, Figure 1 Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object

, The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object, Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow

, Figure 1 Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object

, The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object, Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow

, Figure 1 Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object

, The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object, Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow

, Figure 1 Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object

, The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object, Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow

, Figure 1 Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object

, The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object, Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow

, Figure 1 Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object

, The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object, Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow

, Figure 1 Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object

, The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object, Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow

, Figure 1 Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object

, The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object, Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow

, Figure 1 Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object

, The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object, Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow

, Figure 1 Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object

, The colors indicate the values of the label map L 0 from dark blue for the first body to dark orange for the 105 th body and red for the fluid that is the 106 th object, Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow

, Simulation of two vesicles in a Poiseuille flow performed on three grid levels. From top to bottom, the associated discretization space steps are :h = 7, Figure, vol.25

, Deformation of two vesicles in a Poiseuille flow performed on the grid G 512 of size, Figure, vol.26

]. J. Donea, S. Giuliani, and J. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.33, issue.1-3, pp.689-723, 1982.
DOI : 10.1016/0045-7825(82)90128-1

C. Grandmont and Y. Maday, Fluid-structure interaction: a theoretical point of view, Revue européenne desélémentsdeséléments finis, pp.633-653, 2000.

M. A. Fernández, J. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.794-821, 2007.
DOI : 10.1007/978-1-4757-4355-5

J. Hron and S. Turek, A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics, 2006.
DOI : 10.1007/3-540-34596-5_7

T. Richter and T. Wick, Finite elements for fluid???structure interaction in ALE and fully Eulerian coordinates, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.41-44, pp.2633-2642, 2010.
DOI : 10.1016/j.cma.2010.04.016

T. Wick, Fluid-structure interactions using different mesh motion techniques, Computers & Structures, vol.89, issue.13-14, pp.1456-1467, 2011.
DOI : 10.1016/j.compstruc.2011.02.019

C. Conca, A. Osses, and J. Planchard, Added mass and damping in fluid-structure interaction, Computer Methods in Applied Mechanics and Engineering, vol.146, issue.3-4, pp.387-405, 1997.
DOI : 10.1016/S0045-7825(96)01246-7

URL : http://www.cmm.uchile.cl/publicaciones/axosses2.ps

M. A. Fernández, J. Gerbeau, and C. Grandmont, A projection algorithm for fluid???structure interaction problems with strong added-mass effect, Comptes Rendus Mathematique, vol.342, issue.4, pp.279-284, 2006.
DOI : 10.1016/j.crma.2005.12.017

M. A. Fernández, Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit, SeMA Journal, vol.40, issue.12, pp.59-108, 2011.
DOI : 10.1016/j.jbiomech.2007.01.008

M. A. Fernández, Incremental displacement-correction schemes for incompressible fluid-structure interaction, Numerische Mathematik, vol.17, issue.6, pp.21-65, 2013.
DOI : 10.1142/S0218202507002170

M. A. Fernández, M. Landajuela, and M. Vidrascu, Fully decoupled time-marching schemes for incompressible fluid/thin-walled structure interaction, Journal of Computational Physics, vol.297, pp.156-181, 2015.
DOI : 10.1016/j.jcp.2015.05.009

M. A. Fernández, J. Mullaert, and M. Vidrascu, Generalized Robin-Neumann explicit coupling schemes for incompressible fluid-structure interaction: Stability analysis and numerics, International Journal for Numerical Methods in Engineering, vol.38, issue.6-7, pp.199-229, 2015.
DOI : 10.1007/s00466-006-0066-5

G. Cottet and E. Maitre, A level-set formulation of immersed boundary methods for fluid???structure interaction problems, Comptes Rendus Mathematique, vol.338, issue.7, p.680
DOI : 10.1016/j.crma.2004.01.023

, Comptes Rendus Mathematique, vol.338, issue.7, pp.581-586, 2004.

G. Cottet and E. Maitre, A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES, Mathematical models and methods in applied sciences 16 (03), pp.415-438, 2006.
DOI : 10.1137/0913077

URL : https://hal.archives-ouvertes.fr/hal-00103198

C. S. Peskin, The immersed boundary method, Acta numerica, vol.11, pp.479-517, 2002.

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

M. Coquerelle and G. Cottet, A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, Journal of Computational Physics, vol.227, issue.21, pp.9121-9137, 2008.
DOI : 10.1016/j.jcp.2008.03.041

URL : https://hal.archives-ouvertes.fr/hal-00297673

M. Y. Wang and X. Wang, ???Color??? level sets: a multi-phase method for structural topology optimization with multiple materials, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.6-8, pp.469-496, 2004.
DOI : 10.1016/j.cma.2003.10.008

M. Hillairet, Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow, Communications in Partial Differential Equations, vol.336, issue.9, pp.1345-1371, 2007.
DOI : 10.1142/S0218202506001303

H. H. Hu, Direct simulation of flows of solid-liquid mixtures, International Journal of Multiphase Flow, vol.22, issue.2, pp.335-352, 1996.
DOI : 10.1016/0301-9322(95)00068-2

B. Maury, A many-body lubrication model, Comptes Rendus de l'Académie des Sciences-Series I, Mathematics, vol.325, issue.695, pp.1053-1058, 1997.

S. Dance and M. Maxey, Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow, Journal of Computational Physics, vol.189, issue.1, pp.212-238, 2003.
DOI : 10.1016/S0021-9991(03)00209-2

R. Glowinski, T. Pan, T. I. Hesla, and D. D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.
DOI : 10.1016/S0301-9322(98)00048-2

J. A. Bogovic, J. L. Prince, and P. Bazin, A multiple object geometric deformable model for image segmentation, Computer Vision and Image Understanding, vol.117, issue.2, pp.145-157, 2013.
DOI : 10.1016/j.cviu.2012.10.006

M. Jedouaa, Interface capturing methods for interacting immersed objects, 2017.

J. A. Sethian, A fast marching level set method for monotonically advancing fronts., Proceedings of the National Academy of Sciences, pp.1591-1595, 1996.
DOI : 10.1073/pnas.93.4.1591

]. E. Sifakis and G. Tziritas, Moving object localisation using a multi-label fast marching algorithm, Signal Processing, Image Communication, vol.16, issue.10, pp.705-963, 2001.

E. Rouy and A. Tourin, A Viscosity Solutions Approach to Shape-From-Shading, SIAM Journal on Numerical Analysis, vol.29, issue.3, pp.867-884, 1992.
DOI : 10.1137/0729053

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, p.710
DOI : 10.1007/s002110050401

, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.

N. Patankar, A formulation for fast computations of rigid particulate flows, Center for Turbulence Research Annual Research Briefs, pp.185-196, 2001.

A. Lefebvre, Fluid-Particle simulations with FreeFem++, ESAIM: Proceedings, pp.120-132, 2007.
DOI : 10.1051/proc:071810

URL : https://hal.archives-ouvertes.fr/hal-00728387

J. Janela, A. Lefebvre, and B. Maury, A penalty method for the simulation of fluid - rigid body interaction, ESAIM: Proceedings, pp.115-123, 2005.
DOI : 10.1051/proc:2005010

URL : https://hal.archives-ouvertes.fr/hal-00728372

B. Maury, A time-stepping scheme for inelastic collisions, Numerische Mathematik, vol.102, issue.4, pp.649-679, 2006.
DOI : 10.1007/s00211-005-0666-6

URL : https://hal.archives-ouvertes.fr/hal-01473592

J. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, vol.100, issue.2, pp.335-354, 1992.
DOI : 10.1016/0021-9991(92)90240-Y

C. Galusinski and P. Vigneaux, Level-Set method and stability condition for curvature-driven flows, Comptes Rendus Mathematique, vol.344, issue.11, pp.703-708, 2007.
DOI : 10.1016/j.crma.2007.05.001

URL : https://hal.archives-ouvertes.fr/hal-00193189

G. Cottet and E. Maitre, A semi-implicit level set method for multiphase flows and fluid???structure interaction problems, Journal of Computational Physics, vol.314, pp.80-92, 2016.
DOI : 10.1016/j.jcp.2016.03.004

URL : https://hal.archives-ouvertes.fr/hal-01188443

C. Bost, Méthodes level-set et pénalisation pour le calcul d'interactions fluide-structure, p.725

I. Fourier-grenoble, , 2008.