Right-jumps and pattern avoiding permutations

Abstract : We study the iteration of the process "a particle jumps to the right" in permutations. We prove that the set of permutations obtained in this model after a given number of iterations from the identity is a class of pattern avoiding permutations. We characterize the elements of the basis of this class and we enumerate these "forbidden minimal patterns" by giving their bivariate exponential generating function: we achieve this via a catalytic variable, the number of left-to-right maxima. We show that this generating function is a D-finite function satisfying a nice differential equation of order 2. We give some congruence properties for the coefficients of this generating function, and we show that their asymptotics involves a rather unusual algebraic exponent (the golden ratio (1 + √ 5)/2) and some unusual closed-form constants. We end by proving a limit law: a forbidden pattern of length n has typically (ln n)/ √ 5 left-to-right maxima, with Gaussian fluctuations.
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

Contributeur : Cyril Banderier <>
Soumis le : jeudi 9 février 2017 - 08:11:54
Dernière modification le : mercredi 15 février 2017 - 01:06:09
Document(s) archivé(s) le : mercredi 10 mai 2017 - 12:38:43


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité 4.0 International License


  • HAL Id : hal-01236582, version 3



Cyril Banderier, Jean-Luc Baril, Céline Moreira dos Santos. Right-jumps and pattern avoiding permutations. 2015. 〈hal-01236582v3〉



Consultations de
la notice


Téléchargements du document