Sur la $\overline{\mathbb F}_l$-cohomologie des variétés de Shimura unitaires simples.

Abstract : We study the torsion cohomology classes of Shimura varieties of type Kottwitz-Harris-Taylor and we show that " up to an arbitrary place " one can raise them to an automorphic representation. In application, to any mod $l$ system of Hecke eigenvalues appearing in the $\overline{\mathbb F}_l$-cohomology of a Shimura's variety of Kottwitz-Harris-Taylor type, we associate a $\overline{\mathbb F}_l$-Galois representation which Frobenius eigenvalues are given by Hecke's. Compared to the highly more general construction of Scholze, we gain both the simplicity of the proof and the control at places ramified and at those dividing $l$.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [10 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01238906
Contributor : Pascal Boyer <>
Submitted on : Wednesday, April 6, 2016 - 2:53:54 PM
Last modification on : Wednesday, February 6, 2019 - 1:24:40 AM

File

cohomo-modl.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01238906, version 2

Collections

Citation

Pascal Boyer. Sur la $\overline{\mathbb F}_l$-cohomologie des variétés de Shimura unitaires simples.. 2015. ⟨hal-01238906v2⟩

Share

Metrics

Record views

133

Files downloads

26