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Prior-based facade recti cation for AR in urban environment
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ABSTRACT

We present a method for automatic facade recti cation and detec-
tion in the Manhattan world scenario. A Bayesian inference ap-
proach is proposed to recover the Manhattan directions in camera
coordinate system, based on a prior we derived from the analysis
of urban datasets. In addition, a SVM-based procedure is used to
identify right-angle corners in the recti ed images. These corners
are cl_ustered in fe_lcade regions using a greedy rectangular min-cut 13 (37.14%) inlier matches out of 35
technique. Experiments on a standard dataset show that our ~'~~
rithm performs better or as well as state-of-the-art techniques v
being much faster.

Index Terms: 1.2.10 [Vision and Scene Understanding]: 3D/stel
scene analysis—; H.5.1 [Multimedia Information Systems]: Art
cial, augmented, and virtual realities—;

1 INTRODUCTION

In Augmented Reality, accurate pose computation is fundame
for seamless integration of virtual objects into the real scene.
are interested in applications which take place in man-made ¢
ronments and we suppose that the camera intrinsic paramete
available. We focus in this paper on the initialization stage whic.. ..
especially dif cult in urban scenes due to the presence of repeated
patterns. Another dif culty originates in the fact that a pedestrian is Figure 1: RANSAC-based matching of SIFT features between a tex-

free of his motion in the scene and can therefore adopt uncontrolledtured 3D model of the Hotel de Ville of Nancy and a photo of this
viewpoints - close or distant views - with respect to the model (see building, before and after having recti ed and detected the facade.

Fig. 7 for various examples of images). As a result, the set of

2D/3D correspondence hypotheses may contain a high ratio of out-

liers which may lead to erroneous pose computation.

In this paper, we invoke the so-called “Manhattan world” as- but only to provide regions of interest where facades features are
sumption, which states that groups of lines are aligned with the likely to be found, in order to improve the robustness and speed of
cardinal axes of a global frame. Past works have investigated recti- Subsequent recognition tasks. Fig. 1 illustrates the interest of such
cation based on the detection of orthogonal vanishing points (VPs) a strategy by using a very common matching procedure between a
to facilitate wide-baseline matching and reconstruction[20, 14, 3]. roughly textured polyhedral model of thedt¢l de Ville of Nancy
Such methods allow to cope with the limitations of af ne invariant and a picture of this building. Rectifying the image and using the
descriptors which are unable to match points when large projective top-ranked rectangle provided by our algorithm (see Fig. 5) leads
deformations occur. However, identifying areas in correspondence to a signi cant increase in both the number and ratio of inliers.
after this recti cation step can still be dif cult. In the context of
extracting dominant rectangular structures, [14] rely heavily on the
the strong assumption that.the boundaries or the corners of the reCt'prior about the Manhattan frame by imposing a near-vertical di-
angle can be extracted. With the goal to match street-level facades;gtion a5 well as orthogonality constraints. Second, we propose
to airborne images, [3] propose a descriptor that captures the StruC+, ;se machine learning and cutting graph techniques to formulate
ture of repetition of patterns and attempt to characterize facades bysa.ade hypotheses which will be used subsequently to guide the
clustering these descriptors. Preliminary results are promising but p\aching between the model and the considered image. Instead of
manual mark!ng_of buildings is required to |r_1|t|aI|z_e the clustering. attempting to detect repetitive patterns in the image as in [3], we

In the continuity of these past works, we investigate how facade ropose to detect right-angle comers due to windows or doors us-
recti cation and delimitation can be improved by conS|der|ng Prior jng a SVM-based machine learning technique. Rectangular facade
information about the scene and the_camt_ara relevantto AR in Urbanhypotheses are then generated through min-cuts techniques with the
context. Note that our goal is not to identify accurately the facades jjej to identify rectangles with high density of right-angle corners.

Our contribution are twofold. First we provide a Bayesian frame-
work for detecting VPs in Manhattan worlds which incorporate

e-mail: antoine.fond@loria.fr The paper is organized as follows. Related work about orthog-
Te-mail: marie-odile.berger@inria.fr onal VP detection is described in section 2. The prior distribution
*e-mail: gilles.simon@Ioria.fr is provided in section 3. Our Bayesian framework for VP detec-

tion is described in section 4 and the facade detection algorithm is
presented in section 5. Extensive comparisons of our method with
state of the art techniques [19, 15] are presented in section 6 along
with some results of facade detection.



2 RELATED WORK

There is a vast literature on the problem of VP detection. Early

methods used the Hough transform (HT) to detect VPs on the

Gaussian sphere [16]. However, such approaches are sensitive t

the quantization level of the bins and can produce false VP. Some

methods use HT as an initialization stage and Expectation Maxi-

mization (EM) iterations to get more accurate and con dent results

[2,13, 14]. EM performs both classi cation and estimation tasks by ~ T
iterating between two steps. However, a reasonable initialization is

required and the number of models in the mixture formulation has

[ - .

to be xed, which does not guarantee that the Manhattan directions
are nally obtained. Several attempts have been made to tackle
these problems. For instance, [19] estimate VP hypotheses in the

image plane using pairs of edges and compute consensus sets uSinIggure 2: Histograms of VPs on the Gaussian sphere, extracted from
the J-!inkage algorithm.' In [,15]' the problem is SOlve,d in the dual e vork Urban and Toulouse datasets (left) and sa;npled from our
domain where converging lines become aligned points. The Use yior distribution py (right). Xx;y;z camera axes are colored, respec-
of a robust point alignment detector leads to candidate VPs. Both yjely, in red, green, blue. The histogram values are colored using the

[19] and [15] provide a RANSAC-like procedure to nd the three  Matlab Jet colormap shown at the bottom of the gure. The same
Manhattan directions once the set of candidate VPs has been ob-color conventions are used in all gures of this paper.
tained, assuming the internal camera parameters are known. How-
ever, these procedures do not enforce orthogonality between the
Manhattan VPs, and fail if one of the Manhattan VPs is missing in axis and the principal axis of the camera. An examination of this
the candidate set. gure leads to the following observations:
Another category of techniques directly estimate the Manhat- . . o
tan directions (or, equivalently, the camera orientation) from image Observation 1 The vertical Manhattan directioivsare nearly ver-

data. In [21], a minimal solution for computing three orthogonal tical in the camera frame and mainly constrained inythez
VPs and focal length from four line segments is used to maximize plane: this re ects that camera rotations arowrakis (pitch)
a consensus set using RANSAC. In [4], the number of clustered are often performed, while the x-axis keeps horizontal in the
lines is globally maximized over the rotation search space, using Manhattan frame (roll angles are generally very small). The
a branch-and-bound procedure based on the Interval Analysis the-  Pitch angle has a limited range and is centered around 0.

ory. This kind of techniques may be optimal in general case, but
improved performance in terms of ef ciency and robustness may
be obtained when some prior information is available. Our method
is thus more in line with some works such as [6, 7, 9], where the
Manhattan directions are estimated using Bayesian inference. Inthe
early work of Coughlan and VYuille [6], the camera is assumed ori-
ented in the horizontal plane. A posterior distribution on the com- According to Observation 1, we use the Kent distribution [12] to
pass direction is derived at each pixel by combining knowledge of model the prior distribution of the vertical Manhattan direction:
the geometry of the Manhattan world with statistical knowledge of

edges inimages. The image data at each pixel is explained by one of

ve models: edge due to one of the three orthogonal VPs, random  py(Y) =
edge or off-edge. The prior probability of each of the edge models c(ky;b)
was estimated empirically. The maximum a posteriori (MAP) es-
e e B P2 emines th lptcty of he contour of cqual pobabity ana
izontal camera orientation assumption is relaxed in [7, 9], though S(Ky;P) is & normalizing constant. The parametteis set togky

at the expense of high combinatorial search over discretized Euler SO that the major axis of the con dence ellipses is aligned with the

angles in [7], or Quasi-Newton or EM optimizations which both Principal axis of the camera (Fig. 3(left)). .

require reasonable initial guesses in [9]. _Knowing theY-direction and considering Observation 2, e
In this work, we use a prior on the distribution of the Manhattan diréction can be obtained using a Watson distribution [17]:

directions, that was derived from real data. Such a distribution has,

to our knowledge, never been provided before and is in itself a con- Pxjy (X;Y) =

tribution of this paper. Moreover, in order to reduce the complexity

of MAP estimation, we divided the problem into three steps: inthe ;1010 the normalizing constakt is the Kummer function (Fig. 3

rst step, our prior is used to provide posterior probabilities of VPs middle). '

sampled on the Gaussian sphere. In the second step, local maxima ¢ thirg Manhattan directio is likely to set near the cross

of these probabilities are extracted using a spherical weighted mean,,4.ct of direction andY. leading to th -Mises-Fisher dis-
shift. Finally, the Manhattan frame is obtained by solving the MAP ntprirgu;ijgn?17]|r(chig|cl)g(ri32t)):, cading to the von-iises-Fisher cis

among a discrete set of candidate VP triplets.

Observation 2 Due to the orthogonality between the Manhattan
VPs, a consequence of Observation 1 is that the horizontal
directionsX andZ are concentrated in a narrow range around
the equator. Moreover, we observe that these directions are
distributed all around the sphere.

exp kyy'Y+b (V)2 (x'Y)2 : (D)

whereky > 0 determines the spread of the distributidn,de-

1 Tyy2
—az———exp  kx(Y X)° ; 2
M(3:3; kx)

V7Y — z T .
3 MANHATTAN FRAME PRIOR DISTRIBUTION Pzixy (X Y;2) = 4p sinhkz exp kz(X Y)'Z : ®)
A histogram of 648 ground truth Manhattan directions obtained  Finally, the joint probability of a tripleiX;Y;Z can be inferred
from the York Urban Line Segment [9] (102 images) and the from equations (1) to (3):
Toulouse Vanishing Points [1] (114 images) datasets is shown in
Fig. 2(left). The VPs are expressed on the Gaussian sghere Px:v:z(X;Y;Z) = pzixy (X Y: D) pyy OGY) py(Y): (4)
wherex;y; z represent, respectively, the horizontal axis, the vertical



Ne(Vj) we compute the weighted Karcher Meanon S, using the
Newton-like algorithm from [5] in the following minimization:

m=argmax &  wydg(mV) ™
M V2Ne(V;)
with dg the geodesic distance on the sphere and the likelihood
weightswy
PLjv(L;V)
Wy = WY : (8)

Ax2Ne(v;) PLv (LX)

If the distancedg(my;V;) is not too smallV; becomesny and we
repeat the procedure until convergence. Mean shift has been proven
to perform a gradient ascent. Thus at the end of the mean shift we
getP maxima of the posterior distribution which are our candidate
VPsV = Vj i P (Fig. 4).

Figure 3: Prior / conditional probability distributions of the Manhattan
directions in the camera frame. From left to right: py, pxjy(Yo) and
Pzix:v (Xo0; Yo). Xo, Yo are shown in dashed lines. ky = 50;kx = kz = 30.

4 BAYESIAN ESTIMATION OF THE MANHATTAN VPs

Most VP estimation algorithms rely on segment lines extraction in
the image. Now that we have a prior distribution for the Manhattan
directions, we could de ne a likelihood using the line segmérds
measures, and solve a MARjx.y.z Px;y;z in ($)3. However, the

high dimensionality of the prior would render this method compu-
tationally infeasible. In order to simplify the problem, we rst es-
timate the local maxima i, of the posterior distributiomy;y pv,

de ned for any VP, using a spherical weighted mean shift. Then
the local maxima are considered as candidate Manhattan directions
and the MAP is solved on a discrete set of VP triplets.

4.1 Computation of candidate VPs

Line segments are detected in the image plane using LSD [10] and

divided into equal-length segments. When a set of line segments _ ) ) ) ) R

li are converging to the same VP in the image plane, the normal Fl_gure 4: Mean shift paths obtained with the image of the Hotel de
vectorsn; of their great circle o, are laying in the same plane. Ville of Ngncy: blue circles show th_e seeds, black crosses the steps
The normal vector of that plane is the VP directionWe thus can ~ 2"d red circles the convergence points.

de ne the likelihoodpy j, as:

! 4.2 Discrete resolution of the MAP
(nfv)?

pLv(L;V) = L & exp — (5) We now only have to nd the MAP estimate over the discrete\set
CiaL 2s of guesses:
whereC is a normalizing term. A VP 0 can be one of the three max o (XY 2) Dyover (XY 2): 9
Manhattan VPs or a non-Manhattan VP generated by the back- (x;Y;2)2v3pLJX’Y’Z( YiZ)Pxiviz(X:Yi2); ©
ground structure. The prior probability of a \WP can therefore . L ) ) .
be seeing as a mixture from all four causes: where the priopx:y:z(X;Y; Z) is given in equation (4) and the like-
lihood pyjx:v;z(X;Y;Z) is obtained using the independence of the
Pv(V) = pxPx(V)+ pypy(V)+ pzpz(V)+ pupn(V):  (6)  finesegment 2 L

where px(V), py(V) and pz(V) are the marginal probabilities of o
the Manhattan frame prior distributiony.v:z de ned in equation Pxyz = O Pajxvz (10
(4) andpn(V) is a probability distribution orS, that models the 2L
non-l\/llanhattan. VPs. Following e.qg. [6] and [9], we tgke= pY:. . = O px Prjx + PY Pnjy + PzPnjz (11)
pz = i3 N, In images where the Manhattan world assumption is li2L

valid, non-Manhattan VPs are due to extraneous structures such as
striped awnings, rows of posts, etc., which are generally much rarer e\ = (n'V)?
than building structures. For that reason, we uggd= 0 in our wher.epnilv(n,,V) - flszexq 57 ) o
implementation. Fig. 2(right) shows a histogram of VPs sampled  11iPlets of VPs are selected M and the one maximizing the
from our prior distribution (6): as we can see, this histogram is close POSterior probabilitypy.y.zj K Pujx;v:zPxv:z is considered to be
to the one generated from ground-truth data (Fig. 2(left)) though a the estimatexX;Y;Z of the Manhattan frame in camera coordinate
bit more spread out, which allows us to handle a slightly larger System. In order to both reduce the combinatorial complexity of
variability of VPs than the one obtained in the datasets. the search and favor orthogonal triplets, we proceed as follow: rst,
To nd the local maxima of the posterior distributiqn;y py we we select VPs fronV that are inside a con dence region of the
use a spherical weighted mean shift.is sampled from the prior ~ Kent distributionpy (Y) (1). These VPs are guesses for the vertical
distribution py andP seeds are selected from that sampling. For Manhattan directiofY. Then, for each guess, all candidate VPs
each seel; we apply a mean shift on the sph&gover the previ- Xj inside a con dence region dfy;y (X;Y;) (2) are selected. Fi-
ous sampling weighted by the likelihood. In a certain neighborhood nally, for each guesX, candidate VP$Z.g inside a con dence




Figure 5: Main steps of our facade detection algorithm illustrated with the recti ed image of the H 6tel de Ville of Nancy. From left to right:
Corners classi cation (right-angle corners are in blue, non-right-angle corners in red). Delaunay triangulation of the right-angle corners (weights
on edges are mapped to the Jet colormap). Greedy rectangular min-cut (ranks of the rectangles are mapped to the Jet colormap).

region of pzjx.v (Xj;Yi;Z) (3) are selected and the posterior prob- right-angle corners. For that purpose, we rst perform a Delaunay
ability is assessed for all tripletsX;;¥i;Zc . Note that specic triangulation of the right-angle corners. That triangulation embeds
tripletsX;;Yi;X; Y are added to the set of assessed triplets, which a graph structure whlc_h enables us to use min-cut costas a cluster-
allows us to handle images where only one horizontal Manhattan ing measure. The weights;; of the edges;; are function of the

direction is represented. distance between cornetsandC;j (Fig. 5(middle)):
At the end of this procedure, the 3x3 matri%jYjZ is generally !
not in SO(3), which may produce visually poor results in the recti- _ G Cj
ed image and compromise the detection of the right-angle corners Wi;j = exp 52 (13)

whose algorithm is presented in the next section. For that reason,

we eventuglly_perform an iterative optimization of the expectation e choice of the Delaunay triangulation is motivated by the speed
of the log-likelihood: of computation and the regularity of the faces generated from reg-
ular data. To nd the best rectangle partition we start from the
“max E log pij;Y;z(X?Y? Z) (12) bounding box of the triangulation and we split it recursively us-
RE(X[¥j2)25Q3) ing a greedy approach based on the min-cut cost. The cost of a split
S(R;X) cutting a rectangl® through axisx into two subrectangles
Rx andRy relies on the edges cut and the density of edges in the
subrectangles.

This procedure is initialized with the rotation matRs = UVT,
whereUSVT is the SVD of XjYjZ . The cost function is pa-
rameterized with Euler angles and a quasi-Newton method is used

to perform the optimization. A&y is generally close to the so- o °
p P & is g y Ae.;2cut(Re;Ry) Wisj + Qeg;j2cut(Re;Ry) Wis

lution, the convergence is very fast. Finally, using the intrinsic S(R;X) = k k (14)
camera projection matriX we can compute the homographies ag;2Rx Wiij ag;2Re Wiij
Hi= K(XjYjZ)K tandH, = K(ZjYj X)K !which rectify the
building facades aligned with resfX;Y) and(Z;Y) planes. The idea is to scan the vertical axisand the horizontal axiy
to nd the minimum cost minminy (R; x); miny S(R;y) where to
5 FACADE DETECTION split the rectangl®k. Then we repeat that procedure recursively on

To detect a coarse bounding box of the recti ed facade we rely on the two su_b_rectangleléx a_nd Ry until the min-cut cost of the
whole partitionf Reg; |, p is small enough, with

the fact that most facades are composed of right-angle architectural

features. Doors, windows, bricks, etc., share strong vertical and .

horizontal components on their visual appearance. As it is dif cult S = 13 SR)= 3 Qe 2cut(RR) Wisi |

to precisely quantify that vertical and horizontal edge distribution =a =a EY Wi
. k=1 k=1 €:j2R Vi)

for aright-angle feature, we learned the appearance of such features

using supervised classi cation. Finally rectanglesR, are set to the bounding box of the corners

To that purpose, a training set was built as follows. First, a set jhside and ranked with respect to their partition sc8(®) (Fig.
of images coming from the York Urban database were recti ed us- g(righy)).

ing the ground truth VPs. Then, corners where detected in these

images using Shi & Tomasi algorithm [18]. Histograms of Ori- 6 EXPERIMENTS

ented Gradient of 16 bins were used as descriptor of these corners.

These descriptors were computed by locally summing the gradient In this section, we present experimental results of our method on
values for a certain orientation rather than counting the edges [8]. real data. We rst compare our algorithm for detecting the Manhat-
A manual labeling step enabled supervised classi cation between tan VPs with two state-of-the-art methods:

right-angle and non-right-angle corners using SVM classi cation.

(15)

About 5000 corners were labeled in almost equal proportion. SVM Tardif's method for detecting VPs with J-Linkage and LSD
performed fast and accurate classi cation, with a rate of 86% of [19], using the Matlab implementation availableat
good classi cation on cross validation.

This classi er can be used to extract right-angle corners from Lezama et al.'s method for nding VPs via points alignment
recti ed facades (Fig. 5(left)). As facades of interest often appear in primal and dual domains [15], using code availablé.at

as rectangles in the recti ed images, we want to enforce this geo-
metrical constraint in the clustering process. Therefore, we need a  Ihttps://code.google.com/p/vpdetection/
measure to evaluate the clustering relevance of a rectangle over the 2http://dev.ipol.im/jlezamalvanishing _points/




We ran the three algorithms on the York Urban Database [9]. the horizon line in the recti ed image, corners of the scene at the
This database is composed of 102 images of indoor and outdoorintersection of a horizontal segment at heighfregardless of its
urban environments. In order not to bias the results, we used thecompass orientation) and a vertical segment are indeed right-angle
same set of line segments extracted with LSD [10] for each of the corners on the horizon line. Clusters of such corners generally have
three methods. In most of the images the 3 Manhattan directionsa weak ranking in the partition, but can still lead to spurious facade
are visible but in some images there are only 2. The three methodsdetections. As the main purpose is to limit matching hypothesis
are compared using two different metrics for measuring the dis- oversegmentation of the facade is not a really a problem. However
tance between the expected VPs and the ground-truth VPs. Thea further merging step could nd the biggest rectangle and discard
rst metric M 1 is the average of the geodesic distance on the spherethe false detection due to the horizon line.
from each ground truth direction to the expected direction. The sec-
ond metricM , is the geodesic distance &Q(3) [11]. AsM » is
measured in the rotation manifold, it also embeds a measure of the
orthogonality of the solution. The cumulative error histograms ob- We presented a method for facade recti cation and detection in ur-
tained for these two metrics are shown in Fig. 6. ban environment. A Bayesian inference approach was proposed to
recover the Manhattan directions in the camera frame. Our algo-
rithm performs better or as well as state-of-the-art techniques and
is much faster, mainly as a result of using a suitable prior. In ad-
dition, a SVM was used to identify right angle-corners in recti ed
images. These corners were clustered into rectangular regions in
order to identify facades aligned with the Manhattan frame. This
approach performed very well in a large variety of frames.

Several improvements could be made to our algorithm. For in-
stance, in this work, the MAP estimate of our model is retained as
the VP triplet used for image recti cation. However, as a result
of our algorithm, several candidate triplets are obtained associated
with probability measures. These candidate may be evaluated with

Our prior information on the VPs regularizes the data. So even regard to criteria measured ir} the recti ed image..For instance, the
when the set of line segments is noisy it can help the algorithm not 'atio between the number of right-angle and non-right angle corners
to fall into a meaningless local maximum and nd the correct solu- May be such a criterion.
tion. That allows our algorithm to be more accurate than Tardif's ~ Now that we are able to automatically rectify and detect facades
method for both metrics. Lezama algorithm obtains the best resultsin images, our future work will focus on feature matching between
when theM 1 metric is used. However, their results are very similar faces of a 3D model and a new image, leading to a facade recogni-
to ours when usindl ». This is due to the fact that a triplet result- ~ tion and pose computation procedure. Of course, once a facade is
ing in a small error withM 1 can have much higher value wif ,. recti ed, a much more appropriate strategy than the basic one pre-
Each direction can be close to the ground truth direction but keep sented in Fig. 1 can be found to match the facade with the model.
away from the orthogonality of the triplet. As our main purpose
is image recti cation, it is important that the solution remains on  prrerences
SQ3). In our experiments, we noticed that an image looks visually
recti ed roughly up to an error of 0.1 iM » metric. We get 93102 (1]

[2

7 CONCLUSION

Figure 6: Cumulative error histograms for the York Urban DB using
M 1 metric (left) and M , metric (right).
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