Right-jumps and pattern avoiding permutations

Abstract : We study the iteration of the process "a particle jumps to the right" in permutations. We prove that the set of permutations obtained in this model after a given number of iterations from the identity is a class of pattern avoiding permutations. We characterize the elements of the basis of this class and we enumerate these "forbidden minimal patterns" by giving their bivariate exponential generating function: we achieve this via a catalytic variable, the number of left-to-right maxima. We show that this generating function is a D-finite function satisfying a nice differential equation of order 2. We give some congruence properties for the coefficients of this generating function, and we show that their asymptotics involves a rather unusual algebraic exponent (the golden ratio (1 + √ 5)/2) and some unusual closed-form constants. We end by proving a limit law: a forbidden pattern of length n has typically (ln n)/ √ 5 left-to-right maxima, with Gaussian fluctuations.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01236582
Contributeur : Cyril Banderier <>
Soumis le : mardi 8 décembre 2015 - 05:13:44
Dernière modification le : mercredi 15 février 2017 - 01:06:09
Document(s) archivé(s) le : mercredi 9 mars 2016 - 11:56:23

Fichier

rightjump.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01236582, version 2

Citation

Cyril Banderier, Jean-Luc Baril, Céline Moreira dos Santos. Right-jumps and pattern avoiding permutations. 2015. <hal-01236582v2>

Partager

Métriques

Consultations de
la notice

82

Téléchargements du document

88