
HAL Id: hal-01238630
https://hal.science/hal-01238630

Submitted on 6 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated generation of partial Markov chain from
high level descriptions

Pierre-Antoine Brameret, Antoine Rauzy, Jean-Marc J.-M. Roussel

To cite this version:
Pierre-Antoine Brameret, Antoine Rauzy, Jean-Marc J.-M. Roussel. Automated generation of partial
Markov chain from high level descriptions. Reliability Engineering and System Safety, 2015, 139,
pp.179-187. �10.1016/j.ress.2015.02.009�. �hal-01238630�

https://hal.science/hal-01238630
https://hal.archives-ouvertes.fr

Automated Generation of Partial Markov Chain from High Level Descriptions

P.-A. Bramereta,∗, A. Rauzyb, J.-M. Roussela

a Lurpa, Ens Cachan, Univ Paris-Sud,
F-94235 Cachan, France

{pierre-antoine.brameret,jean-marc.roussel}@lurpa.ens-cachan.fr
bChaire Blériot-Fabre, LGI

École Centrale de Paris, Grande voie des vignes,
92295 Châtenay-Malabry cedex, France

Antoine.Rauzy@ecp.fr

Abstract

We propose an algorithm to generate partial Markov chains from high level implicit descriptions, namely AltaRica
models. This algorithm relies on two components. First, a variation on Dijkstra’s algorithm to compute shortest paths
in a graph. Second, the definition of a notion of distance to select which states must be kept and which can be safely
discarded.

The proposed method solves two problems at once. First, it avoids a manual construction of Markov chains, which
is both tedious and error prone. Second, up the price of acceptable approximations, it makes it possible to push back
dramatically the exponential blow-up of the size of the resulting chains.

We report experimental results that show the efficiency of the proposed approach.

Keywords: Model Based Safety Assessment, Markov chains, State space build, AltaRica

1. Introduction

Markov chains are pervasive in Probabilistic Safety Anal-
yses. They make it possible to assess performance indica-
tors for systems with complex control structures such as
cold spare units, or systems with limited number of re-
sources. However, they suffer from the exponential blow-
up of the number of states and transitions. This drawback
has two aspects. First, the manual construction of Markov
chains is both tedious and error prone. Second, assessment
of large Markov chains is very resource consuming.

A way to solve the first problem consists in generat-
ing Markov chains from higher level descriptions, typically
Generalized Stochastic Petri Nets [1] or AltaRica models
[2]. These descriptions represent the state space in an
implicit way. To obtain the Markov chain, a space ex-
ploration algorithm is used: starting from the initial state,
states and transitions are progressively added to the result-
ing chain, until no more state or transition can be added.

However, only some of the many states of a very large
Markov chain are relevant to the calculation of reliability
indicators. The odds of reaching them is very low. There-
fore, they have almost no influence on the calculated quan-
tities and can be safely ignored. The same idea is behind
algorithms that consider failure sequences in turn, while
keeping only probable enough sequences; see e.g. [3, 4, 5].
What we propose here is rather to generate a relevant frac-
tion of the whole Markov chain. Technically, the idea is

∗Corresponding author

to explore the underlying state graph at a bounded depth,
i.e. to keep states (and transitions between these states)
that are at the shortest distance from the initial state. Our
algorithm relies on two components:

� An efficient way to explore the underlying graph in
order to avoid revisiting states. To do so, we apply
a variation of Dijkstra’s algorithm to determine on-
the-fly shortest paths in a graph [6].

� A suitable notion of distance which is basically the
probability of the path and that is used as an indi-
cator of relevance for states.

The combination of these two components proves extremely
efficient. We present here examples for which a partial
chain, whose size is a tiny fraction of the complete chain,
makes it possible to approximate system unreliability with
a relative error less than 0.25%.

It is not possible to guarantee a priori the quality of the
approximation (to get a “probably approximately correct”
result according to Valiant’s scheme for approximation al-
gorithms [7]). However, we show that it is possible to
calculate a posteriori an upper bound of the probability of
discarded states. This bound provides the analyst with a
means to assess the accuracy of the approximation.

The method we propose in this paper is a contribu-
tion to so-called Model-Based Safety Analyses: it makes
Markov chains an effective tool to assess large high level
models. This tool is of paramount interest for systems
that show dependencies amongst failures, i.e. systems for

Preprint submitted to Reliability Engineering & System Safety April 28, 2015

Figure 1: Overview of the AltaRica 3.0 project

which combinatorial representations (such as Fault Trees)
are not suitable.

The remainder of this paper is organized as follows.
Section 2 introduces the context of the present paper,
and discusses related studies. Section 3 presents the al-
gorithm. Section 4 discusses issues regarding the practical
implementation of the algorithm and the accuracy of the
approximation. Finally, section 5 presents experimental
results.

2. Problem Statement

2.1. Context

Classical formalisms used in safety analyses, such as
Fault Trees and Markov chains, are well mastered by an-
alysts. Moreover, they provide a good tradeoff between
the expressiveness of the modeling formalism and the effi-
ciency of assessment algorithms. They stand however at a
low level. As a consequence, there is a significant distance
between the specifications of the system under study and
the safety models of this system. This distance is both
error prone and a source of inefficiency in the modeling
process. Not only are models difficult to share amongst
stakeholders, but any change in the specifications may re-
quire a tedious review of safety models.

Hence the idea to describe systems with high level
modeling formalisms and to compile these high level de-
scriptions into lower level ones, typically Fault Trees and
Markov chains, for which efficient assessment algorithms
exist. AltaRica 3.0 is such a high level formalism (see e.g.
[8]).

The semantics of AltaRica 3.0 is defined in terms of
Guarded Transition Systems [9]. Prior to most of any as-
sessment, including compilation into Markov chains, Al-
taRica 3.0 models are flattened into Guarded Transition
Systems as illustrated in Figure 1, which gives an overview
of the AltaRica 3.0 project.

As defined in [8], a Guarded Transition System (GTS
for short) is a quintuple 〈V,E, T,A, ι〉, where:

� V = S] F is a set of variables, divided into two
disjoint subsets: the subset S of state variables and
the subset F of flow variables.

� E is a set of events.

� T is a set of transitions. A transition is a triple
〈e,G, P 〉, denoted as e : G → P , where e ∈ E is an
event, G is a guard, i.e. a Boolean formula built over
V , and P is an instruction built over V , called the
action of the transition. The action modifies only
state variables.

� A is an assertion, i.e. an instruction built over V .
The assertion modifies only flow variables.

� ι is the initial assignment of variables of V .

In a GTS, states of the system are represented by vari-
able assignments. A transition e : G → P is said fireable
in a given state σ if its guard G is satisfied in this state,
i.e. if G(σ) = true. The firing of that transition trans-
forms the state σ into the state σ′ = A(P (σ)), i.e. σ′ is
obtained from σ by applying successively the action of the
transition and the assertion.

Guarded Transition Systems are implicit representa-
tions of labeled Kripke structures, i.e. of graphs whose
nodes are labeled by variable assignments and whose edges
are labeled by events. The so-called reachability graph
Γ = 〈Σ,Θ〉 of a GTS 〈V,E, T,A, ι〉 is the smallest Kripke
structure such that:

� ι ∈ Σ.

� If σ ∈ Σ, e : G → P is a transition of T and
G(σ) = true (the transition is fireable in σ), then
σ′ = A(P (σ)) ∈ Σ and e : σ → σ′ ∈ Θ.

If exponential distributions are associated with events
of E, the Kripke structure Γ = 〈Σ,Θ〉 can be interpreted
as a Continuous Time Homogeneous Markov Chain (for
sake of brevity we shall just write Markov Chain in the
remainder of the article). The reliability indicators (such
as system unavailability) can be defined by associating a
reward (a real number) with each state of the chain.

The reachability graph may be very large, even for
small GTS. Assume for instance we model a system made
of n independent, repairable components. Then, the num-
ber of variables of V is n, the number of transitions of T is
2×n, but the number of states of Σ is 2n and the number
of transitions of Θ is n×2n. Even when the components of
the system are not fully independent, safety models tend
to show the same picture, i.e. a number of states which is
exponential in the number of components (or the variables
in the GTS) and a number of transitions which is a small
multiple of the number of states.

The idea is thus to generate (still starting from the
initial state and applying the above principle) only a frac-
tion of the Kripke structure, keeping only states that are
relevant with respect to the calculation of reliability indi-
cators, and transitions between these states.

2

2.2. Related work

Several strategies have been proposed to overcome, or
at least to contain, the combinatorial explosion of the size
of Markov chains. Establishing a full review of the litera-
ture on this topic is quite difficult, because Markov chains
are pervasive in many areas of science. We review here a
few ideas that are related to the proposed work, but our
aim is not to provide a comprehensive review of related
research.

As already pointed out in the Introduction, methods
have been developed to assess implicitly described Markov
chains sequence by sequence (see e.g. [3, 4, 5]). The calcu-
lated quantity is obtained by summing-up individual val-
ues obtained for sequences. Sequences with a too low prob-
ability are discarded. This method is used by Bouissou and
Bon to assess so-called Boolean-Driven Markov Processes
[10]. Of course, generating a partial Markov chain induces
of course a higher memory consumption than considering
sequences in turn (if sequences are not saved), but sub-
sequent calculations are much easier. The partial chain
is actually generated independently of any specific target
indicator or mission time. It can then be used to calculate
any indicator defined in terms of rewards and transient
probabilities, steady state probabilities or sojourn times.

Another approach has been proposed by Plateau et
al. for the assessment of Stochastic Automata Network
– SAN are another high level formalism to describe finite
state automata –, see e.g. [11, 12]. The idea is to express
the Markov chain in terms of a generalized tensor prod-
uct, using the modularity of SAN models. This approach
makes it possible to reduce the size of the chain, but it
does not to reduce its number of states.

Pribadi et al. introduced a method to reduce the size
of Markov chains while guaranteeing the exact assessment
of the rewards [13]. This method seems efficient to reduce
the chain, but it relies on a strong ergodicity hypothesis.
This hypothesis is not always verified, in particular in the
case of non-repairable systems.

Fourneau et al. proposed a theoretical framework to
study state-space truncation, i.e. to estimate bounds on
the error made by applying such censoring (see e.g. [14,
15]). These theoretical developments are of interest al-
though it seems difficult to apply them to our concrete
problem because of the complexity of underlying algo-
rithms.

Mercier developed in [16] approximate bounds to quickly
calculate transient and steady-state probabilities. Unfor-
tunately, the method uses the inversion of a matrix which
is similar to the transition matrix, so the method is not
scalable.

Carrasco proposed in [17] approximate bounds with
error control to calculate transient rewards of a Markov
chain. This method is interesting because it uses a smaller
Markov chain to approximate the bigger one, and is based
on sequences. It is an optimized algorithm to calculate
rewarded Markov chains. However, the algorithm to build

the smaller chain uses matrix product involving the tran-
sition matrix of the bigger chain, so the method is not
scalable.

Muntz et al. developed in [18] a method to bound
steady-state performance indicators of a system using ap-
proximate aggregation in Markov chains. They build the
Markov chains from (simple) high level description, and
avoid the construction of the whole chain. The method we
develop in this paper is close to that one: we generate also
a partial the Markov chain from a higher level modeling
language. However, in contrast to Muntz et al., we do not
make any assumption about the input model. The method
proposed by Muntz et al. works only for models in which
the number of possible failures in each state of the system
is known prior to the calculation of the chain and only one
component can be repaired at a time.

To the best of our knowledge, the approach we propose
in this paper is original. It can evaluate any performance
indicator of any system, while the full Markov chain is
never generated.

3. Partial Construction of the Reachability Graph

The algorithm to build a partial reachability graph re-
lies on two components: first, a variation of Dijkstra’s
shortest path algorithm, second the calculation of suitable
notion of distance, i.e. a relevance factor for states. In this
section, we shall present them in turn.

3.1. Variation on Dijkstra’s Shortest Path Algorithm

Let 〈V,E, T,A, ι〉 be a Guarded Transition System and
Γ = 〈Σ,Θ〉 be its reachability graph. Assume that a length
l(e : σ → τ), i.e. a positive real number, is associated with
each transition of Θ (no matter what it means for now).

The distance from a state σ to any state τ of Σ is
defined as usual as the minimum, over the paths from σ
to τ , of the lengths of the paths. The length of a path is
the sum, over the transitions of the path, of the length of
the transitions.

The Dijskra’s algorithm [6] calculates distances of all
states from a source state. The basic idea is as follows. At
any time, there is a set C of candidates, i.e. of states that
have been reached but not treated yet. Initially C con-
tains only the source state. The calculation is completed
when there are no more candidates. If C is not empty, the
algorithm picks up the candidate σ that is at the shortest
distance from the source, removes it from C and then con-
siders in turn all of the successors of σ. Let τ be such a
successor. If τ is already treated, there is nothing to do. If
τ is not in C, then it is added to C and its distance to the
source d(τ) is set to d(σ) + l(σ, τ), where l(σ, τ) denotes
the length of the edge (σ, τ). Finally, if τ already belongs
to C, then its distance to the source is updated, i.e. is
replaced by d(σ) + l(σ, τ) if this value is smaller than the
previous value of d(τ).

This strategy ensures that each state is treated only
once and therefore the algorithm is linear in the number

3

of transitions of the graph. To understand why it works,
it suffices to remark that there cannot be a shortest path
from the source to the selected candidate σ going through
non treated states because all of these states are already
at the longer distance from the source than σ.

We designed a variation of Dijkstra’s algorithm to build
an on-the-fly partial reachability graph up to a given size
S. Algorithm 1 sketches the way it works. The limiting
size S of the graph can be either the number of states, or
the number of transitions, or the number of bytes of the
objects in memory or any other convenient measure. In
our experiments, we used the number of transitions.

Algorithm 1: Algorithm for the construction of a
partial Reachability Graph of size at most S

Input: A GTS 〈V,E, T,A, ι〉
Input: A function l(e : σ → τ) that calculates the

length of a transition
Input: A threshold S on the size of the reachability

graph
Output: ΓS = (Σ,Θ) the partial reachability graph
Local: C the set of candidate states
Local: d(σ) the distance of each state σ to the

initial state ι
1 begin

// Initialization

2 C ← {ι}, Σ← ∅, Θ← ∅, d(ι)← 0.0
// Construction of the state space

3 while C 6= ∅ and |Γ| ≤ S do
// Selection of the best candidate

4 let σ be the candidate with the minimum
value d(σ)

5 C ← C \ {σ}
6 Σ← Σ ∪ {σ}

// Calculation of its successors

7 foreach fireable transition e : G→ P of T
do

8 let τ = A(P (σ))
9 let d = d(σ) + l(e : σ → τ)

10 if τ ∈ C and d(τ) > d then
11 d(τ)← d

12 else if τ /∈ C and τ /∈ Σ then
13 d(τ)← d
14 C ← C ∪ {τ}
15 Θ← Θ ∪ {e : σ → τ}

// Removal of discarded candidates

16 create a sink state ω and add it to Σ
17 foreach transition e : σ → τ in Θ s.t. τ /∈ Σ do
18 remove e : σ → τ from Θ
19 add e : σ → ω to Θ

The initial state ι is the initial assignment of variables
of the given GTS 〈V,E, T,A, ι〉. The algorithm builds the
reachability graph by adding in order states that are at

Limited state space when
the exploration is stopped

Explored (Σ) Candidates (C)

Sink

Concentrate
Candidates
into a single
new state

Figure 2: Building the Markov chain with a sink state to gather
discarded candidate states.

the shortest distance from ι. It is thus possible to stop
the exploration at any time while keeping only the “best”
states.

The last part of the algorithm redirects to a sink state
transitions whose target state has been discarded (see Fig-
ure 2). An alternative consists in just discarding these
transitions. We shall explain in the next section the inter-
est of the sink state ω.

3.2. Suitable Notion of Distance

In Algorithm 1, the notion of distance is rather ab-
stract. From a mathematical viewpoint, we just need a
set of values D together with a comparison operation <
and a binary aggregation (or sum) operation + so that for
any two elements a and b of D, the following properties
hold:

� < is a total order over D, i.e. either [a ≤ b or b ≤ a].

� The sum of two distances is a distance, i.e. a+b ∈ D.

� By adding a distance to a distance we get a longer
distance, i.e. a ≤ a+ b.

Assume that each event e is associated with a transition
rate λ(e). Let σ be a state of Σ with out transitions e1 :
σ → τ1, . . . , ep : σ → τp. Then, the probability p(ei : σ →
τi) to take the transition ei : σ → τi (1 ≤ i ≤ p) is as
follows.

p(ei : σ → τi) =
λ(ei)∑

1≤j≤p λ(ej)
(1)

Moreover, the mean time θ(σ) to get out of the state σ is
as follows.

θ(σ) =
1∑

1≤j≤p λ(ej)
(2)

Our original idea was to define a notion of distance
that takes into account both p(ei : σ → τi) and θ(σ).
Multiple experiments with various combinations of these
two quantities showed however that taking into account
θ(σ) is of no help for our objective. Eventually, we define
the distance just as p(ei : σ → τi) with the multiplication
(of conditional probabilities) as the aggregation operation,

4

and > as order relation. It is easy to verify that these
operations verify the properties stated above.

This relevance indicator for states is essentially heuris-
tic. It is fully compatible with Dijkstra’s algorithm, there-
fore making the generation of the chain very efficient.

4. Discussion

In this section, we discuss two important issues regard-
ing our algorithm: first, its practical implementation; sec-
ond, the accuracy of approximations.

4.1. Practical Implementation

To implement efficiently the algorithm proposed in the
previous section, we have to choose carefully data struc-
tures to encode states of Σ, the set Σ itself, transitions of
Θ, the set Θ itself, and the set C of candidates. We shall
examine them in turn.

Each state σ must encode a value for each variable of
V . In Guarded Transition Systems (and more generally
in AltaRica 3.0), the value of flow variables can be cal-
culated (by means of the assertion A) from the value of
state variables. Therefore, it is possible to store values
of state variables only, up to the cost of the recalcula-
tion of the assertion (which is linear in the number of flow
variables). We simply encoded states as arrays of values.
More elaborated data structures, such as Binary Decision
Diagrams [19] that makes it possible to share information
amongst the different states and therefore to get more com-
pact encoding could be tested in future implementation.
States embed also a real number to encode their distance
to the origin.

We encoded the set Σ by means of an AVL Tree (see
e.g. [20]), so that testing whether a given state belongs
to the set, insertions and removals can be performed in
O(|V |×log(|Σ|)) (the factor |V | is the cost of a comparison
between two states). The size of the encoding of Σ is in
O(|V | × |Σ|).

Transitions are encoded as triples of pointers (to source
and target states and to the event). The set Θ can be just
implemented as a list so that insertions can be done in
constant time. Removals of the last part of the algorithm
can be done efficiently as well for the whole list has to be
traversed anyway. The encoding of Θ is therefore linear in
the size of this set.

Finally, the set C must be implemented in such a way
that insertions and removals as well as the selection of
the state at the shortest distance of the initial state are
efficient. We chose a binary heap to do so (see e.g. [21])
which makes the former insertions and removals in O(|V |×
log(|C|)) and selection of the candidate in O(1). C is also
backed up with an AVL Tree, because testing whether a
given state is a candidate would not be efficient with the
binary heap.

As already pointed out, the algorithm visits each tran-
sition at most once. With the chosen data structures, the

cost of a visit of a transition is in O(|V | × log(|Σ|)) (given
that C is in any case smaller than the final size of Σ). So
eventually, the whole algorithm runs in O(|V |× log(|Σ|)×
|Θ|).

The number of transitions is in general in O(|V | × |Σ|)
(for the reasons given section 2.1). So, the size of the
encodings of Σ and Θ are comparable and related. Again,
the really limiting factor is the number of states of the
reachability graph.

4.2. Accuracy of the Approximation

The algorithm we propose here is a heuristic method
to build a partial Markov chain. It would be desirable to
guarantee the accuracy of this approximation, i.e. to be
able, given a model (a GTS) M and a maximum percent-
age of error ε, to determine a priori (prior to the construc-
tion of the chain) a threshold S on the size |Γ|, such that
the error made by calculating reliability indicators from
ΓS rather than from Γ is at most ε. Of course S should
be small enough, i.e. typically be polynomially related to
the size of M . Unfortunately, guaranteeing the accuracy
is not possible. To prove this negative result, we use a
counterexample. We can observe first that a Fault Tree
can be easily encoded as a GTS:

� Each basic event is encoded by means of Boolean
state variable and a failure transition that turns the
state variable from false to true.

� Each gate is encoded by means of a flow variable and
an instruction of the assertion that updates the value
of the variable according to the value of its fan-ins.

Now, if we were able to build a polynomial size Markov
chain for that GTS that provides a predictable degree of
approximation, we would be able to obtain this degree of
approximation in polynomial time for the probability of
the top event of the Fault Tree. However, the calculation
of the probability of the top event of a Fault Tree is #P-
hard [22] and even approximations of #P-hard problems
are hard, as predicted by the computational complexity
theory (see e.g. [23]). It follows that obtaining predictable
approximations is not possible.

Note also that in practice, the question must be set in
different terms. In fact, we have a computer (or network
of computers) with a given memory. So the question is
actually what can we do within this memory? In this
respect, the value of S does not depend on the model, but
on the calculation resources at hand.

Does it mean that the algorithm we propose here is
just a heuristic method without any possibility to monitor
the error? Not exactly.

Here comes into the play the sink state ω we introduced
in the last part of our algorithm. The reward for that state
can be set to 0 (or to any convenient value) so that it does
not influence the calculation of the reliability indicator of
interest. The probability to be in any other state of the

5

partial chain state is necessarily smaller than the proba-
bility to be in the same state in the complete chain, be-
cause the sink state absorbs a fraction of this probability
without restituting anything (the same reasoning applies
to sojourn times). As a consequence, the error made by
considering the partial chain is bounded by the probability
to be in the sink state (or the sojourn time in this state)
times the suitable value of the reward.

Note that we can consider the absolute value of this
indicator to obtain an absolute bound on the error, or to
compare it with the approximated value of the reliabil-
ity indicator to obtain a relative bound on the error. Of
course, the latter error is in general much higher than the
former one.

This is only an a posteriori result about the accuracy
of the approximation (as it comes after the construction
of the partial chain), but it is better than nothing. As
we shall see in the next section, this indicator is of real
practical interest. It could be used for instance to seek for
a suitable value of S by means of a dichotomic search,
in case one tries to get the smallest partial chain that
approximates the complete chain with a given degree of
approximation.

5. Experiments

In this section, we report experimental results we ob-
tained with our algorithm in two test cases of the litera-
ture. First, a non-repairable system for which the com-
plete state space can be explored (so that the accuracy of
approximations can be assessed directly). Second, a re-
pairable system for which the complete state space is too
big to be fully explored. On this example, the sink state
technique makes it possible to show that the accuracy of
the approximation is good enough, even for small maxi-
mum sizes.

5.1. A Computing System

This example comes from Malhorta et al. [24]. It was
used in [25] to compare three safety tools which assess the
unreliability of a system, based on different approaches:
DBNet [25], DRPFTproc [26] and Galileo [27]. The safety
model, technical data and mission times we use here were
described in [25].

The objective is to assess the (transient) unreliability
of the system at different mission times.

5.1.1. Description

The system pictured Figure 3 is a non-repairable multi-
processor computing system made of two computing mod-
ules CM1 and CM2. Table 1 gives reliability data of com-
ponents.

� CM1 consists of a processor P1, a memory M1, a
primary hard disk D11 and a backup disk D12.

P1 M1 D11 D12

CM1

B

U

S
P2 M2

CM2

PS

M3

D21 D22

Figure 3: A multiprocessor computing system (taken from [25])

Table 1: Failure rates and dormancy factors for the computing sys-
tem

Component Failure rate Dormancy factor
BUS 2.0× 10−9 h−1 -

P1, P2 5.0× 10−7 h−1 -
PS 6.0× 10−6 h−1 -

D11, D12
8.0× 10−5 h−1 0.5

D21, D22
M1, M2, M3 3.0× 10−8 h−1 0.5

� CM2 consists of a processor P2, a memory M2, a
primary hard disk D21 and a backup disk D22.

� M3 is a spare memory. It can replace M1 or M2 in
case of failure, but not both.

� A unique bus connects CM1, CM2 and M3.

� The power supply PS is used by both processors.

The disks and the memory are warm spares, which de-
teriorate, even when unused.

5.1.2. Experimental Results

Table 2 shows unreliabilities for several mission times
calculated with different tools. Values given for DBNet,
DRPFTproc, and Galileo were described in [25]. The com-
plete Markov chain is made of 3, 328 states and 17, 152
transitions. As the reader can see, results obtained with
the four methods are almost identical.

As the size of the Markov chain is roughly determined
by its number of transitions, we shall study partial Markov
chains for successive values (fractions) of the maximum
number of transitions (1/2, 1/5, 1/10. . .).

To start with, we shall consider the Markov chain ob-
tained by merging all discarded candidate transitions into
a sink node. As explained Section 4.2, this chain is used
to obtain a lower bound and an upper bound for the un-
reliability of the system. The lower bound is obtained by
summing up the probability of failed states. The upper
bound is obtained by adding the probability to be in the
sink state to the lower bound.

Results are reported Table 3. The first column gives
the maximum number of transitions before discarding can-
didate states. The second one expresses this number as

6

Table 2: Unreliability of the computing system, assessed with different tools.

Time (hours) DBNet DRPFTproc Galileo AltaRica
1,000 0.0060086 0.0060088 0.0060088 0.0060088
2,000 0.0122452 0.0122455 0.0122455 0.0122456
3,000 0.0191820 0.0191832 0.0191832 0.0191833
4,000 0.0273523 0.0273548 0.0273548 0.0273548
5,000 0.0372379 0.0372413 0.0372413 0.0372413

a fraction of the number of transitions of the full chain.
The third column gives the number of states of the partial
chain. The fourth column gives its number of transitions.
This number is slightly bigger than the threshold for it in-
corporates also the transitions to the sink state. The fifth
and sixth columns give, respectively, the lower and the
upper bound obtained for the unreliability calculated at
t = 10, 000 hours. Finally, the last two columns give the
running time in second (the first number is the running
time for the generation of the partial chain, the second
one is the running time for the assessment of the chain).

Two lessons can be learned from these results:

� Both lower and upper bounds are very close to the
actual unreliability, even for partial chains which
represent tiny fractions (1/20, 1/50) of the full chain.

� The actual unreliability is systematically much closer
to the lower bound.

These two lessons apply to all (reasonable) thresholds and
mission times we tested.

Next, we consider the partial chains obtained by ignor-
ing transitions going to discarded candidate states. These
chains are approximations of the original one in the full
sense (the calculated unreliability is neither a lower nor
an upper bound of the unreliability). Table 4 gives the
calculated approximations for the same thresholds as pre-
viously.

Although the partial chains without sink state can-
not provide bounded approximations, these approxima-
tions are in practice even better than the bounds obtained
previously, again with partial chains which represent only
tiny fractions of the full chain.

To deepen these results, we measured the error percent-
age δ(t) of the unreliability U ′(t) calculated with a partial
Markov chain made of 74 states and 470 transitions. This
error percentage δ(t) is defined as follows.

δ(t) =

∣∣∣∣U ′(t)− U(t)

U(t)

∣∣∣∣× 100

Figure 4 presents the evolution of δ(t) w.r.t. the mission
time. The curve is drawn from 1,000 measures (one every
50 hours).

It is noticeable that the error percentage never exceeds
0.25%. Its evolution is influenced by absorbing states in
the Markov chain (the system is made of non-repairable
components). The overall evolution of the error percentage
significantly depends on the system.

0 10,000 20,000 30,000 40,000 50,000
Time (h)

0.00

0.05

0.10

0.15

0.20

0.25

R
e
la

ti
v
e
 e

rr
o
r

(%
)

Percent error δ470 transitions | 17,152 transitions

Figure 4: Evolution of the error percentage δ with the time

5.2. An Electric Power Supply System

The second example is taken from [28, 10, 29]. It is an
electric power system with repairable components, failures
on demand, cold redundancies, and common cause failures.
We shall use here an augmented version of the model given
in [29].

5.2.1. Description

The system is pictured Figure 5. The role of the system
is to supply electricity out of the boards LHA or LHB.
The regular power supply of boards LHA and LHB comes
from the transformer TS. TS is supplied by the NET and
by the plant PLT. When the NET is available, PLT works
in regular mode. Otherwise the PLT works in standalone
mode, which is rather unstable. LHA and LHB can also
be powered by the NET alone through transformer TA.
Diesels generators DA and DB supply respectively LHA
and LHB when these boards are not powered by LGD and
LGF. Boards LGD, LGF, LHA and LHB may fail.

In this paper, we extended the original system with
circuit breakers whose role is to protect the boards. They
were chosen to have an influence on the overall availability,
while not being the prevailing components. Careful atten-
tion was given to avoid symmetries, useless components,
and other means to simplify the model.

Table 5 gives the reliability data taken from [29]. Com-
ponents are repairable, have a failure rate λ, a repair rate
µ. The plant PLT may fail on demand to switch to stan-
dalone mode with probability γ. Diesels may fail on de-
mand with probability γ and have a common cause failure

7

Table 3: Bounds on the unreliability obtained for the computing system with different partial Markov chains with a sink state, t=5, 000 hrs.

Threshold Fraction #states #transitions Lower bound Upper bound Generation (s) Assessment (s)
17, 152 1/1 3, 328 17, 152 0.0372413 0.0372413 0.9 1.1
8, 576 1/2 1, 433 8, 637 0.0372413 0.0372413 0.6 0.6
3, 430 1/5 556 3, 473 0.0372412 0.0372413 0.3 0.2
1, 715 1/10 274 1, 719 0.0372339 0.0372430 0.2 0.1
858 1/20 145 876 0.0371127 0.0373886 0.1 0.1
343 1/50 55 344 0.0361117 0.0405602 0.1 0.0

Table 4: Approximations of the unreliability obtained for the computing system with different partial Markov chains without sink state.

Threshold Fraction #states #transitions Unreliability Relative Error
17, 152 1/1 3, 328 17, 152 0.0372413 (reference)
8, 576 1/2 1, 432 5, 859 0.0372413 -
3, 430 1/5 555 1, 888 0.0372413 -
1, 715 1/10 273 797 0.0372384 7.8× 10−5

858 1/20 144 345 0.0371881 1.4× 10−3

343 1/50 54 105 0.0366998 1.7× 10−2

Line0GEV

NET

Line0LGR

Plant0PLT
Diesel0DA Diesel0DB

Circuit0Breaker
CBD

CBA CBB

CBF
CBD_R

CBA_R CBB_R

CBF_R

Transformer0TS

Transformer0TP
Transformer0TA

4000kV

6.60kV
200kV

LGF
LGD

LHA LHB

Figure 5: An electric power supply system.

with rate λcc and repair rate µcc. Diesels which failed on
demand are repaired with rate µd.

The problem at hand is to assess the unavailability of
the system, typically for a mission time of 10, 000 hours,
i.e. about one year.

The system is made of the following elements: 18 “bi-
nary” repairable components, the plant which has 2 failure
modes (failure and failure on demand), and the 2 diesel
generators which have 3 failure modes. The estimated
number of states is then about 226 (67 millions) and the
estimated number of transitions is 26× 226 (1.7 billions).

5.2.2. Bounds on Unavailability

As in the previous section, bounds on the unavailability
of the system are first calculated by means of partial chains
with a sink state. It is important to note that the sink
state absorbs an increasing proportion of probability as
the mission time grows. Therefore, the lower and upper

0 2000 4000 6000 8000 10000
Time (h)

0.0e+00

1.0e-07

2.0e-07

3.0e-07

4.0e-07

5.0e-07

6.0e-07

7.0e-07

U
n
a
v
a
ila

b
ili

ty

Typical evolution of the bounds
(ξ=400,000 transitions)

Lower bound

Upper bound

Figure 6: Evolution of bounds on unavailability as a function of the
mission time.

bounds calculated with this technique tend respectively to
0 and 1 as the mission time tends to infinity. Figure 6
shows a typical evolution of the bounds (calculated with a
threshold ξ = 400, 000 on the number of transitions). For
a realistic mission time however (such as 10, 000 hours),
bounds are very significant.

Table 6 gives the bounds calculated at t = 10, 000
hours with different thresholds on the number of transi-
tions. Columns give the same information as previously.
These results show that it is possible to obtain accurate
bounds within reasonable amounts of computing resources
(time and memory). Note that generating and assessing a
Markov chain with more than 1 million states and 20 mil-
lions of transitions is at the current limit of the technology:
it took us about 6 hours to perform the whole computation
on a rather fast PC. Two third of this calculation time was
taken by the assessment of the Markov chain.

Table 7 reports approximations obtained with chains
without sink state. These chains involve significantly less
transitions (and therefore are faster to assess) than the

8

Table 5: Reliability data for the electric power supply system

λ (h−1) µ (h−1) γ µd (h−1) λcc (h−1) µcc (h−1)
NET 1.0× 10−6 8.0× 10−3

GEV, LGR 5.0× 10−6 1.0× 10−2

TP, TS, TA 2.0× 10−6 1.0× 10−3

LGD, LGF, LHA, LHB 2.0× 10−7 1.0× 10−1

PLT (regular mode) 1.0× 10−4 1.0× 10−1 0.5
PLT (standalone mode) 1.0× 10−1 1.0× 10−3

DA, DB 1.0× 10−4 2.0× 10−2 0.001 1.0× 10−1 1.0× 10−4 1.0× 10−2

CBD, CBD R, CBF, CBF R
1.0× 10−4 1.0× 10−1

CBA, CBA R, CBB, CBB R

Table 6: Bounds on the unavailability obtained for the power unit with different partial Markov chains with a sink state.

Threshold #states #transitions Lower bound Upper bound Time (s)
20, 000, 000 1, 259, 491 20, 000, 115 5.5798× 10−7 5.5798× 10−7 7, 200 + 19, 000
2, 000, 000 123, 722 2, 001, 075 5.5798× 10−7 5.5805× 10−7 990 + 2, 200
800, 000 49, 082 800, 292 5.5796× 10−7 5.6401× 10−7 380 + 680
400, 000 23, 753 400, 004 5.5771× 10−7 6.8857× 10−7 180 + 270
200, 000 12, 008 200, 439 5.5496× 10−7 2.1205× 10−6 86 + 130

previous ones. The approximations are very close to the
lower bounds obtained previously.

Figure 7 plots the “relative” error (as explained Sec-
tion 4.2) with different thresholds on the number of tran-
sitions. It is calculated as follows: at mission time, the
probability to be in the sink state ω (which is the ab-
solute error) is divided by the upper bound. It is not
the relative error, as the latter involves the unavailabil-
ity, which cannot be computed for this system. However,
this value shows how close the bounds are, relatively to
the calculated unavailability of the system. For instance,
with 2, 000, 000 transitions, the error is 1.3× 10−4, so the
unavailability is calculated accurately with 3 significant
figures. The overall evolution of the error is interesting.
The first part shows that there is a minimum number of
transitions from which a limited Markov chain is able to
represent the behavior of the system. The second part
shows that the error decreases regularly when the number
of transitions of the Markov chain is increased.

5.3. Discussing stiff Markov chains
The core idea of the method is to keep only the most

probable states of the system, assuming that those states
are close enough to the initial state. Therefore, its ef-
ficiency depends strongly on whether this assumption is
verified or not.

If components of the system are very unreliable (e.g.
failure rates are close to repair rates), then all the states
are about equally probable and the partial generation can-
not give accurate results.

If, on the contrary, the components of the system are
highly reliable (failure rates are low, repair rates are high),
then the Markov chain is stiff and the method gives good
results because the probability is concentrated in a few
states.

103 104 105 106 107

Number of transitions

10-5

10-4

10-3

10-2

10-1

100

E
rr

o
r

(t
=

10
,0

00
h
)

Error calculated from bounds at mission time

Figure 7: Error of the unavailability obtained for the power unit at
mission time, with different partial Markov chains with a sink state.

Table 8: Bounds on the unavailability obtained for the modified
power unit with more reliable components.

Threshold Lower bound Upper bound
800, 000 4.9333× 10−14 4.9341× 10−14

400, 000 4.9333× 10−14 5.0674× 10−14

200, 000 4.9332× 10−14 2.3141× 10−13

To illustrate this point, let us consider again the elec-
tric power supply in which all the failure rates are divided
by ten and all the repair rates are multiplied by ten (all
components are therefore 100 times more reliable than in
the original system).

Results for that system (at t = 10, 000 hours) are pre-
sented in Table 8. The overall reliability of the system is
indeed greatly improved and the bounds are much closer
to one another.

9

Table 7: Approximations of the unreliability obtained for the power unit with different partial Markov chains without sink state.

Threshold #states #transitions Approximation Time (s)
20, 000, 000 1, 259, 490 13, 279, 823 5.5798× 10−7 7, 200 + 14, 000
2, 000, 000 123, 721 989, 637 5.5798× 10−7 990 + 1, 200
800, 000 49, 081 353, 408 5.5798× 10−7 380 + 330
400, 000 23, 752 160, 920 5.5806× 10−7 180 + 120
200, 000 12, 007 73, 248 5.6407× 10−7 86 + 43

6. Conclusion

In this paper, we proposed an algorithm to build par-
tial Markov chains from high level descriptions, namely
AltaRica 3.0 models. This algorithm actually applies not
only to AltaRica or Guarded Transition Systems but to
any implicit representation of a Markov chain. It relies on
two principles: first, a variation on Dijkstra’s algorithm
to compute shortest path in a graph; second, a suitable
definition of distance based on the probability to leave a
state by a given transition. Eventually, the algorithm is a
heuristic method to select which states to keep and which
to discard. We showed that, although it is not possible
to bound a priori the accuracy of the approximation, it is
possible to assess it a posteriori, i.e. once the partial chain
has been generated.

We show, by means of test cases taken from the liter-
ature, that it is possible to obtain very accurate approx-
imations, even with partial Markov chains that represent
only a tiny fraction of the complete chain.

In a word, the compilation into partial chains plays the
same role for Markov models as calculation of Minimal
Cutsets with cutoffs plays for combinatorial models (Fault
Trees).

The results presented here are very important in the
perspective of the deployment of Model-Based Safety As-
sessment. Systems for which combinatorial models are
not suitable (typically because they involve dependencies
amongst events) can be assessed by means of Markov chains,
thanks to the proposed method.

Future research should explore several potential im-
provements and extensions of the proposed algorithm. For
instance:

� Binary Decision Diagrams-like data structures could
be used to encode states of the reachability graph to
obtain more compact representations.

� Other notions of distances could be designed and
compared with the one we proposed here.

� Deterministic transitions could be taken into account,
typically periodic maintenances, with the idea of com-
piling the AltaRica model into a multiphase Markov
chain.

The present work opens many interesting perspectives that
we shall explore in the near future.

References

[1] M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli,
G. Franceschinis, Modelling with Generalized Stochastic Petri
Nets, Wiley Series in Parallel Computing, John Wiley and Sons,
Bognor Regis , West Sussex PO22 9SA, England, 1995.

[2] M. Boiteau, Y. Dutuit, A. Rauzy, J.-P. Signoret, The altarica
data-flow language in use: Assessment of production availabil-
ity of a multistates system, Reliability Engineering and System
Safety 91 (7) (2006) 747–755.

[3] J.-L. Bon, M. Bouissou, Fiabilité des grands systèmes
séquentiels : résultats thèoriques et applications dans le cadre
du logiciel gsi, Revue de statistique appliquée 39 (2) (1992) 45–
54.

[4] J. Collet, I. Renault, Path probability evaluation with repeated
rates, in: Proceedings of Annual Reliability and Maintainability
Symposium, RAMS’97, IEEE, Philadelphia, PA, USA, 1997,
pp. 184–187.

[5] M. Bouissou, Y. Lefebvre, A path-based algorithm to evalu-
ate asymptotic unavailability for large markov models, in: Pro-
ceedings of Annual Reliability and Maintainability Symposium,
RAMS’2002, IEEE, Seattle, USA, 2002, pp. 32–39.

[6] E. W. Dijkstra, A note on two problems in connexion with
graphs, Numerische Mathematik 1 (1) (1959) 269–271.

[7] L. G. Valiant, Probably Approximately Correct: Nature’s Algo-
rithms for Learning and Prospering in a Complex World, Basic
Books, New York, NY 10107, USA, 2013.

[8] T. Prosvirnova, M. Batteux, P.-A. Brameret, A. Cherfi,
T. Friedlhuber, J.-M. Roussel, A. Rauzy, The altarica 3.0
project for model-based safety assessment, in: Proceedings of
4th IFAC Workshop on Dependable Control of Discrete Sys-
tems, DCDS’2013, International Federation of Automatic Con-
trol, York, Great Britain, 2013, pp. 127–132, iSBN: 978-3-
902823-49-6, ISSN: 1474-6670.

[9] A. Rauzy, Guarded transition systems: a new states/events for-
malism for reliability studies, Journal of Risk and Reliability
222 (4) (2008) 495–505.

[10] M. Bouissou, J.-L. Bon, A new formalism that combines advan-
tages of fault-trees and markov models: Boolean logic-driven
markov processes, Reliability Engineering and System Safety
82 (2) (2003) 149–163.

[11] J.-M. Fourneau, B. Plateau, A methodology for solving markov
models of parallel systems, Journal of Parallel and Distributed
Computing 12 (1991) 370–387.

[12] P. Fernandes, B. Plateau, W. J. Stewart, Efficient descriptor-
vector multiplications in stochastic automata networks., Jour-
nal of the Association for Computing Machinery 45 (3) (1998)
381–414.

[13] Y. Pribadi, J. P. M. Voeten, B. D. Theelen, Reducing
markov chains for performance evaluation, in: Proceedings of
PROGRESS’01, STW Technology Foundation, 2001, pp. 173–
179.

[14] J.-M. Fourneau, N. Pekergin, S. Younès, Censoring markov
chains and stochastic bounds, in: Formal Methods and Stochas-
tic Models for Performance Evaluation, Vol. 4748, Lecture Notes
in Computer Science, 2007, pp. 213–227.

[15] A. Busic, H. Djafri, J.-M. Fourneau, Bounded state space trun-
cation and censored markov chains, in: Proceedings of IEEE
51st Annual Conference on Decision and Control (CDC), IEEE,
Maui, HI, USA, 2012, pp. 5828–5833.

10

[16] S. Mercier, Bounds and approximations for continuous-time
markovian transition probabilities and large systems, European
Journal of Operational Research 185 (1) (2008) 216–234.

[17] J. A. Carrasco, Computation of bounds for transient measures
of large rewarded markov models using regenerative random-
ization, Computers & Operations Research 30 (7) (2003) 1005–
1035.

[18] R. R. Muntz, E. de Souza e Silva, A. Goyal, Bounding avail-
ability of repairable computer systems, SIGMETRICS Perform.
Eval. Rev. 17 (1) (1989) 29–38. doi:10.1145/75372.75376.
URL http://doi.acm.org/10.1145/75372.75376

[19] K. S. Brace, R. L. Rudell, R. S. Bryant, Efficient Implementa-
tion of a BDD Package, in: Proceedings of the 27th ACM/IEEE
Design Automation Conference, IEEE, 1990, pp. 40–45.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to
Algorithms, The MIT Press, Cambridge, MA, USA, 1990.

[21] M. D. Atkinson, J.-R. W. Sack, N. Santoro, T. E. Strothotte,
Min-max heaps and generalized priority queues, Programming
techniques and Data structures 29 (10) (1986) 996–1000.

[22] L. G. Valiant, The complexity of enumeration and reliability
problems, SIAM Journal of Computing 8 (3) (1979) 410–421.

[23] C. H. Papadimitriou, Computational Complexity, Addison Wes-
ley, Boston, MA 02116, USA, 1994.

[24] M. Malhotra, K. S. Trivedi, Dependability modeling using petri-
nets, IEEE Transactions on Reliability 44 (3) (1995) 428–440.

[25] S. Montani, A. B. Luigi Portinale, M. Varesio, D. Codetta-
Raiteri, A tool for automatically translating dynamic fault trees
into dynamic bayesian networks, in: Proceedings of Annual
Reliability and Maintainability Symposium, RAMS’06, IEEE,
2006, pp. 434–441.

[26] A. Bobbio, D. C. Raiteri, Parametric fault trees with dynamic
gates and repair boxes, in: Proceedings of the Annual Reliabil-
ity and Maintainability Symposium (RAMS’2004), IEEE, Los
Angeles, CA, USA, 2004, pp. 459–465.

[27] J. B. Dugan, K. J. Sullivan, D. Coppit, Developing a low-cost
high-quality software tool for dynamic fault-tree analysis, IEEE
Transactions on Reliability 49 (1) (2000) 49–59.

[28] M. Gondran, A. Pagès, Fiabilité des systèmes, Vol. 39 of Col-

lection de la Direction des Études et Recherches d’Électricité de
France, Eyrolles, 1980.

[29] A. Rauzy, An experimental study on six algorithms to compute
transient solutions of large markov systems, Reliability Engi-
neering and System Safety 86 (1) (2004) 105–115.

11

