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DIRECT EXPRESSION OF INCOMPATIBILITY IN CURVILINEAR SYSTEMS

NICOLAS VAN GOETHEM

Abstract. With this note, we would like present a method to compute the incompatibility operator in any

system of curvilinear coordinates/components. The procedure is independent of the metric in the sense that the

expression can be expressed by means of the basis vectors only, which are first defined as normal and tangent
to the domain boundary and then extended to the whole domain. It is in some sense an intrinsic method, since

the chosen curvilinear system depends solely on the geometry of the domain boundary. As an application, the

in extenso expression of incompatibility in a spherical system is given.

1. Introduction

Let us consider a smooth body Ω ⊂ R3. The incompatibility is a well-known operator in elasticity, since
as applied to the linearized strain tensor ε, it determines whether the strain derives from a displacement field.
Specifically, let the elastic strain be obtained by a constitutive law from the stress tensor σ, i.e., ε = Cσ, with
C the compliance fourth-rank tensor, then inc ε = 0 if and only if ε = ∇Su for some displacement field u.
If on the contrary it turns out not to vanish, then Kröner’s works [6] tell us that dislocations are present,
preventing the existence of a well-defined displacement field defined in the whole body. In general a dislocation
is a three-dimensional line singularity for the strain field, reducing to a straight line in some simplified cases
where a 2D treatment is sufficient, cf., e.g., [13]). Specifically, Kröner’s relation reads

Curl κ = inc ε, (1.1)

where the contortion tensor κ is related to the tensor-valued dislocation density Λ by κ = Λ− 1
2 tr ΛI2. At the

mesoscopic scale the dislocation density reads Λ = ΛL = τ ⊗ bH1
bL, where H1

bL stands for the one-dimensional

Hausdorff measure concentrated in the dislocation loop L. At the mesoscale, Kröner’s relation also holds, as
proved in [10, 11]. At the macro (or continuous) scale (which is the scale considered in the present work), Λ is a
smooth tensor obtained from its mesoscopic counterpart by some regularization. The fact that at the mesoscale
dislocations are closed loops or end at the boundary implies that div Λ = 0. However div κ 6= 0 except in
particular cases, for instance if one considers pure edge dislocation loops in 3D, i.e., satisfying tr Λ = 0, and
therefore the knowledge of the right-hand side of (1.1) is in general not sufficient to uniquely determine the field
κ. Note that in this case, The Frank tensor Curlt ε and the dislocation density are univoquely related, since
(1.1) reduces to Curlt ε = κ in Ω with ε×N = 0 on ∂Ω, by virtue of (1.4) and a uniqueness result as proved in [9].

Being a symmetric tensor, the elastic strain satisfies by Beltrami decomposition [7],

ε = ∇Su+ ε0 (1.2)

with u a vector field and where ε0 = inc F represents in a Cartesian system the incompatible part of the
strain, for some symmetric and solenoidal second-rank tensor F . Thus, the field F , related to the presence of
dislocations satisfies by (1.1) and (1.3) an equation of the following form:

inc inc F = Curl κ, (1.3)

which is proven in [1] to be well posed (with appropriate boundary conditions on F and Curlt F ×N), provided
the dislocation density is given (here we assume that κ is known, for instance by solving a transport-reaction-
diffusion equation, as done for point-defects in [12]).

The incompatibility operator on second-rank tensors is classically defined as

inc T := Curl Curlt T, (1.4)
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meaning (in a Cartesian system) that the curl is taken over the rows and the columns of a second-rank tensor
T , consecutively. In the present work, our concern is to compute the incompatibility in a subset of Ω, say an
inclusion, whose shape might be arbitrary, or solution of a geometric optimization problem. For this reason,
there is a need to express incompatibility in curvilinear systems, chosen to fit the inclusion geometry.

In a general curvilinear system, the same definition (1.4) holds, but care must be taken, since the covariant
derivatives do not commute in general because the basis vectors depend on the position, and hence must
also be differentiated in (1.4). We will write the general second-rank tensor as T in the Cartesian basis as
T = TCART

ij ei ⊗ ej , and in the curvilinear basis as T = TCURV
ij gi ⊗ gj . Our point of view is that the basis

{gi}i = {N, τR} for R = A,B, where τR are tangent to the boundary, and N is its unit outwards normal, is
first defined on the domain boundary ∂Ω and then extended in Ω, where its differentials can be computed.
This latter operation gives rise to 5 numbers: κR, the 2 surface curvatures, γR, the 2 divergences of τR, and
ξ, the deviation with respect to the principal directions. From these five numbers, the Christoffel symbols can
be found and hence the covariant derivatives, thus the expression of the curvilinear curl, and eventually of the
incompatibility. An important preliminary step is to express the differentials of the basis vectors in terms of
κR, γR, ξ, which is given in Theorem 3.2 whose proof can be found in [1]. The curvilinear coordinates are simply
the abscissae of the curves with tangent vector τR, and the radial coordinate r associated to N .

Expressions of the incompatibility in a general curvilinear system are rarely found in extenso in the literature.
Let us mention L. E. Malvern’s textbook [8], where an expression can be found in Appendix II, expressed in
terms of the metric factors hi defining the intrinsic metric. Our approach can be considered as an metric-free
alternative, since we base our method on the sole geometry of the domain boundary and on the natural orthog-
onal basis that we may define on it. In Section 5, we apply our method to the spherical system, and provide
explict expressions of all six components of inc T .

Applications of this method can be found in dislocation theory, where the incompatibility in an inclusion is
to be found, in order to determine its dislocation content, and design an optimization method where inclusions
are inserted as to obtain a maximal increase (or decrease) of certain functionals.

Notations and conventions. Let Ω be a bounded domain of R3 with smooth boundary ∂Ω. By smooth we
mean C∞, but this assumption could be considerably weakened. Curl, incompatibility and cross product with
2nd order tensors are defined componentwise as follows with the summation convention on repeated indices.
Here, E represents 2nd rank tensors, N is a vector, and ε is the Levi-Civita 3rd rank tensor. One has:

( Curl E)ij := (∇× E)ij = εjkm∂kEim,

( inc E)ij := ( Curl Curlt E)ij = εikmεjln∂k∂lEmn.

Note that the transpose of Curl E will be denoted by Curlt E. Moreover the tensorial product of two vectors
a and b will be denoted by a⊗ b, while a� b = 1

2 (a⊗ b+ b⊗ a).

2. Some physical motivations

In this section, we provide two examples of models in which the incompatibility plays a crucial role and must
be expressed in a curvilinear system.

2.1. The incompatibility operator in linearized elasticity with dislocations. The strain energy density
in small-strain elasticity of an isotropic material reads

We(ε) =
1

2
Aε · ε, (2.1)

where ε is the linearized elastic strain tensor. The stress tensor is classically defined as σ := ∂We

∂ε = Aε.
Furthermore, by the symmetry property of ε, Beltrami decomposition (1.3) holds. The potential energy is
defined as

W(ε) =

∫
Ω

(We(ε)− f · u−G · F ) dx, (2.2)

which, in the absence of dislocations, i.e., as F = 0, yields by minimization the standard Equilibrium equation,

−div (Aε) = −div
(
A∇Su

)
= f, (2.3)

with f the body force and u the displacement field.
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Now, in the general case where dislocation lines are present, the minimum problem writes as

min
ε
W(ε) = min

u,F :

ε=∇su+ inc F

W(ε). (2.4)

Letting ũ and F̃ be variations in appropriate function spaces with vanishing boundary conditions, Euler-
Lagrange equations read

0 = 〈δW(ε)

δu
, ũ〉 =

∫
Ω

(
σ · ∇S ũ− f · ũ

)
dx,

0 = 〈δW(ε)

δF
, F̃ 〉 =

∫
Ω

(
σ · inc F̃ −G · F̃

)
dx, (2.5)

providing after some easy part integrations, the strong forms{
−div σ = f,

inc σ = G,

which appear clearly as a generalization of (2.3). Recalling (1.3), the complete problem consists in solving the
coupled problem with unknowns u and F :{

−div
(
A∇Su

)
= f + div (A inc F ) ,

inc (A inc F ) = G− inc
(
A∇Su

)
.

(2.6)

Material isotropy yields A = µI4 + λI2 ⊗ I2 and hence (2.8) rewrites as{
−div

(
A∇Su

)
= f + div

(
λ tr ε0I2

)
,

inc (A inc F ) = G− inc (λ div uI2) .
(2.7)

Note that the decoupled problem is found as soon as either λ = 0, or incompressibility is assumed, i.e.,
tr ε = tr ε0 = div u = 0, and reads −div

(
Ã∇Su

)
= f

inc
(
Ã inc F

)
= G

in Ω,

where the special form of Ã due to incompressibility can be found in [5].
The point here is to observe that according to the geometry of Ω it is usefull to have an expression of

incompatibility in curvilinear coordinates/components systems according to the geometry of Ω.

2.2. Dislocation-induced dissipation. Let us define the system Helmholtz free energy density as

Ψ := We(ε) +Wdefect( Curl κ), (2.8)

whose elastic part is simply the strain energy of previous section, and whose defect part is assumed to depend
on the curl of the contortion tensor κ. Therefore, the free energy Ψ is partially of second-order in the sense that
the defect internal variable appears in the form of its derivatives (here its curl). For simplicity, let us assume a
quadratic law in the higher-order terms, viz., Wdefect( Curl κ) = 1

2MCurl κ · Curl κ, with M a positive-definite
fourth-rank tensor. By Kröner’s relation (1.1), the energy of an inclusion ω ⊂ Ω reads

Wdefect :=

∫
ω

1

2
M inc ε0 · inc ε0dx. (2.9)

Therefore, minimizing this energy will again lead one to evaluate or express the incompatibility in local basis
appropriate to the geometry of ω.

Note that a full second-order energy density would read for instance Ψ := We(ε) + Ŵe( Curlt ε, div ε) +

Ŵdefect(κ, Curl κ, div κ) + W̄defect(ε
0), where Curlt ε is recognized as the Frank tensor, i.e. the gradient of the

rotation field.
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3. Extension and differentiation of the normal and tangent vectors to a surface

The aim here is to construct a curvilinear basis on the boundary which should be smooth and also orthonor-
mal, starting from the vector N∂Ω normal to the boundary and defining two tangent vectors perpendicular to
N∂Ω. This basis is then extended to the whole body. The natural moving frame sought is close in spirit to the
Darboux frame of surfaces, though in principle the latter may only be defined at non-umbilical points. As a
matter of fact, in order to achieve a certain level of generality, we will not consider principal lines of curvature
with their associated principal curvatures, and hence the gradient of the normal vector will be given by a sym-
metric matrix with possibly non-zero extradiagonal components. Detail on this section, and in particular, the
proofs, can be found in [1].

3.1. Signed distance function and extended unit normal. We denote by N∂Ω the outward unit normal
to ∂Ω, and by b the signed distance to ∂Ω, i.e.,

b(x) =

{
dist(x, ∂Ω) if x /∈ Ω,
−dist(x, ∂Ω) if x ∈ Ω.

We recall the following results ([3], Chap. 5, Thms 3.1 and 4.3).

Theorem 3.1. There exists an open neighborhood W of ∂Ω such that

(1) b is smooth in W ;
(2) every x ∈W admits a unique projection p∂Ω(x) onto ∂Ω;
(3) this projection satisfies

p∂Ω(x) = x− 1

2
∇b2(x), x ∈W ; (3.1)

(4) it holds

∇b(x) = N∂Ω(p∂Ω(x)), x ∈W.

In particular, this latter property shows that ∇b(x) = N∂Ω(x) for all x ∈ ∂Ω and |∇b(x)| = 1 for all x ∈W .
Therefore, we define the extended unit normal by

N(x) := ∇b(x) = N∂Ω(p∂Ω(x)), x ∈W. (3.2)

3.2. Tangent vectors on ∂Ω. For all x ∈ ∂Ω, we denote by T∂Ω(x) the tangent plane to ∂Ω at x, that is, the
orthogonal complement of N∂Ω(x). As ∂Ω is smooth, there exists a covering of ∂Ω by open balls B1, ..., BM of
R3 such that, for each index k, two smooth vector fields τA∂Ω, τ

B
∂Ω can be constructed on ∂Ω ∩Bk where, for all

x ∈ ∂Ω∩Bk, (τA∂Ω(x), τB∂Ω(x)) is an orthonormal basis of T∂Ω(x). In all the sequel, the index k will be implicitly
considered as fixed and the restriction to Bk will be omitted. In fact, for our needs, global properties and
constructions will be easily obtained from local ones through a partition of unity subordinate to the covering.

Using that the Jacobian matrix DN(x) = D2b(x) of N(x) is symmetric, differentiating the equality |N(x)|2 =
1 entails

∂NN(x) = DN(x)N(x) = 0, x ∈W. (3.3)

In other words, N(x) is an eigenvector ofDN(x) for the eigenvalue 0. For all x ∈ ∂Ω, the system (τA∂Ω(x), τB∂Ω(x), N∂Ω(x))
is an orthonormal basis of R3. In this basis, DN(x) takes the form

DN(x) =

κA∂Ω(x) ξ∂Ω(x) 0
ξ∂Ω(x) κB∂Ω(x) 0

0 0 0

 , x ∈ ∂Ω, (3.4)

where κA∂Ω, κB∂Ω and ξ are smooth scalar fields defined on ∂Ω.
If R ∈ {A,B}, we denote by R∗ the complementary index of R, that is, R∗ = B if R = A and R∗ = A if

R = B.

3.3. Extended tangent vectors in Ω and their curvilinear differentials. Let d be defined in W by

d =
(
1 + b κA∂Ω ◦ p∂Ω

) (
1 + b κB∂Ω ◦ p∂Ω

)
− (b ξ∂Ω ◦ p∂Ω)

2
.

Possibly adjusting W so that d(x) > 0 for all x ∈W , we define in W , and for R = A,B,

τR = τR∂Ω ◦ p∂Ω, κR = d−1
(

(1 + b κR
∗

∂Ω ◦ p∂Ω)(κR∂Ω ◦ p∂Ω)− b (ξ∂Ω ◦ p∂Ω)2
)
, (3.5)

ξ = d−1ξ∂Ω ◦ p∂Ω, κ = κA + κB , γR = div τR. (3.6)



DIRECT EXPRESSION OF INCOMPATIBILITY IN CURVILINEAR SYSTEMS 5

Obviously, for each x ∈ W , the triple
(
τA(x), τB(x), N(x)

)
forms an orthonormal basis of R3. Next, we

compute the normal and tangential derivatives of these vectors. We denote the tangential derivative ∂τR by ∂R
for simplicity, i.e., ∂Ru := DuτR, where Du stands for the differential of u, and ∂Ru its value in the direction
τR.

Theorem 3.2 ([1]). It holds in W :

∂Nτ
R = 0, ∂RN = κRτR + ξτR

∗
, ∂Rτ

R = −κRN − γR
∗
τR

∗
, ∂R∗τR = γRτR

∗
− ξN,

div N = tr DN = ∆b = κ. (3.7)

Corollary 3.3 ([1]). If f is twice differentiable in Ω it holds

∂R∂Nf = ∂N∂Rf + κR∂Rf + ξ∂R∗f. (3.8)

4. Differential geometry on the boundary with curvinormal basis

At each point x ∈ ∂Ω the curvilinear basis
(
gi(x)

)
i=A,B,N

:=
(
τA(x), τB(x), N∂Ω(x)

)
is orthonormal and

differentiable by Theorem 3.2. Therefore it will be called curvinormal. Remark that indices P,Q,R will stand
for A or B, and denote one of the two orthogonal tangent vectors on the boundary, whereas index N will
always be associated to the normal N∂Ω. In some sense, the chosen curvilinear basis is a generalization to
general surfaces of the spherical or cylindrical basis. We recall that ∂i means the differential in the direction
gi. Let u be a scalar. Then, ∂iu = ∂Ru = τR · ∇u = DuτR for R = A,B, or ∂Nu = N · ∇u = DuN for
i = N , with ∇ = ei∂xi the Cartesian gradient operator, where ei stands for the ith Cartesian basis vector. For
instance, the gradient in spherical coordinates reads ∇u = ∂ruer + 1

r∂φueΦ + 1
r sinφ∂θueθ and hence ∂A = 1

r∂φ

and ∂B = 1
r sinφ∂θ. Recall that partial curvilinear derivatives do not commute, as shown in Corollary 3.3.

4.1. Christoffel symbols and Riemannian curvature. A general vector field will be written as v = vig
i

with vi its covariant components. Moreover, the extrinsic metric is Euclidean, since gij := gi · gj = δij . Let
gi := gijg

j be the dual of the basis vector. The second Christoffel symbol Γpij is defined as the linear operator

such that [2]

∂jg
p = −Γpijg

i. (4.1)

In other words, Γpij := −gi ·∂jgp. Note also that since Ω is embedded in a Euclidean space, one has ∂jg
i = ∂jgi.

Connection. As a consequence, for vector v it holds

∂jv = ∂j(vig
i) = (∂jvi − Γpijvp)g

i = vi‖jg
i, (4.2)

where the covariant derivative of the covariant component of v reads

vi‖j := ∂jvi − Γpijvp. (4.3)

Thus, for vector v = vig
i = v̂je

j , one has (∇v)mn = ∂xmun, and hence

gradv := (∇v)mne
m ⊗ en = vi‖jg

i ⊗ gj = ∂jv ⊗ gj . (4.4)

Accordingly, the curl of a vector in the curvinormal basis writes as

Curl v := ( Curl v)kg
k = εkijvi‖jg

k. (4.5)

Curvilinear coordinates. Let qR ∈ ωR be the curvilinear coordinate associated to gR in the sense that gR =
∂qRx

GR
,

with GR := ‖∂qRx‖, and where x stands for the position vector of a point. Otherwise said, qR is the curvilinear
abcissa of the curve with tangent vector τR. In general one has

∂qRu = ∂xiu
∂xi
∂qR

= gRG
R
i ∂xiu = GR∂Ru. (4.6)

Hence the gradient of scalar u reads

gradu = ∂iug
i =

1

Gi
∂qiug

i, (4.7)

and of vector v = vig
i as

gradv = ∂jv ⊗ gj =
1

Gj
∂qjv ⊗ gj . (4.8)
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We call the curvilinear expression of the gradient the operator ∇CURV(·) := hj∂qj (·)gj with hj := 1
Gj

, the jth

metric factor. Remark that the ∂R derivatives do not commute, contrarily to ∂qR , because of the factors GR.
As an example, consider the spherical base system, where GN = Gr = 1, GA = Gφ = 1

r , GB = Gθ = 1
r sinφ , and

qA = φ (polar angle), qB = θ (azimuthal angle); it holds,

(∂A∂r − ∂r∂A) =
1

r2
∂φ, (∂B∂r − ∂r∂B) =

1

r2 sinφ
∂θ, (∂B∂A − ∂A∂B) =

1

r2 sinφ tanφ
∂θ. (4.9)

Christoffel symbols in the curvinormal basis. By Theorem 3.2, it is easily deduced by identification with (4.1)
that the only nonvanishing components of Γpij read (with no sum on repeated indices)

ΓNRR∗ = −ξ, ΓNRR = −κR,ΓR
∗

NR = ξ, ΓRR∗R = γR
∗
, ΓRNR = κR, ΓRR∗R∗ = −γR. (4.10)

Moreover, it is observed that Γpij is not symmetric, i.e., Γpij 6= Γpij . Therefore, the torsion is nonvanishing, and
reads

T pij := Γpij − Γpji.

In the curvinormal basis, it is easily computed that the only nonvanishing components of T pij are

TRij = κRδiNδjR + ξδiNδjR∗ + (γR
∗
− γR)δiR∗δjR.

Note that the Riemann curvature tensor is defined as [4]

Riemq
ijk := ∂kΓqij − ∂jΓ

q
ik + ΓpijΓ

q
pk − ΓpikΓqpj . (4.11)

Spherical system. As an example, in a spherical coordinates/components system, it holds1 i, j ∈ {φ, θ}, κR = 1
r ,

γφ = 1
tanφ , γθ = 0, and hence

Γrij =

 0 0 0
0 − 1

r 0
0 0 − 1

r

 , Γφij =

 0 1
r 0

0 0 0
0 0 − 1

r tanφ

 , Γθij =

 0 0 1
r

0 0 1
r tanφ

0 0 0

 . (4.12)

Hence, the torsion reads

T rij = 0, Tφij =

 0 1
r 0

− 1
r 0 0

0 0 0

 , T θij =

 0 0 1
r

0 0 1
r tanφ

− 1
r − 1

r tanφ 0

 . (4.13)

Accordingly the covariant derivative reads

(
vi‖j

)
ij

=

 ∂rvr
1
r∂φvr −

vφ
r

1
r sinφ∂θvr −

vθ
r

∂rvφ
1
r∂φvφ + vr

r
1

r sinφ∂θvφ −
vθ

r tanφ

∂rvθ
1
r∂φvθ

1
r sinφ∂θvθ + vr

r +
vφ

r tanφ


ij

. (4.14)

Hence the curl of a vector, ( Curl v)i := εikjvk‖j , writes by (4.5) and (4.14) as

( Curl v)i =

 1
r tanφvθ + 1

r∂φvθ −
1

r sinφ∂θvφ
1

r sinφ∂θvr −
1
rvθ − ∂rvθ

1
rvφ + ∂rvφ − 1

r∂φvr


i

. (4.15)

4.2. Commutation operator in the curvinormal basis. The covariant components of a second-rank tensor
T reads [4]

Tij‖k = ∂kTij − ΓlikTlj − ΓljkTil. (4.16)

Let Tij = vi‖j . Then by (4.16) one has vi‖jk := (ui‖j)‖k and hence

vi‖jkg
i = ∂kvi‖jg

i − (Γlikvl‖j + Γljkvi‖l)g
i = ∂k

(
vi‖jg

i
)

+ vi‖jΓ
i
lkg

l − (Γlikvl‖j + Γljkvi‖l)g
i

= ∂k
(
vi‖jg

i
)
− Γljkvi‖lg

i,

where (4.3) and a change of dumb indices have been used. Therefore,

∂k(∂jv) =
(
vi‖jk + Γljkvi‖l

)
gi. (4.17)

In particular,

vi‖jk − vi‖kj = (∂k∂j − ∂l∂k)v · gi − T ljkvi‖l, (4.18)

1Here, φ denotes the polar, and θ the azimuthal coordinate, respectively.
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that following [4] can be rewritten by means of the Riemann curvature as

vi‖jk − vi‖kj = Riemiqkjvq − T ljkvi‖l. (4.19)

Remark that in spherical coordinates and by (4.13) and (4.9), (4.18) yields (with a slight abuse of notations,
since one writes qR instead of R as covariant differentiation indice)

vi‖rφ − vi‖φr = vi‖rθ − vi‖θr = vi‖θφ − vi‖φθ = 0, (4.20)

that is, the second covariant derivatives commute in spherical coordinates/components. In particular, one has
εljkvi‖jk = εljk(vi‖j)‖k = 0 in spherical coordinates/components. Note that the identity Curl ∇u = 0 holds
simply by Schwarz lemma if u is a scalar, whereas its vector counterpart Curl ∇v reads

Curl ∇v = Curl
(
(∇v)CART

ij ei ⊗ ej
)

= Curl
(
(∇v)CURV

ij gi ⊗ gj
)
,

that is, in the Cartesian system,

Curl
(
(∇v)CART

ij ei ⊗ ej
)

= −εljk(vi,j),ke
i ⊗ el = 0,

by Schwarz lemma. However, in a general curvilinear system, one has

Curl
(
(∇v)CURV

ij gi ⊗ gj
)

= ∇CURV(∇v)CURV
ij × gi ⊗ gj + (∇v)CURV

ij CurlCURV(gi ⊗ gj) = 0,

and hence

∇CURV(∇v)CURV
ij × (gi ⊗ gj) = (vi‖j)‖kg

i ⊗ εlkjgl = −(∇v)CURV
ij CurlCURV(gi ⊗ gj). (4.21)

Remark that in the spherical system, the first term on the RHS of (4.21) vanishes by (4.20).

Summarizing, Eq. (4.21) shows that the non-commutation operator in the RHS of (4.19) is related in the
curvilinear system to the curl of the basis diads. This fact will appear crucial in the calculations of the following
sections.

4.3. Expression of the incompatibility in the curvinormal basis. Now, the incompatibility operator on
a second-rank tensor T is defined as2

inc T := Curl Curlt T, (4.22)

which in a Cartesian system is equivalent to writing componentwise

inc T = εikmεjln∂k∂lTmne
i ⊗ ej .

In a general curvilinear system, Eq. (4.22) shows that it suffices to express the curl of a tensor and apply twice
the curl operator. In fact, (4.22) rewrites as

inc T = Curl
(

Curlt
(
TCART
ij ei ⊗ ej

))
= Curl

(
Curlt

(
TCURV
ij gi ⊗ gj

))
,

with

Curl
(
TCURV
ij gi ⊗ gj

)
= ∇CURVTCURV

ij × gi ⊗ gj + TCURV
ij CurlCURV(gi ⊗ gj). (4.23)

Remark that, as compared with the Cartesian system case, the second term in the RHS is nonvanishing and
requires to compute the curl of the basis diads. Summarizing, one has

Curlt
(
TCURV
ij gi ⊗ gj

)
= SCURV

ij gi ⊗ gj , (4.24)

for some components SCURV
ij obtained by rearranging (4.23). Hence, the incompatibility in the curvilinear

system writes as

inc T = ∇CURVSCURV
ij ×

(
gi ⊗ gj

)
+ SCURV

ij CurlCURV(gi ⊗ gj)

= ∇CURVSCURV
ij ×

(
gi ⊗ gj

)
+ SCURV

ij

((
∇CURVgi

)
× gj + gi ⊗ CurlCURVgj

)
= ηijg

i ⊗ gj .(4.25)

Obviously, ηij is symmetric as soon as T is, by the symmetry property of its Cartesian counterpart εikmεjln∂k∂lTmn.
Moreover, its explicit expression only requires to determine the gradient of scalar SCURV

ij in the curvilinear sys-
tem, which is expressed by means of the tangent vectors as

∇CURVSCURV
ij = DSCURV

ij (x)[gl]gl =
(
gl · ∇SCURV

ij

)
gl

2For some authors, e.g. L. E. Malvern [8] the incompatibility is defined with a minus sign.
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(see also Eq. (4.7)), together with the curvilinear differentials of the basis tensors to be found in Section 3.3
(by means of Eq. (4.1), (4.3) and (4.5)), and expressed by means of κR, γR and ξ, which are intrinsic numbers
of the boundary as related to the choice of the basis. Note that use has been made of identity

Curl a⊗ b = ∇a× b+ a⊗ Curl b. (4.26)

5. Incompatibility in the spherical system

We recall that we adopt the convention that φ be the polar and θ be the azimuthal angles. Moreover x = rgr,
with r the radius. The spherical system consists of the triad {gr, gφ, gθ}, with according to our conventions,
N = gr, τA = gφ and τB = gθ, the latter two being tangent to the sphere of radius r and normal vector gr.

We consider a symmetric tensor T whose general form reads

T = Trrg
r ⊗ gr + Tφφg

φ ⊗ gφ + Tθθg
θ ⊗ gθ + 2Trφg

r � gφ + 2Trθg
r � gθ + 2Tφθg

φ � gθ. (5.1)

5.1. Curl of the diads. By virtue of (4.14) and (4.15), and recalling (4.26), let us first compute the curl of
the base diads.

Curl (gr ⊗ gr) = −1

r
(gφ ⊗ gθ − gθ ⊗ gφ),

Curl
(
gr ⊗ gφ

)
=

1

r
(gr ⊗ gθ − gθ ⊗ gr),

Curl
(
gr ⊗ gθ

)
= −1

r
(gr ⊗ gφ − gφ ⊗ gr) +

1

r tanφ
gr ⊗ gr,

Curl
(
gφ ⊗ gr

)
=

1

r
gr ⊗ gθ +

1

r tanφ
gθ ⊗ gφ,

Curl
(
gφ ⊗ gφ

)
= − 1

r tanφ
gθ ⊗ gr +

1

r
gφ ⊗ gθ,

Curl
(
gφ ⊗ gθ

)
= −1

r
(gr ⊗ gr + gφ ⊗ gφ) +

1

r tanφ
gφ ⊗ gr,

Curl
(
gθ ⊗ gr

)
= −1

r
gr ⊗ gφ − 1

r tanφ
gφ ⊗ gφ,

Curl
(
gθ ⊗ gφ

)
=

1

r
(gr ⊗ gr + gθ ⊗ gθ) +

1

r tanφ
gφ ⊗ gr,

Curl
(
gθ ⊗ gθ

)
=

1

r tanφ
gθ ⊗ gr − 1

r
gθ ⊗ gφ. (5.2)

5.2. inc Trrg
r ⊗ gr. Let us first compute the curl of T = Trrg

r ⊗ gr, by using the formulation

Curl (Tijg
i ⊗ gj) = ∇Tij × (gi ⊗ gj) + Tij Curl (gi ⊗ gj).

One has

Curl T = ∇Trr × (gr ⊗ gr) + Trr Curl (gr ⊗ gr)

= −1

r
∂φTrrg

r ⊗ gθ +
1

r sinφ
∂θTrrg

r ⊗ gφ − Trr
r

(gφ ⊗ gθ − gθ ⊗ gφ). (5.3)

Hence

Curl Curlt T = − ∇(
∂φTrr
r

)× (gθ ⊗ gr) +∇(
∂φTrr
r sinφ

)× (gφ ⊗ gr) +∇(
Trr
r

)× (gφ ⊗ gθ − gθ ⊗ gφ)

− ∂φTrr
r

Curl (gθ ⊗ gr) +
∂φTrr
r sinφ

Curl (gφ ⊗ gr) +
Trr
r

Curl (gφ ⊗ gθ − gθ ⊗ gφ)

inc T = −2Trr
r2

gr ⊗ gr − (
∂rTrr
r
− ∂φTrr
r2 tanφ

− ∂2
θTrr

r2 sin2 φ
)gφ ⊗ gφ +

(
∂2
φTrr

r2
− ∂rTrr

r

)
gθ ⊗ gθ

+
2∂φTrr
r2

gr � gφ +
2∂θTrr
r2 sinφ

gr � gθ +
2

r2 sinφ
(
∂θTrr
tanφ

− ∂θ∂φTrr)gφ � gθ. (5.4)
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5.3. Complete expression of the incompatibility. Collecting (A.1) and all the computations of the Ap-
pendix, one arrives at the general formula.

( inc T )rr = −2Trr
r2

+

(
∂2
θTφφ + Tφφ
r2 sinφ

− ∂φTφφ
r2 tanφ

+
∂rTφφ
r

+
2Tφφ
r2

)
+

(
∂2
φTθθ

r2
+

2∂φTθθ
r2 tanφ

+
∂rTθθ
r

)
− 2∂φ (Trφ sinφ)

r2 sinφ

− 2∂θTrθ
r2 sinφ

− 2

sinφ

(
∂θ∂φTφθ

r2
+

∂θTφθ
r2 tanφ

)
, (5.5)

( inc T )φφ = −(
∂rTrr
r
− ∂φTrr
r2 tanφ

− ∂2
θTrr

r2 sin2 φ
) + (∂2

rTθθ +
2∂rTθθ
r

)

− 4Trφ
r2 tanφ

− 2

(
∂θTrφ
r2 sinφ

+
∂θ∂rTrθ
r sinφ

)
, (5.6)

( inc T )θθ =

(
∂2
φTrr

r2
− ∂rTrr

r

)
+

(
∂2
rTφφ +

2∂rTφφ
r

)
− 2

(
∂r∂φTrφ

r
+
∂φTrφ
r2

)
, (5.7)

( inc T )rφ =
∂φTrr
r2

+
∂rTφφ
r tanφ

−
(
∂r∂φTθθ

r
+

2∂rTθθ
r tanφ

)
−
(

∂2
θTrφ

r2 sin2 φ
+

2Trφ
r2

)
+

∂φ (∂θTrθ sinφ)

r2 sin2 φ
+
∂φ∂rTφθ
r sinφ

, (5.8)

( inc T )rθ =
∂θTrr
r2 sinφ

− ∂r∂θTφφ
r sinφ

+
1

sinφ

(
∂φ∂θTrφ

r2
− ∂θTrφ
r2 tanφ

)
−

(
∂φ (∂φTrθ sinφ)

r2 sin2 φ
+
Trθ
r2
− Trθ
r2 tan2 φ

)
+

(
2∂rTφθ
r tanφ

+
∂r∂φTφθ

r

)
, (5.9)

( inc T )φθ =
1

r2 sinφ
(
∂θTrr
tanφ

− ∂θ∂φTrr) +

(
∂r∂θTrφ
r sinφ

+
∂θTrφ
r2 sinφ

)
+

(
∂r∂φTrθ

r
− ∂rTrθ
r tanφ

− Trθ
r2 tanφ

+
∂φTrθ
r2

)
−
(
∂2
rTθφ +

2∂rTφθ
r

)
.

6. Concluding remarks

In this note a method to compute the incompatibility operator in a system of curvilinear components/coordinates
is proposed. Moreover an in-extenso expression of the incompatibility is given in the spherical system. It has
been shown that the incompatibility of the elastic strain is directly linked to the dislocation density of a solid.
Therefore our method will allow us, in a first step, to compute the energy related to dislocations in spherical
inclusions. In a second step, to optimize the location of these inclusions in the body with a view to minimizing or
maximizing certain cost functionals. This will be the purpose of future work. To conclude, a simple application
of our full expression will be given.

Application: determining the dislocation-induced force in linearized elasticity. Recall the general
form of second-order free energy Ψ := We(ε) + Ŵe( Curlt ε, div ε) + Ŵdefect(κ, Curl κ, div κ) + W̄defect(ε

0). Let
ϕe(u) =

∫
Ω
We(∇u)dx and ϕdefect(F ) =

∫
Ω
W̄defect( inc F )dx. The Fréchet derivative of ϕe at u in the direction v

reads Dϕe(u)[v] =
∫

Ω
A∇u∇vdx = −

∫
div (A∇u) · vdx, that is, the differential ϕ′e(u) := Dϕe(u) = f , by Riesz

theorem. Also, Dϕdefect(F )[V ] =
∫

Ω
inc W̄ ′defect( inc F ) · V dx and we set G := ϕ′defect(F ) = inc W̄ ′defect( inc F )

which is symmetric and divergence free. Assume also that G is independent of ε0. Now we would like to solve
(2.8) with Ω the unit sphere, in the simplified case where A = αI4, and taking G = gθ ⊗ gθ, that is, we seek F
such that inc (α inc F ) = gθ ⊗ gθ.

The solution of inc T = gθ ⊗ gθ is found by (5.7) as T (r)gr ⊗ gr with T (r) = − 1
2r

2 + c. Moreover, by

(5.5) F = F (r)gr ⊗ gr is a solution with F (r) = 1
4αr

4 − c
2αr

2. Uniqueness is obtained by imposing the natural
homogeneous Dirichlet conditions F = Curlt F × N = 0 on ∂Ω, i.e., at r = 1, that is, for c = 1/2. Thus
ε0 = − 1

2α (r2 − 1)gr ⊗ gr. Now the displacement u is obtained by solving −div (A∇u) = f + div (Aε0), where

div (Aε0) = −
(
2r − 1

r

)
gr is a radial force due to the presence of dislocations.
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Appendix A. Other terms of the incompatibility

A.1. inc Tφφg
φ ⊗ gφ. Let us compute the curl of T = Tφφg

φ ⊗ gφ. One has

Curl T = ∇Tφφ × (gφ ⊗ gφ) + Tφφ Curl (gφ ⊗ gφ)

= ∂rTφφg
φ ⊗ gθ − 1

r sinφ
∂θTφφg

φ ⊗ gr +
Tφφ
r

(gφ ⊗ gθ − 1

tanφ
gθ ⊗ gr).

Hence

Curl Curlt T = ∇(∂rTφφ)× (gθ ⊗ gφ)−∇(
∂θTφφ
r sinφ

)× (gr ⊗ gφ) +∇
(
Tφφ
r

)
×
(
gθ ⊗ gφ

)
− ∇

(
Tφφ
r tanφ

)
×
(
gr ⊗ gθ

)
+ ∂rTφφ Curl (gθ ⊗ gφ)− ∂θTφφ

r sinφ
Curl (gr ⊗ gφ)

+
Tφφ
r

Curl (gθ ⊗ gφ − 1

tanφ
gr ⊗ gθ)

inc T =

(
∂2
θTφφ + Tφφ
r2 sinφ

− ∂φTφφ
r2 tanφ

+
∂rTφφ
r

+
2Tφφ
r2

)
gr ⊗ gr + (∂2

rTφφ +
2∂rTφφ
r

)gθ ⊗ gθ

+
2∂rTφφ
r tanφ

gr � gφ − 2∂r∂θTφφ
r sinφ

gr � gθ. (A.1)

A.2. inc Tθθg
θ ⊗ gθ. Let us compute the curl of T = Tθθg

θ ⊗ gθ. One has

Curl T = ∇Tθθ × (gθ ⊗ gθ) + Tθθ Curl (gθ ⊗ gθ)

= −∂rTθθgθ ⊗ gφ +
∂θTθθ
r

gθ ⊗ gr +
Tθθ
r

(
1

tanφ
gθ ⊗ gr − gθ ⊗ gφ).

Hence

Curl Curlt T = −∇(∂rTθθ)× (gφ ⊗ gθ) +∇(
∂φTθθ
r

)× (gr ⊗ gθ) +∇(
Tθθ
r

)× (
1

tanφ
gr ⊗ gθ − gφ ⊗ gθ)

− ∂rTθθ Curl (gφ ⊗ gθ) +
∂φTθθ
r

Curl (gr ⊗ gθ) +
Tθθ
r

Curl (
1

tanφ
gr ⊗ gθ − gφ ⊗ gθ)

inc T =

(
∂2
φTθθ

r2
+

2∂φTθθ
r2 tanφ

+
∂rTθθ
r

)
gr ⊗ gr + (∂2

rTθθ +
2∂rTθθ
r

)gφ ⊗ gφ

− 2

(
∂r∂φTθθ

r
+

2∂rTθθ
r tanφ

)
gr � gφ.

A.3. inc 2Trφg
r � gφ. Let us compute the curl of T = 2Trφg

r � gφ. One has

Curl T = 2∇Trφ × (gr � gφ) + 2Trφ Curl (gr � gφ)

= ∂rTrφg
r ⊗ gθ +

∂φTrφ
r

gφ ⊗ gθ − ∂θTrφ
r sinφ

gr ⊗ gr +
∂θTrφ
r sinφ

gφ ⊗ gφ)

+
Trφ
r

(2gr ⊗ gθ − gθ ⊗ gr +
1

tanφ
gθ ⊗ gφ).



DIRECT EXPRESSION OF INCOMPATIBILITY IN CURVILINEAR SYSTEMS 11

Hence

Curl Curlt T = ∇(∂rTrφ)× (gθ ⊗ gr)−∇(
∂φTrφ
r

)× (gθ ⊗ gφ)−∇(
∂θTrφ
r sinφ

)× (gr ⊗ gr)

+ ∇(
∂θTrφ
r sinφ

)× (gφ ⊗ gφ) + 2∇(
Trφ
r

)× (gθ ⊗ gr)−∇(
Trφ
r

)× (gr ⊗ gθ)

+ ∇(
Trφ

r tanφ
)× (gφ ⊗ gθ)

+ ∂rTrφ Curl (gθ ⊗ gr)− ∂φTrφ
r

Curl (gθ ⊗ gφ)− ∂θTrφ
r sinφ

Curl (gr ⊗ gr)

+
∂θTrφ
r sinφ

Curl (gφ ⊗ gφ) +
Trφ
r

Curl (2gθ ⊗ gr − gr ⊗ gθ +
1

tanφ
gφ ⊗ gθ)

inc T = −2

(
∂φTrφ
r2

+
Trφ

r2 tanφ

)
gr ⊗ gr − 4Trφ

r2 tanφ
gφ ⊗ gφ

− 2

(
∂r∂φTrφ

r
+
∂φTrφ
r2

)
gθ ⊗ gθ − 2

(
∂2
θTrφ

r2 sin2 φ
+

2Trφ
r2

)
gr � gφ

+ 2

(
∂φ∂θTrφ
r2 sinφ

− ∂θTrφ
r2 sinφ tanφ

)
gr � gθ + 2

(
∂r∂θTrφ
r sinφ

+
∂θTrφ
r2 sinφ

)
gφ � gθ.

A.4. inc 2Trθg
r � gθ. Let us compute the curl of T = 2Trθg

r � gθ. One has

Curl T = 2∇Trθ × (gr � gθ) + 2Trθ Curl (gr � gθ)

= − ∂rTrθg
r ⊗ gφ +

∂φTrθ
r

(gr ⊗ gr − gθ ⊗ gθ) +
∂θTrθ
r sinφ

gθ ⊗ gφ

+
Trθ
r

(
gφ ⊗ gr − 2gr ⊗ gφ +

1

tanφ
(gr ⊗ gr − gφ ⊗ gφ)

)
.

Hence

Curl Curlt T = −∇(∂rTrθ)× (gφ ⊗ gr) +∇(
∂φTrθ
r

)× (gr ⊗ gr − gθ ⊗ gθ) +∇(
∂θTrθ
r sinφ

)× (gφ ⊗ gθ)

+ ∇(
Trθ
r

)×
(
gr ⊗ gφ − 2gφ ⊗ gr +

1

tanφ
(gr ⊗ gr − gφ ⊗ gφ)

)
− ∂rTrθ Curl (gφ ⊗ gr) +

∂φTrθ
r

Curl (gr ⊗ gr − gθ ⊗ gθ) +
∂θTrθ
r sinφ

Curl (gφ ⊗ gθ)

+
Trθ
r

Curl

(
gr ⊗ gφ − 2gφ ⊗ gr +

1

tanφ
(gr ⊗ gr − gφ ⊗ gφ)

)
inc T = − 2∂θTrθ

r2 sinφ
gr ⊗ gr − 2

(
∂θTrφ
r2 sinφ

+
∂θ∂rTrθ
r sinφ

)
gφ ⊗ gφ

+
2

sinφ

(
∂φ∂θTrθ
r2

+
∂θTrθ
r2 tanφ

)
gr � gφ

− 2

(
∂2
φTrθ

r2
+
Trθ
r2
− Trθ
r2 tan2 φ

+
∂φTrφ
r2 tanφ

)
gr � gθ

+ 2

(
∂r∂φTrθ

r
− ∂rTrθ
r tanφ

− Trθ
r2 tanφ

+
∂φTrθ
r2

)
gφ � gθ.

A.5. inc 2Tφθg
φ � gθ. Let us compute the curl of T = 2Tφθg

φ � gθ. One has

Curl T = 2∇Tφθ × (gφ � gθ) + 2Tφθ Curl (gφ � gθ)

= ∂rTφθ(g
θ ⊗ gθ − gφ ⊗ gφ) +

∂φTφθ
r

gφ ⊗ gr − ∂θTθφ
r sinφ

gθ ⊗ gr

+
Tφθ
r

(
gθ ⊗ gθ − gφ ⊗ gφ +

2

tanφ
gφ ⊗ gr

)
. (A.2)
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Hence

Curl Curlt T = ∇(∂rTφθ)× (gθ ⊗ gθ − gφ ⊗ gφ) +∇(
∂φTφθ
r

)× (gr ⊗ gφ)−∇(
∂θTφθ
r sinφ

)× (gr ⊗ gφ)

+ ∇(
Tφθ
r

)×
(
gθ ⊗ gθ − gφ ⊗ gφ +

2

tanφ
gr ⊗ gφ

)
+ ∂rTφθ Curl (gθ ⊗ gθ − gφ ⊗ gφ) +

∂φTφθ
r

Curl (gr ⊗ gφ)− ∂θTφθ
r sinφ

Curl (gr ⊗ gθ)

+
Tφθ
r

Curl

(
gθ ⊗ gθ − gφ ⊗ gφ +

2

tanφ
gr ⊗ gφ

)
inc T = − 2

sinφ

(
∂θ∂φTφθ

r2
+

∂θTφθ
r2 tanφ

)
gr ⊗ gr + 2

∂φ∂rTφθ
r sinφ

gr � gφ

+ 2

(
2∂rTφθ
r tanφ

+
∂r∂φTφθ

r

)
gr � gθ − 2

(
∂2
rTθφ +

2∂rTφθ
r

)
gφ � gθ.
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