Continuity of the time and isoperimetric constants in supercritical percolation

Abstract : We consider two different objects on super-critical Bernoulli percolation on $\mathbb{Z}^d$ : the time constant for i.i.d. first-passage percolation (for $d\geq2$) and the isoperimetric constant (for $d=2$). We prove that both objects are continuous with respect to the law of the environment. More precisely we prove that the isoperimetric constant of supercritical percolation in $\mathbb{Z}^2$ is continuous in the percolation parameter. As a corollary we prove that normalized sets achieving the isoperimetric constant are continuous with respect to the Hausdorff metric. Concerning first-passage percolation, equivalently we consider the model of i.i.d. first-passage percolation on $\mathbb{Z}^d$ with possibly infinite passage times: we associate with each edge $e$ of the graph a passage time $t(e)$ taking values in $[0,+\infty]$, such that $\mathbb{P}[t(e)<+\infty]>p_c(d)$. We prove the continuity of the time constant with respect to the law of the passage times. This extends the continuity property previously proved by Cox and Kesten for first passage percolation with finite passage times.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01237346
Contributeur : Marie Théret <>
Soumis le : mardi 31 mai 2016 - 14:11:05
Dernière modification le : samedi 29 juillet 2017 - 01:10:24

Fichiers

supercontinuite_HAL_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01237346, version 2
  • ARXIV : 1512.00742

Citation

Olivier Garet, Regine Marchand, Eviatar Procaccia, Marie Théret. Continuity of the time and isoperimetric constants in supercritical percolation. 2016. <hal-01237346v2>

Partager

Métriques

Consultations de
la notice

111

Téléchargements du document

32