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2INSA de Rouen - LITIS, Normandie Université

1 Introduction

Fuzzy sets similarity is an important topic of research due to its several the-
oretical and practical applications. A recent paper on similarity and dissimi-
larity measures between fuzzy sets [9] reviews several axiomatic definitions and
plot the relationship between them. Fuzzy sets distances are also reviewed in
the context of image processing and pattern recognition under imprecision by
Bloch [5]. In this chapter, we present a new kind of similarity measure between
fuzzy sets having a geometric interpretation in functional spaces. We will use a
well-know concept from kernel methods, the kernel, to define a new class of sim-
ilarity measures between fuzzy sets [27, 1, 4]. Kernels are real-valued functions
defined on a non-empty space, and are mainly used to define similarity mea-
sures between elements in that space. Whether the kernels are positive definite
or indefinite functions, always they have a geometrical interpretation either in
Reproducing Kernel Hilbert Space (RKHS) or in more general spaces like Krein
or pseudo-Euclidean spaces.

This work aims to show how to engineer kernels on fuzzy sets, using some
well-know distances between fuzzy sets. The advantage of our approach is that
is possible to have a geometrical interpretation of the similarity measure be-
tween fuzzy sets. Similarity measures between fuzzy sets computed via positive
definite kernels are interpreted as inner products of two functions in a RKHS.
On the other hand, more general kernels like symmetric kernels are interpreted
as evaluation of functions by symmetric and bilinear forms in more general
functional spaces.

Our main idea to design kernels on fuzzy sets rely on plugging a distance
between fuzzy sets into the kernel definition. Kernels obtained in this way are
called, distance substitution kernels [17]. If the distance between fuzzy sets is a
metric, the resulting kernel on fuzzy sets will be positive definite, on the other
hand if the distance is given by pseudo-metrics or semi-metrics, the final kernel
will be a symmetric kernel.



Successfully applications of kernels on fuzzy sets will be applications where
fuzzy sets are used to model imprecise or vague information, and part of the
task to be solved requires the estimation of a similarity measure between fuzzy
sets. Example of such applications are those within supervised and unsupervised
machine learning tasks over fuzzy data. i.e. the sample contain observations
given by fuzzy sets. In the same way, those kernels could be used in the analysis
of heterogeneous data containing fuzzy variables. In this sense, this chapter
describes an experiment on kernel hypothesis testing using heterogeneous data.
This data has a subset of variables containing vague or linguistic information,
that we modelled with fuzzy sets.

To conclude this section, estimating a similarity measure between fuzzy sets
using kernels is important for several reasons: 1) it allow us to analyse imprecise
data using fuzzy set and kernel methods. This will improve and give a new
methodology for the analysis of fuzzy data in areas like data science, data mining
and machine learning; 2) it can be an important tool in several areas of fuzzy
mathematics, where, thanks to the theory behind kernels, fuzzy sets similarities
can be interpreted from a geometrical point of view; 3) it will have several
practical applications, for example, computing a similarity value between fuzzy
regions of pixels in image processing, or clustering fuzzy data on data mining.

The rest of this chapter is structured as follows. We start in Section 2, giving
a brief description of reproducing kernels, and showing how positive definite
kernels induce a metric in a space of functions. This section also presents a
class of kernels called as distance substitution kernels. Section 3 describes how
to use distances between fuzzy sets to define a new class of kernels on fuzzy sets.
Section 4 shows a experimental evaluation of the similarity measures presented
in this chapter in a kernel hypothesis task using a real dataset. Finally, we
present some conclusions in Section 4.4.

2 Reproducing kernels

Kernels are real-valued functions' and they are widely used as similarity mea-
sures between objects or entities [27, 1, 4]. Given two elements = and y in the
set X, a similarity measure between them can be estimated via a kernel:

k:XxX — R (1)

() = kz,y). (2)

A value k(z,y) close to zero means that the two elements are not so similar.
On the other hand, the higher the value k(z,y) is, the more similar z is to the

element y.
If k is positive definite, that is, if k satisfies the condition that:

N N
ZZCiCjk(xi,xj) 207 (3)
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IThere are more general definitions of kernels, but for our purposes we will only use real-
valued kernels




for every possible combination of values ¢;, c; € R, for any elements z;,z; € X
and for all N € N, then the kernel evaluation has a geometric interpretation
in a high dimensional Hilbert Space called as Reproducing Kernel Hilbert Space
(RKHS). In this sense, a similarity measure between two elements in X com-
puted by a positive definite kernel & is actually an inner product of two functions
in a RKHS:

k:(;my) = <¢a:a¢y>7'l7 (4)

where ¢, and ¢, are two functions in the RKHS # associated to the objects x
and y in the set X. Functions ¢, and ¢, are the representative functions of x
and y, and are mappings of the form:

b X — R (5)
y = 0u(y) = k(z,y). (6)

In this sense, positive definite kernels define similarity measures for objects
belonging to non-vector spaces, as is the case of the spaces given by sets of
graphs, strings, logic predicates, probability measures, fuzzy sets, etc; with an
geometrical interpretation in . For a more deeper study of kernel methods we
refeer the books [27, 4].

2.1 Distance induced by positive kernels

In what follows, we will explain how positive definite kernels induce a distance
in a RKHS. For that purpose, we will use the the term distance to denote
indistinctly a metric, or a pseudo-metric, or a semi-metric.

Definition 2.1 (Metric, pseudo-metric and semi-metric). A metric is a func-
tion: d: Q x Q — Ry, satisfying:

1. d(z,2') > 0,Vx, 2’ € Q (non negativity)

2.d

x,2') =0 iff x = 2’ (reflectivity)

3.d

(
(
(x,2') = d(a’,x) (symmetry)
(

N

d(z,z) <d(z,y) + d(y, z) (triangle inequality)

We say that d is a pseudo-metric if it satisfies the axioms 1, 3, 4 and additionally
satisfies d(z,z) = 0,Vz € Q and d(x, 2’) = 0 for some values x # a’. If d satisfies
the axioms 1, 2 and 3, it is a semi-metric.

In a RKHS #H with reproducing kernel k, by virtue of (4), it is possible to
compute the squared norm in H using kernels:
62 = dyllFe = k(x,y) — 2k(2,y) + k(y, y). (7)

It is important to notice that not only positive definite kernels could induce
metrics in H, There is another important class of kernels, the Conditionally



Positive Definite kernels (CPD) that are defined in the same way as Eq.3 but
with the restriction of Zf\’ c¢; =0,V¢; € R.

If ¥’ is a CPD kernel, (by Proposition 3 in [26] and Lemma 2.1 in [3]), the
following kernel is positive definite:

k(z,y) = (kl($7y) - k/(%xo) - k/(fﬁoay) + kl(xo,xo)) (8)

DN =

Now, if ¢, ¢, € H are induced by a kernel as the one given by (8), then (7)
could be rewritten as?:

6 — dyll3 = —K'(z,y) + 1/2(K (2, 2) + K (y,9)). (9)

It is still possible to relax the condition of positive definiteness for kernels by
only requiring symmetric kernels to be used to define distances. The geometric
interpretation in that case is given by linear spaces with symmetric bilinear
forms®. Of course, such induced distances could violate the definition of metric,
nevertheless they would induce zero-diagonal symmetric distances. Symmetric
and non-symmetric kernels had been used in machine learning problems with
state-of-the-art results [18] [19, 21, 22]. Some work had been done to give
a geometrical interpretation for indefinite kernels in pseudo-euclidean spaces
[24, 18] and Krein spaces [23]. In such spaces bilinear forms are not necessarily
positive definite and norms do not define metrics.

2.2 Distance substitution kernels

This class of kernels, are kernels based on the idea of using a distance inside
the kernel definition [17], and are motivated by the distance based learning
paradigm [24]. That is, the task of learning statistical models from data, where
the observations are not given explicitly but only a distance evaluation over
pairs of observations is known beforehand. Following Definition 2.1, if a metric
d(z,y) is defined by ||¢, — ¢y||% using some positive definite kernel k, i.e., d
is an isometric embedding onto #H, then the following expressions are positive
definite kernels:

D) ()%, 2) (a+v(z,y)%)’, 3) exp(—yd(z,y)?),  (10)

where a,y € RT, 3 € N, and

@)% C (60— br0), by — du)sy (11)
= %(ll(% — Ga )G + 11y — bao) 3 — 10w — dyll3)  (12)
_ ; (d(z, 20)? + d(y, 20)? — d(z.1)?) (13)

2See Proposition 3.2 in [3] for details.
31f k is symmetric, then k(z,2’) = Q(k(.,

x),k(.,z")), where Q is a symmetric and bilinear
form, with reproducing property Q(k(.,z), f) = f

!
, T
(). See Proposition 6 in [26] for details.
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By the definition of a CPD kernel, it is possible to prove that —d(z,y)?,p €
[0,2] is a CPD kernel. Note, that ¢,, € H is an arbitrary origin. Relaxing the
definition for d and allowing the use of pseudo-metrics and semi-metrics, the
kernels mentioned are not longer positive definite, instead they are symmetric
kernels. The geometric interpretation is guaranteed in pseudo-Eucledian spaces
or Krein spaces [7, 19, 21].

3 Kernels on fuzzy sets via fuzzy distances

This section describes a new class of kernels that actually are distance substitu-
tion kernels, where the distance function is a distance between fuzzy sets. That
is, they are formulated by plugging a distance between fuzzy sets into the kernel
definition.

3.1 Kernels on fuzzy sets

Similarity measures for fuzzy sets using kernels has two main advantages. The
first one is related to the geometrical interpretation of the similarity measure in
a space of functions. In this way, a positive definite kernel on fuzzy sets could
induce a topology in the set of all the fuzzy sets. The another advantage is
that kernels on fuzzy sets could be used in a modular fashion in kernel methods
like support vector machines, kernel PCA, Gaussian process and so on. Such
advantages could leverage the development of many applications in several ar-
eas of research where the observational data contain variables that are better
represented by fuzzy sets or inclusively data whose observations are naturally
represented by fuzzy sets.
Kernels on fuzzy sets are mappings of the form [16, 14, 15]:

E:FQ)xFQ) — R (14)
(X,Y) = k(X.Y), (15)
where F(Q) denotes the set of fuzzy sets on €2, that is
F(OQ)={X|X:Q—10,1]}, (16)
We say that the value X (z),z € Q is the membership degree of = in the fuzzy
set X.
3.1.1 Distances on fuzzy sets induced by kernels

Distances between fuzzy sets could be formulated using kernels on fuzzy sets as

follows:
D(X,Y)=k(X,Y) - 2k(X,Y) + k(Y,Y), (17)

we will call such a distance as a kernel-based distance over fuzzy sets.
An important consequence of Equation (7) in fuzzy set theory is that if
the kernel on fuzzy sets is positive definite, then Equation (7) give us a way on



defining a new set of metrics over fuzzy sets. In this sense D(X,Y) is interpreted
as being ||¢px — ¢y || in the RKHS H induced by the kernel k.

More general kernels on fuzzy sets can be used to define distances on fuzzy
sets. However, the resulting distances would not be metrics. Nevertheless, it
is still possible to get a zero-diagonal distances on fuzzy sets with symmetric
kernels.

3.2 A distance-based kernel on fuzzy sets

Going in the other direction, if a metric on fuzzy sets in the sense of Definition 2.1
is given, then a positive definite kernel on fuzzy sets could be easily constructed
from it, using the distance substitution kernel concept. That is, if D is a metric,
the following kernels on fuzzy sets are positive definite

K(X,Y) = (X,Y)% (18)
K(X,Y) = (a+4x,V)5)° (19)
K(X,Y) = exp(—yD(X,Y)?), (20)

where a,y € RT, 8 € N, and

def 1
2

All of those kernels will be kernels on fuzzy sets induced by distances on
fuzzy sets, we will refer to them as distance-based kernels on fuzzy sets.

If D is either a pseudo-metrics or a semi-metrics on fuzzy sets, function
D still could be used to define kernel on fuzzy sets. Of course, those kernels
are not longer positive definite but a geometrical interpretation could be given
in pseudo-Euclidean spaces or Krein spaces. Furthermore, non-positive kernels
have been used in several applications on machine learning problems in the past
few years. See for example references [2, 7, 19, 21]

Some popular distances between fuzzy sets that could induce new kernels
on fuzzy sets are given in Table 1. See [5, 25, 8, 10] and references therein for
details.

(X, )3 (D(X,X0)* + D(Y, Xo)* — D(X,Y)?) (21)

4 Experiments

This section presents an experimental study using the kernels presented in this
work on a hypothesis testing task. The dataset used in this experiment is a
real dataset of cancer prognosis and, following Section 4.2.1, some variables or
features are described by fuzzy sets rather than using specific values. We used
a kernel two-sample test [12], with kernels on fuzzy sets to find out whether two
samples of points follow the same distribution®.

4A code of the experiments could be found at https://github.com/jorjasso/
Two-sample-kernel-test-with-fuzzy-kernels.



D(X,X') Type of distance

|:fer | X (z) — X' (2)|P e pseudo-metric, p € N
sup,eq [ X (z) — X'(2)] metric
gmeﬂ :§E3 ;i:gg: metric, discrete case
|E(?:5€(S; — E(X")| pseudo-metric®
S eolDa (X, X') + Dy (X', X)) semi-metric?

> pomin[X (z), X' (z

semi-metric

semi-metric
1 — max,o min[X (z), X' (z)] pseudo-metric
fol D(X,, X!)da X, is the a-cut set and D is any metric on sets

> wareq d(@, ) min[X (z), X'(2')]
Zx,x’eﬂ mln[X(‘T)v X/(x/)}

metric

CE(X) =K} colX(2)log X(z)+ (1 — X(x))log(l — X(z))]

b Dy (X, X') = X(x)log ;((,(Z)) +(1-X(2))log m

Table 1: Popular distaces on fuzzy sets.



4.1 Kernel hypothesis testing

Kernels had been used to perform statistical tests to decide if two samples
were drawn from the same or different distributions [6, 11, 13, 12]. In this
experiment we used the kernel two-sample test approach which central concept
is the Maximum Mean Discrepancy (MMD) [12] defined as follows.

Definition 4.1 (MMD). Let F be a set of functions f: Q2 — R. Let X and Y
be two random variables on ) distributed according to the probability measures
P and Q. The MMD is defined as:

MMD[F,P,Q] = sup (Ex~p[f(X)] = Ev~olf(Y)]), (22)

where Ex.p is the expectation of the random variable X distributed according
to P.

For practical purposes, it is better to compute the square of the MMD in a
unit sphere of a RKHS H with kernel k. For a detailed discussion about the
derivation of the MMD in a RKHS see [12].

MMD?(FP,Q] = [[Ex~eléx] -~ Bv~alév]ll;,

Given the samples sx = {z1,...,Zm} e sy = {y1,...,yn} distributed according
to P and Q, respectively. An unbiased empirical estimator is given by (Lemma
6 from [12]):

1 m m 9 m n
MMDi[]:,Sx,Sy] = mZZk(xz,.ﬁ])—%ZZk(ﬂf“yj)
i=1 j#i =1 j=1

+ﬁzzk(%yﬂ (23)

i=1 j#i

Using the samples sx and sy defined above, it is possible to use the MMD
to test whether the null hypothesis Hy : P = Q or the alternative hypothesis:
Hy @ P # Q hold. To achieve that, the evaluation of the metric MMD is
compared against a threshold e. That is, if MMDI[F, sx, sy| > ¢, it is possible
to say that the null hypothesis is rejected. Otherwise, there is not evidence to
reject the null hypothesis. A Type I error occurs when H is rejected in spite of
the null hypothesis being true. A Type II error occurs when the null hypothesis
is not rejected in spite of the distributions being different. The level of the
test denoted by « is an upper bound of the Type I error and, of course, it can
be used to estimate the value of the threshold e. There is several methods to
achive that, see Section 4 and 5 from [12] for an example. In our experiments,
we estimated the threshold using bootstrap.



4.2 Two-sample test with kernels on fuzzy sets

In this section, we first describe the dataset used in the experiment and we show
that some variables of the dataset contain imprecise values given by linguistic
terms. Later, we show a fuzzification methodology to model the imprecise values
of such variables and we finish reporting some comparative results on fuzzy sets
against classical kernels.

4.2.1 Breast cancer dataset

The Breast Cancer dataset [20]5, provided by the Institute of Oncology at the
University Medical Center in Ljubljana, Yugoslavia, has information of 286 pa-
tients, divided in two categories: 201 patients with no recurrence events of
breast cancer in the first five years after the surgery, and 85 patients that show
recurrence events of breast cancer in the same period of time.

The dataset has ten variables shown in Table 2. Note that the variables age,
menopause, tumor-size and inv-node contain imprecise values.

Variable Values
class no-recurrence-events, recurrence-events
age 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.

menopause  1t40, ge40, premeno.
tumor-size 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59.
inv-nodes 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39.

node-caps yes, no.

deg-malig 1,2, 3.

breast left, right.

breast-quad  left-up, left-low, right-up, right-low, central.
irradiat yes, no.

Table 2: Variables of the Breast Cancer Dataset.

4.2.2 Fuzzification of the variables of the dataset

Table 2 shows that the dataset is heterogeneous, because it contains variables
with precise and non-precise values. For the later kind of variables, i.e., the vari-
ables age, menopause, tumor-size, and inv-nodes, we used fuzzy sets to model
or encode the imprecise values. In what follows, we will explain how the fuzzi-
fication process of those variables was performed with imprecise values.

The variable age was modeled with fuzzy sets using trapezoidal membership

5Available from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer



functions given by:

0, r<a
r—a
, a<z<b
b—a
X(z;a,b,¢,d) = 1, b<z<ec (24)
d-x c<zx<d
d—c’ -7
0, d<z

After analyzing the range of values of this variable, we used the following
rule to define the parameters a,b,c,d. Let [ and r be the leftmost and the
rightmost values of each interval (see 2), thena=1—-5,b=1,c=r,d=1r+5.
The reason behind this choice is to allow some overlapping by the membership
functions. Figure 1 show the trapezoidal fuzzy sets used to represent the values
of the variable age.

V

| /\ L
‘ ‘ ‘ 5‘0 éO 7‘0 80 90

0 10 20 30 40

100

Figure 1: Fuzzification of variable age with trapezoidal fuzzy sets.

In the case of the variable menopause, we used a fuzzy set with a Z-shaped
membership function to represent the linguistic term lg40 (less than forty years
old), that is:

1, r<a
_ 2
1—2(35 a), agxg—a;rb
X(z;a,b) = ) v 2oy a+b , (25)
<x <
(b—a)’ 2 — =
0, x>0,

where @ = 40 and b = 45. Figure 2 shows this fuzzy set as a red curve. We used
a fuzzy set with a S-shaped membership function to model the linguistic value
ge40 (greater than forty years old), that is:

0, r<a
— a2
o(j=a) . esest
X (x;a,b) = PR (26)
172(.T a)’ a+b§z§b
b—a 2
1, x>0,

where a = 35 and b = 40. Figure 2 shows this fuzzy set as a blue curve. To
represent the linguistic value premeno, we used a fuzzy set with a Gaussian

10



membership function, that is:

X(z;0,¢) = exp ( - %) (27)

where ¢ = 45 and o was estimated to be (50 — 40)/(2y/21log2) 6. Figure 2 show
this fuzzy set as a yellow curve.

| \

0.5

00 1‘0 2‘0 3‘0 40 50 éO 7‘0 8‘0 9‘0 100
Figure 2: Fuzzification of the variable menopause with Gaussian (yellow), S-
shaped (blue) and Z-shaped (red) fuzzy sets.

The variable tumor-size is modeled by three kinds of fuzzy sets. We used
a Z-shaped fuzzy set with parameters ¢ = 0 and b = 9 and a S-shaped fuzzy
set with parameters a = 50 and b = 59 to model the extreme values of the
variable. Several Gaussian fuzzy sets with parameters ¢ = (I +1)/2 and o =
(r—1)/(2v/2log2)) were also used to model the other values. Figure 3 shows
the fuzzy sets used to model this variable.

0 40 50 60

L
0 10 20 30

1

0.5

Figure 3: Fuzzification of the variable tumor-size, with S-shaped (leftmost),
Z-shaped (rightmost) and Gaussian fuzzy sets.

Finally, we modeled the variable inv-nodo in the same way as the variable
tumor-size. We used a Z-shaped fuzzy set with parameters a = 0 and b =5, a
S-shaped fuzzy set with parameters a = 33 and b = 39, and several Gaussian
fuzzy sets with parameters ¢ = (I4+1)/2 and o = (r —1)/(2/21log2)). Figure 4
shows the fuzzy sets used to model this variable.

The other variables of this dataset are categorical variables. Table 3 shows
those variables with their respective sets of values. It is also shown the discrete
values that we used to represent such values.

For experimental purposes, we also present a crisp version of this dataset.
To do that, we take the mean value of each interval for the case of the variables

6This value is known as full width at half mazimum.
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Figure 4: Fuzzification of the variable inv-nodes with with S-shaped (leftmost),
Z-shaped (rightmost) and Gaussian fuzzy sets.

Variable Values Discrete values
no-recurrence-events 1
class
recurrence-events -1
yes 1
node-caps o 1
1 -1
deg-malig 2 0
3 1
left 1
breast right 1
left-up -1
left-low -0.5
breast-quad  right-up 0
right-low 0.5
central 1
irradiat yes 1
no -1

Table 3: Categorical variables and their values node-caps, deg-malig, breast e
irradiat.

12



age, tumor-size and inv-nodes. We set the variable menopause to have one of
the values {—1,0,1} to represent its linguistic values. The values of the other
variables are the same of Table 3.

4.2.3 Experimental setting

As stated before, MMD can be used to determine whether two samples were
drawn from the same distribution (null hypothesis) or not. In order to use the
MMD with kernels on fuzzy sets over the fuzzy version of the breast cancer data
we performed two experiments.

Experiment I: The purpose of this experiment is to verify if the MMD is able
to correctly identify if a pair of samples were drawn from two different distribu-
tions. We set the level of the test « to the value 0.05. We applied the test one
hundred times over pairs of samples, each of them having 25 observations drawn
from two different distributions: patients showing breast cancer recurrence or
patients without breast cancer recurrence. For each time the test is applied, we
count if the samples come from the same distribution by counting the number
of times the null hypothesis is rejected. In order to get the mean and variance,
we performed the above procedure 250 times.

Experiment II: In this experiment, we used the same procedure as before but
this time each pair of samples were chosen from the same category (recorrence,
or non recorrence). The category whereby the samples were chosen was ran-
domly selected. Therefore, we estimated the number the times the test is able
to correctly identify if the observations were drawn from the same categories.

For comparison purposes, in addition of the fuzzified dataset, we hold a crisp
version of the dataset (Section 4.2.2).

For the crisp dataset we used the linear kernel: k(x,y) = 27y, z,y € R,
and we denoted this kernel by kj;,. We also used the RBF kernel: k(z,y) =
exp(—y||lz — y||?), =,y € RP, v € Rt denoted by krpr. The v parameter was
estimated using the median heuristic, that is, we compute the median of the all
possible distances between observations in the dataset and we set v to be the
inverse of this value.

In the case of the fuzzified dataset, as not all the variables of the fuzzy
dataset are fuzzy sets, (see Table 2) we decided to use a convex combination of
kernels:

K
k(z,y) = Biki(zi,ys), (28)
i=1

where 8; > 0and ), 3; = 1. The advantage of this strategy is that different ker-
nels can be used in different subsets of variables containing values from different
domains. The resulting kernel is positive definite because any linear combina-
tion of kernels is also a positive definite kernel. Another advantage is that it is
possible to optimize the values §; from data. Using the above approach, we set
the following kernels for the fuzzy dataset. We denoted by kn + ki, the kernel
resulting from the convex combination of linear kernels on crisp variables and
the intersection kernel on fuzzy sets over the fuzzy variables age, menopause,

13



tumor-size and inv-nodes[14]. For the intersection kernel on fuzzy sets, we used
the minimum T-norm operator. The resulting kernel was used in the MMD.
Notice that this kernel has not bandwidth parameter, then is not necessary to
perform a search to choose some optimal parameter.

Another convex combination of kernels, denoted by kn + krpr, was given
by using the RBF kernel for the crisp features and the intersection kernel on
fuzzy set for the fuzzy variables. The RBF kernel parameter was given by the
median heuristic but only considering the crisp dimensions.

Finally we used a convex combination of a RBF kernel for the crisp variables
and a distance substitution kernel on fuzzy sets with the following metric on

fuzzy sets
X(z) - X'
D(X7 X/) — ZIEQ | (1‘) /(x)|, (29)
Ywen | X (@) + X' (2)]
we used this metric on fuzzy sets to get the following kernel on fuzzy sets:
Kp(X,X') = exp(=AD(X, X')?) (30)

The kernel parameter was computed by the median heuristic over the crisp
versions of the fuzzy variables. We denoted this kernel by Kp + krprp.

4.3 Results

Figure 5 shows a plot of Type II error against the level of the test . Notice that
the kernel kp + krpr has lower Type II error than the other ones, for several
choices of a.

Level of the test vs. Type Il error
100 T T

Type Il error

0 0.1 0.2 0.3 0.4 0.5
Level of the test o

Figure 5: Level of the test a vs. Type II error using a MMD with five different
kernels.

Table 4 shows the results for a« = 0.05. The first column shows the type of
the experiment. The second column shows the condition of the samples. In the

14



third column the word accepted must be understood as there is not evidence
to reject the null hypothesis, and the word rejected must be understood as the
null hypothesis is rejected. The other columns show the results for the kernels
mentioned in Section 4.2.3. The first row of the table shows if there is not
evidence to reject the null hypothesis, that is, if the two samples were drawn
from the same distribution (the same category), the test correctly says that it
is the case. We observed that all the kernels perform pretty well. The second
row shows the case when the null hypothesis is rejected despite of being true.
That is called a Type I error. We observed that all the test have a lower Type
I error, because this value is bounded by the level of the test.

We saw in the third row the case where the test wrongly says that both
samples were drawn from the same distribution (there is not evidence to reject
the null hypothesis) in spite of they were draw from two different ones. That
is the test says that the alternative hypothesis is false despite it is true. This
kind of error is called a Type II error, as the Type I error is bounded by the
level of the test, the Type II error give us a way to measure the relevance of
the kernels in the hypothesis testing task. We observed that the kernel on fuzzy
sets Kp + krpr is the best of all of them achiving lower Type II error for
this dataset. One possible explanation for this is that this kernel exploit the
imprecise information given by the fuzzy variables better than the others, in the
sense that gives a more suited similarity measure for this kind of observations.

The fourth row of the table shows the case when the test say that the al-
ternative hypothesis is true, when it is really true. That is the null hypothesis
is rejected. We saw that kernels kn + ki, and kn + kgpp performs badly and
the kernel Kp + krpr has a highly value than the others. To conclude, we
also report in Figures 6 and 7, the Type I and II errors in terms of boxplots for
a = 0.05.

Exp. Condition Hj kiin krr kna+kiin kn+krr kp+Ekrbr
II Same accepted 97.63 97.98 97.38 97.51 97.92
II Same rejected  02.37 02.02 02.62 02.49 02.08
1 Different accepted 73.79 73.68 92.78 93.85 61.09
I Different  rejected  26.21 26.32 07.22 06.15 38.91

Table 4: Results for o = 0.05. The null hypothesis is denoted by Hj .

4.4 Conclusions

Similarity measures between fuzzy sets are very important because its several
applications. In this chapter we proposed a new kind of similarity measure based
on the idea of plugging fuzzy distances into kernel definitions. The advantage of
this approach is that if the distance is a metric then the resulting similarity mea-
sure between fuzzy sets has a geometric interpretation in a RKHS, therefore, it
is possible to use kernels to analyze datasets whose variables are better modeled
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Figure 6: Type I error.
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Figure 7: Type II error
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using fuzzy sets. In the case of more general distances like pseudo-metrics and
semi-metrics, it is still possible to have a geometric interpretation in Krein or
pseudo-Euclidean spaces. The resulting kernels will be symmetric kernels, nev-
ertheless literature shows that those kernels are still valid in machine learning
tasks, given good experimental results. We also showed an experimental eval-
uation of kernels on fuzzy sets in the hypothesis testing task in a real dataset.
As we noticed, it was possible to get a better performance using a linear com-
bination of fuzzy kernels and the other ones for this task. We believed that this
happened because fuzzy sets encodes better the imprecise information provided
by some variables of this dataset, and kernels on fuzzy set are better suited to
find out a good similarity measure between this fuzzy sets. Finally, we think
that it is possible to apply this methodology to solve another practical problems
where variables or observations are given by fuzzy sets and it is necessary to use
a similarity measure to cope with the problem.
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