21)

Q Q
We can now look for the resolution. By construction, 7 belongs to the space P of ﬁ-periodic and complex valued pressure field = defined on
£, with r = 0 on I". Multiplying (A17-c) by any 7 € P, integrating over £2, and considering the Q-periodicity one can deduce that:
1

iwn

The divergence theorem, and boundary condition (A17-d) on I" yield:

Vr e P [ . [(K,gﬁy(ﬁ)) 4] wds =0. (A22)

1 _ : P, .. 1y o Pe )
Vr e P Ton Lgidy(x).l(.gﬁy(ﬁ)dﬂ = /{; (a ey (@) + TALE (ex(U) +e,(up)) + i kd dQ.

Then, using relation (A21), we derive the following variational formulation defining p:

K P P
Vr € P, L (grad (). - grad () + "Vp +e,(n)) : ¢ e, @(F))dR = — L (a (e (U) + e, (ul)) + ﬁ’) rdQ. (A23)

Owing to the symmetry and ellipticity of the left-hand side term, and to the definition of u, given by (A9), we deduce the existence and
uniqueness of P, which can be expressed in the following form:

P ) =0:e) - 5P, =8 (ex, () — )P, (A24)
Then, substituting this expression in eq. (A19) allows determining #(x, y) (modulo an uniform translation field) in the form:
i) =§0) : «@-TWP, where §'=u@) I=i@). (A25)

Note that the motions E’ and Z (of zero mean value on 2) are complex valued and frequency dependent, just like the pressure fields % and
@ . Finally, the local fields at any frequency are given, modulo a uniform translation motion, by

W =T+ u} = o+ E@) : &(U) — (L, + L@) P

- (A26)
PP=p+P=0):ex(U)+ (1 - F(@)Fp
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A3.4 Spectral decomposition of i and p

As in Hornung & Showalter (1990) and Auriault & Royer (1993) for rigid porous media, let us consider the eigenvalue problem associated
with the pressure diffusion operator in eq. (A17-c) with condition (A17-d) on the boundary

div,(K.grad (V) = —«¥  nQ

V=0 onI"

(A27)

The spectrum is discrete and positive that is, 0 <k, <k, < k3 < ... and we have k; = O(/]K|/£?) (remind that £ is the characteristic
size of 2 and ). Each eigenvalue ; (capital indices stand for the eigenvalue rank), being associated to a eigenfunction ¥; (Courant &
Hilbert 1970). The set {W;} constitutes an orthogonal basis on which 7 can be composed. Thus, owing to the linearity and relation (A20)
we have:

Pa.y) =Y ar(@, x)¥(y)
I

(A28)
(x,y) =U(p) =) afw, 0L, (y) where XY, =ii(¥)
I

To determine the amplitudes a;, note first that from the divergence theorem, the periodicity and the zero pressure condition on I', we have
./n div,(K.grad (¥;)).7dQ2 = ./n div,.(l(.gﬁy(’ﬁ)).\ll 1dQ2.
This equality re-expressed with the balance equation of both fields 7 and W; reads (no summation on ; on the left-hand side)
P P
—x,/ v, 5 dR =iwn/ e, (i) + LA e (U) +ey(w) + —= | ¥ dQ
Q a M M

and, using the orthogonality of eigenfunctions and relation (A21) we deduce the linear system governing the coefficients a;(w) (no summation
onj):

1 P,
— [x, +iwn (H - D”)] a; + ion ZDua, =iwn (D, : e,(g)+1),7’)
JAI
Jae(Xy)ic:e(X,)dR
D=
17 fn \p';'- i (A29)
Joo ey (E0)V; dQ Jq ¥ d
D;=aD; + 2— 2OV TR, p _Ja 1T
r=ePrt T g AT

where Dy = O(|c| "), D; and D; are frequency-independent terms.
In the full decoupling case where Dy = D;8y, the orthogonality of the pressure eigenmodes also applies for the associated motions.
Then the amplitude of the eigenmodes are uncoupled and we have

1 P
—_— D:e,U+D—p).
,—:,L,+,'-7+o,( 1+ Pryy

aj(w,x) = —
A3.5 Frequency dependence at low and high frequency

When @ — 0, the fields & and 7 vanish by construction. More precisely the differential set (A17) shows that & and 7 (hence £, 8
and Z':, @) are imaginary and depend linearly on the frequency, that is, & ~ iwnu, P ~ iwnp, where p and u are real valued fields
solutions to:

div, (c:e,w)—ap)=0 inQ

(:e@-apa=0 onr

div, (K. _grldy (P) = a : (e, (V) +e,(up)) + % inQ (A30)
p=0 onI

When @ — 00, we have & — £, 80,0 = Lo — 4,8 — 0, and & — w,. The pressure p,, = —Me : (e,(U) + e,(u’,)) within € is
determined through the mass balance (4.2—), independently of the boundary condition p” = P, on I'. This means that, at ‘infinite’ frequency,
there is a jump of pressure on I". Consequently, when @ — o0 a boundary layer of small thickness |§| appears on I" in order to match the
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micropore pressure p., and the pore pressure P,. To determine these boundary layer fields at high frequency, it is convenient to decompose
(u', p°) into the sum of the short-term solution (u__, p..) and the frequency-dependent fields (ii(w), p(w)), that is,

W' =l +i@); P =pa+ plo).
We then deduce that (i, p) is the solution to the following differential set of equations
div, (c:ei)) —ap)=0 in Q

(c:ey@)—ap)n=0 onl

%div,.(l(,ﬂdy (—Ma :e,(ul)+ p)) = a:e,(i) + %p in Q Ast)

pP=P,— px onI’

To make the analysis clearer, we focus on the isotropic case so that the balance equations (A31-a) and (A31-c) take the following form:

( + pigrad (div, (@) + A (i) — agrad (p) =0
K ' ' 1 (A32)
mAy(i’ — Madiv,(u}, ) = adiv, (@) — Hi”

By construction u’, satisfies the balance equation, (see eq. All-a):

(Ao + M)_Erld,.(di")(l‘;a )+ nd, ) =0,

and therefore:

O + 20), (div, (@) = 0.

Consequently, the term related to u’ vanishes in eq. (A32-b). Now, boundary fields exist within a very thin layer close to the interface I',
symbolically denoted by |§| x I". Thus, at the scale of the boundary layer, I" can be assimilated to its tangent plane, and fields (i, p) essentially
vary along the normal of I". This leads introducing the ‘dilated’ abscissa z, along the normal such thatz, = 0 on I', and z, — o0 on the inner

limit of |§| x I". The field is governed by the following set of equations, where i,, i, i,, stand for the components of & along the normal
and along the tangent vectors of I':

A+ 20 )ity 20y — P oy =05 iy 2z = Pily 202, =0 i |§| x I'
A+ 2uhiy, ., —ap =0, pity . =piy,. =0 on[" thatis, z,=0
p :
- . —=0 m|§| x I
iwn M Bl (A33)

0 ‘inside’ 2 thatis, z, — o0

Bysimple integration and taking the boundary conditions into account we obtain that i, (z, ) = i,,(z,) = 0. Further, (A + 2u)it, ., —ap = 0,

then, recalling that % = 5, + 5, p is defined by :

K p ; ;
ijnp.z,.n - E = 0; Pra=0o = Pp = Paot Plzp—o0 —> 0
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Consequently, introducing the frequency-dependent complex thickness § = %, the boundary layer fields close to any point Mr of I" read

N . o -
Pise = [Pp — Poojasp ] eXp(—2,/8) and ity pg. = ml Pgdz.

The mean value of p is given by

1 1 o0 1 r
= | purdQ == | dI Pucdz =—-8|P,— — edl | =,
n/{;PIMr ﬂ/r lpl-"r [p I‘/,-p ]“

and, replacing p ., by its expression (A15-a), we have

1. 5T Jr waodl’ fromdr]
= == |-t x i 4
“Lpdn - [ Pyt —— +e(U): T (A34)

At any point My of I', the stress ¢ is related to p by the relation:

. . . A 21 .
O My = Allnz, L+ 2pltn: n @1 = (ml + "t —n® n) ap\uy.

Then, the mean value is expressed as follows:

A 2n o
= dﬂ_x I dr Pag-dz
/a ra()-+2Il~ +A+zuﬁ®ﬁ) l Par

8l o« Pj}().l+2;ui®5)mmdl‘ ) f,.(Al+2;ut®_)0mdl‘
T r & T

(A35)

Relations (A34-A35) show that the mean value of the high-frequency boundary layer fields of pressure and stress are in phase quadra-
ture with the forcing terms P, and e, (U) (recall that &, and @, are real quantities). They depend on the dimensionless parameter %—
that varies with frequency as 1/./@, and involves the interface area between the microporous domain and the pores. In the anisotropic
case, similar results will be obtained, however, the boundary layer thickness will depend on the orientation of the interface. Thus, ex-
pression (4.11) only provides an estimate (with K and B replaced by the order of magnitude of the principal values of tensor K and
¢+ Ma ® ).

A4 Momentum balance

The macroscopic model is finally established by deriving the momentum and mass balance equations at the leading order, from the local
problems in both the pore and the microporous domains at the second order.
The momentum balance in both domains lead to the following set of equations with the associated stress continuity:

div,(E) + div,(£)=0 inQ

Tn=0,n=(-pl+2nD,¥}))n onl

(A36)
div (o;) —grad () =0 Q'

! and o!, @ — periodic

Integrating these equations over each volume, and accounting for the boundary condition and periodicity leads to the balance equation
governing the macroscopic total stress tensor §° of the double porosity medium:

1
div (S) = 0; S=§L20dﬂ—¢pPpl (A37)

Knowing that £ = ¢ : (e,(U) + e,(u")) — ap’, where u' and p° are given by eq. (A26), the constitutive law for the macroscopic total stress
tensor reads:

S =C(w): e.(U) — A(w)P,. (A38)
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The effective tensors C(w) and A(w) can be decomposed into the elastic tensors C, and A, corresponding to the long-term elastic response
and the frequency-dependent tensors C(w) and A(w). Their expressions are related to the local fields as follows:

C(w) = Co+ C(w)
1
C== L (c+c: e, ) d2

1 -
Clw)= ’5[, (c:e,) —x®0) d

o (A39)
Alw) = Ag+ Aw)
1
Ao =¢pl+=5/n(a+c:e,.(£o)) aQ
o 1 - ~
A@ =5 L (—aw +e: e,(g)) aQ
According to the results obtained in the previous section, at low frequency we have
C(w) — ionC;  A(w) — ionh  when w—0 (A40)

where C, and A, are dimensionless and real valued.
Similarly, C(@) and A(w) can be decomposed into the short-term tensors (high-frequency limit, purely elastic, hence real) C,, and A,
and the frequency-dependent tensors C(w) and A(w). Their expressions are given by:

C(w) = Cx + C(o); Cm==1=/(c+c:e,.(§m)—a®0m) aQ
Q2 Jq

’ (Ad41)
Aw)= A, +A(w); A, =¢,1+ o /(a teie(l ) —aws)d
Q
In the isotropic case, the analysis developed in the previous section provides
. A I [
Clw)= zgzﬂfr« +‘%(:+”§"?£)® dr when @ — o0
n l 0 (A42)
A(w) = ‘/EZafr((A +£) + i & o dl when @ — 00
iwn QA+ 2p)
Finally, using the spectral decomposition (A28), we may also write
$=Co:ex(U) —AoPy + ) a(@)s; —Pr)
! (A43)

1 1
== te(Y N == | ¥
S7 QLC e,(X)d Pr ﬂ./clz 1dQ

where s; and P; stand for the mean stress and mean pressure associated to the eigenpressure ¥;. Note that, according to (A29-a), the
coefficients a; are defined by

iwi P
(x, + 7")0, +ionD;a; = —iwn (D, re (U)+ Dy 7’) . (Ad4)

AS Mass balance

For mass balance we have
P°
v, (of - iow') = —io[a: (0 @) +e.@) + 2] o

¢ —iou')n = (v, —iou')n onTl
(A45)

P
divy(v}) + dive(v}) = —mK—i in 2,

o u' and v, Q- periodic

p*
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Integrating these equations over each volume, and accounting for the boundary condition and periodicity, lead to:
P ?

. . 1 . 0 —_ i . ’ I L
/nlwdwy(g )dQ + /{;P divy(¥5)dQ = —iw [Iﬂlef +./:-z (a :(ey(') + e (1)) + M) dﬂ]
which is rewritten as:

P,
¢, div(¥, —i0l) = —iwg, (dw W+ —) ~ o [ (a (6,(") + & () — divy(u') + 2 ) dQ
f

Replacing the local fields (u', p”) by their expressions (A26), the macroscopic mass balance governing the double porosity medium takes the
form:

P
M(w)) (Ad6)

The effective tensor B and scalar M ™" are respectively the sum ofthe tensor B, and scalar M; '—corresponding to the long-term response—
and the frequency-dependent tensor B(w) and scalar M~ (@). Their expressions are related to the local fields as follows:

B(w) = Bo + B(w)

¢divi(V, —iol)= —xw(

1 .
Bi= 00+ = [(@+ w660 div,G0)da

- 1 ~ o §
Bao=5 [ (a : &, (®) — div,§) + H) i
1 1 1 (A47)

M@~ M T i)
1 ¢ 1—¢ 1 .
- =K_C+—’—x[(a:e,-(c ) — divy(2,))d2
1

M(w) ﬂ/ (a e,({) dlv,(§)+ )dﬂ

From the results obtained in the previous section, at low frequency we have:

ﬁ(w)—»— ]%—»’%UMT_I

where B and M are dimensionless, real valued, and O(B) = O(M~") = O(I'/|K]).
The high-frequency limit B,, and M_! of B and M ™, are purely elastic, thus real, and read

when w—0 (A48)

1 0.
B =¢ I+ ﬁ[, (a +a e () —divy(Es) + 7) aQ

I g, 1-g, 1 ( . ' o (A49)
M_N‘K_f_T_ﬁ[, @ e(E,) - div(E,)+ 22) df
We can also decompose B and M ™ into short-terms and frequency-dependent terms B and M ™', that is,
B(®w) =Bx +Blw) M (0)=M_+M (v (A50)
From the analysis developed in the previous section, in the isotropic case we have
mw>=ﬂ%';f (S5 +a) B55 e oo e
0= [ (D 1) BT e e
Finally, using spectral decomposition (A28) we can also write
¢ divi(¥, —iol) = —iw (Bu re(U)+ % + Za,(w) (B; + %))
0 (A52)

B = / [ : e,(X;) — div,(Y,)]dQ

where the a; and P; are defined through (A29-a) and (A43-a), respectively.
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A6 Extension to dynamics

In dynamics, the local description is given by the set of equations (8.1), (8.2) together with boundary conditions (3.3), and rescaled
equations (3.8), (3.9). The homogenization process is almost unchanged compared to the quasi-static case. The leading order problems in
and Q, provide, as previously (¢f. egs (A2) and (A3)), u°(x, »=Ux). pg (x, y) = P,(x). Now, the local problem in the pores £, involves
an inertial term and becomes

—grad (p}) — grad (Pp) +nA (YY) =iwpn) D
dive}) =0 inQ, (AS3)
y_g, —iol =0 onl"

This is the classical problem defining the dynamic Darcy’s law (Auriault 1980) from which we deduce the macroscopic constitutive
law (8.3)-d. The complex dynamic permeability of the pore network, K (), is the mean of the particular flow fields corresponding to
grad,;(P,) = §;;. The local problem in the microporous domain 2 is formally identical to (4.2) but the real intrinsic permeability K is replaced
by the complex dynamic permeability (). Hence, the local fields take a similar form as eq. (A26), except that the transient particular fields,
§(y. ). Z(y, @), 8(y, @) and & (y, @), have to be replaced by their homologous field &,.(y, @), T, (v, @), #x(y. @) and Fe(y, w) calculated
with (@) instead of K. Then, the momentum balance is derived from the following boundary-value problem:

div (') +div (£°) = —(1 — )p.U +iogpv  inQ
Ln=0o,n onl
(A54)
@y(a;) —grad (P,) = iwpfg: in Q'
! and o!, @ — periodic

By integrating over the both volumes, we obtain the macroscopic dynamic momentum balance (8.3-a) and constitutive law (8.3-b) of the
double porosity medium. Finally, the macroscopic mass balance (8.3-c) is deduced exactly as in Appendix AS5. Note that the symmetry of the
description (8.3) can be established exactly in the same way as in the quasi-static case developed in Appendix B.

The effective tensors C(w, K), A(w, K)and M~!(w, K)involved in the dynamic description (8.3) can be decomposed into elastic tensors
Co, Ao, M ' (@, K) (corresponding to the long-term elastic response) and frequency-dependent tensors ax(w) and Kx(w), that is,

T, K) = Co+Crl@); AW, K)= Ao+ Ae@); M'@,K)=M;'+ M) (ASS)
where
Cr@) =~ s ey(E ) dQ
K(w) = ﬁ/n(c,e,-(;,c)—cu& x)
Ac(w)= ,:i /n (—au’i,c +c: e»-@) aQ (A56)

~
o

~ 1 ~ ~
M) = -8 /{; (a tey(,) — divy(¢,) + M) dQ

APPENDIX B: SYMMETRY PROPERTIES

In this appendix, we establish the minor and major symmetry properties of the effective tensors C(w), A(w) and B(w), and the equality
A(w) = B(w), starting from the variational formulations.

B1 Symmetry of Co, As and By
The components of C; are defined by

1
CO:]H = ﬁ L (Cukl +Cypqeyp1(§:‘)) dQ

The minor symmetry Gy g = Co s = Co yux results from the minor symmetry of ¢ and the definition of_f_;‘ = _.E_g‘. As for the major symmetry
Coier = Copsy, 1t is sufficient to establish that:

1 1
b /{; Ciipgeype(£y) AR = 3 /ch Chipg € pg (£ ) A2
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For this purpose, consider the variational formulation (A8) taking firstu, = &/ and w = &}’ and then u, = £}’ and w = £}/. We successively
obtain:

L et cre,(E))dR =~ L €y g (E¥)c g A2

/ ) e e, E)da = - / €y g 67 ) poi 42
Q a
Both left-hand side terms are identical. Therefore, using the major symmetry of ¢, we prove the required equality that demonstrates the major

symetry of Cy.
The components of A, read

1
Aovij = @pbiy; + Fol /{; (“u + Cijpq ie)'n(f_o)) dQ

and the symmetry is directly inherited from the symmetry of ¢ and «.
Similarly, the symmetry of Bo can be seen from the expression of its components

1
Boyy = ¢pb; + a /{; (o +apgey g (€)) — div, (£77)) A2

B2 Equality A, =B,
Considering the expressions of their components, to prove the equality Ay = By it is sufficient to demonstrate that:

1 1
5 [emontiin =5 [@nen) - dvEHa

For this purpose, consider again the variational formulation (A8), but taking first u, = £/ and w = { and then uy ={ and w = §/. We
successively obtain:

L e, (¢,) c:e(E))dn =~ L &y pal(£,)C pgiy A2

/ne,.(ﬂ’) rere(l )d2 = /ne,.(ﬂ’) (I—-a)d2 = L(div,(_é_‘o’) — &, pg(§) Yoty ) A2
The left-hand side terms are identical in both relations, and with the symmetry of ¢ we obtain the required equality that demonstrates that A,
= B

B3 Symmetry of C(»), A(®) and B(®)
With the previous results, it is sufficient to demonstrate the symetry of €(w), A(w) and B(w) only. The components of C(w) are given by:

~ 1 k]
Cijmu = ’5 /{; (Clmeypq(i )_“uyd) dQ

The minor symmetry results from the symmetry of ¢ and &, and from the definition ofgu = gk. For the major symmetry, that is, Z‘,,u = Z‘u,,,
we have to establish that:

/‘; (Cupqe)'m@ﬂ ) _augu) Q= /‘; ("klneypq(gl) — oy’ ) daQ

This is proved using the three variational formulations (A8), (A21) and (A23). Let's take u, = i;‘ andw = %:’ in the variational formulation
(A8) and p = & in the variational formulation (A21) hence ii(7) = %:’ , and @(w) = g‘; we obtain the two equalities:

L e@E) cieE)da =~ L eym(E YepgurdQ

L &) :c:e,E)da = L tpg €y pg (EX)F d2
The two left-hand side terms are identical, we therefore deduce, with the symmetry of ¢, that:

- L Chimeype(E VAR = L g €y g (EX)B A2
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s0 it remains to prove that:
L (a”e""(ﬂjﬁu +a‘1y’) a2 = ]{; (apqeyn(leﬁu +au§u) dQ

which is precisely what it is obtained from the symmetry of the variational formulation (A23) when first taking ¥ = % and 7 = 6" (hence
€x pg(U) = (88 +8,p8i9)/2, u; = &, P, = 0); and second considering that ¥ = 6% and P = ¥ (hence e, (V) = (881 + 81p 855 )/2,
ul = E WP, =0). Consequentiy the tensors C(w), and then C(w), satisfy the major symmetry: Cyu(@) = Crgj(w).

The components of A and Bread respectively

A‘] = = / (—al]m'+ci]pqe) Pl(t)) dQ; Bl] = x/ (apqe) Pl(_ ) le,(E )+ ) dQ

and their symmetry comes from that of ¢ and e.

B4 Equality A(w) = B(@)

It is sufficient to establish that A(w) = B(w), which will be done using the three variational formulations (A8), (A21) and (A23). In the
variational formulation (A23), we first choose 7 = & and P = 8/ (hence ¢, ,o(U) = (8,84 + 8;p8i4)/2, ul = &/, P, = 0); and second
n =6 and p =& (hence P, = L u} = ¢, € pg(U) = 0). Because of the (P, &7) symmetry, we get:

1 ) ~ 1 Y7
= L (s + apyeypal€l) ) & d2 = = L (a,,,e,.,,,,(go) - H) 3 dq
Thus,

~ ~

1 ~i )
- By = 32 L[“ne)'pq(ﬁ)gu + a”e,.”(i’) _d“’)(ij)] dQ

1 ~ ~
+ = / [cijpgey pa($) +apgey p,(ﬂ’)w] dQ

Now, wetakeu, = { andw = E the variational formulation (A8) and = 8%, hence u(p) = £, £/, and W) = ¢, in variational formulation
(A21). We thus obtam the two equahtxa

L &) :cie )i = L &) :I-w)d2 = L (divyE”) — apqe, (') d2

/ () cre E)d = L pgey p(£)8” dQ.

a

The two left-hand side terms are equals, then

/ [“Me)'n(ﬁo)yl + “Me)'pq(gj) - di"y(g")] Q=0
a

Similarly, let s take u, E“’ andw = t in the variational formulation (A8) and p = & in the variational formulation (A21) and considering
that #(p) = t, and () = E" we get:

L 6@ :c:eE)d2= - L ey g (§)cpqiy A2

/ﬂ eE) cie,)d = /ﬂ o pgey pg (E)) AR

and therefore

L [ciipgeypal(D) + apeey pg ()] dR2 = 0.

These two results lead to A4 7= B, ; = 0 and consequently to the equality of the coupling tensors
A(w) = B(w).



