SCOLA: a Scenario Oriented LAnguage for railway system specifications Context Formal model System specifications
Melissa Issad, Antoine Rauzy, Leila Kloul, Karim Berkani

To cite this version:

HAL Id: hal-01239278
https://hal.archives-ouvertes.fr/hal-01239278
Submitted on 7 Dec 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License
SCOLA: a Scenario Oriented LAnguage for railway system specifications

Melissa Issad (melissa.issad@siemens.com)
Antoine Rauzy (ECP), Leila Kkloul (UVSQ) and Karim Berkani (Siemens)
Laboratoire de Génie Industriel, Ecole Centrale Paris
Siemens Mobility

1. Context

- Concept
- System definition
- Risk Analysis

2. Objective

- Formal model
- System specification
- Obatn a graphical representation

3. The idea

- System architecture: Functional view, Structural view, Behavioral view, Functional scenarios
- How?
- At the very first steps of the system design
- Where?
- Identifying the abstract concepts of the system and their relationships
- When?
- Instead of looking at systems options, we must identify systems concepts
- Build a formal modeling language based on the concepts and that fits the behavior of the system

4. A system in SCOLA

- Identifier
- System
- Component
- Function
- Abstraction level
- Operator: Precedence, Parallelism, Assignment, Refinement

5. The concepts of SCOLA

- Textual
- Graphical
- Precedence $f_1 \rightarrow f_2$
- Parallelism $f_1 || f_2$
- Choice f_1 or f_2
- Cooperation $C_1 \rightarrow C_2$
- Assignment by C_1
- Refinement $L_1 \downarrow L_{n+1}$

6. Case Study

The Arrival At Station Scenario
- fo1: The wayside selects the stopping point
- fo2: The wayside sends the stopping point to the train
- fo3: The train triggers the braking system
- f1: The train detects that it is at the stopping point
- f2: The train triggers the braking system
- f3: The train sends the braking information to the driver

7. Graphical Representation

8. Textual Representation

9. Conclusion

- A novel scenario based modeling formalism
- Relies on a formal semantics
- Provides multiple levels of abstraction
- Generic enough to be used for all the complex systems
- A stepping stone for the dysfonctional scenarios modeling

Séminaire Doctoral, Forum académie-Industrie AFIS