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Abstract This paper addresses the interest of using

Punctual versus Continuous coordination for mobile multi-

robot systems where robots use auction sales to allo-

cate tasks between them and to compute their policies

in a distributed way. In Continuous coordination, one

task at a time is assigned and performed per robot. In

Punctual coordination, all the tasks are distributed in

Rendezvous phases during the mission execution. How-

ever, tasks allocation problem grows exponentially with

the number of tasks. The proposed approach consists in

two aspects: (1) a control architecture based on topo-

logical representation of the environment which reduces

the planning complexity and (2) a protocol based on

Sequential Simultaneous Auctions (SSA) to coordinate

Robots’ policies. The policies are individually computed

using Markov Decision Processes oriented by several
goal-task positions to reach. Experimental results on
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both real robots and simulation describe an evaluation

of the proposed robot architecture coupled wih the SSA

protocol. The efficiency of missions’ execution is empir-

ically evaluated regarding continuous planning.

Keywords Multi-Robot · Decision Making · Auction

Coordination

1 Introduction

Increasing the number of robots in a mission permits to

improve the efficiency and to reduce the time needed to

complete the mission. The paper focuses on multi-task

missions where each task is located in the environment

and can be achieved by a single robot. Using a team of

robots, tasks can be simultaneously executed. However,

multi-robot missions require good coordination between

the robots’ actions to optimize execution performances.

The required decision making consists in comput-

ing the shortest and safest paths allowing the robots

to perform all the tasks while minimizing the resources

consumed by the robots and the overall mission du-

ration. Optimally mapping individual actions to each

possible succession of local perceptions is very hard to

compute [1]. In standard distributed approaches, each

robot uses its own computing resources to decide its

owns movements [2] thus parallelizing the policy com-

putations. Two kinds of coordination approaches can be

used to allow robot teams to coordinate in a distributed

way: Continuous or Punctual Coordination.

Continuous Coordination consists in interleaving co-

ordinated decision making and action execution at each

step of the mission execution. One task is attributed at

a time to each robot. When a robot terminates its task,

it choses another one in the set of unassigned tasks [3,
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4,5,6]. Generally, decision making is based on the dis-

tance to the remaining tasks in order to select the clos-

est task. The decision process can also be impacted by

the other robot locations to improve task allocation.

Continuous Coordination requires efficient communi-

cation and work-around computing multi-task paths.

However, those solutions handle very well dynamics in

tasks and in knowledge as in exploration scenarios.

Punctual Coordination aims to reduce the frequency

of coordination requirements [7,8]. During some Ren-

dezvous points, robots share their information and dis-

tribute several tasks between them. Robots are then

autonomous to perform allocated tasks until the next

Rendezvous [8]. However, such approach requires im-

portant computational resources to allow the group to

coordinate path planning involving several tasks.

This paper question the reduction of the robot’s

movements and mission duration while using Punctual

rather than Continuous coordination. The challenge con-

sists in computing both individual multi-task policies

and efficient task allocation with respect to realistic

robot control. The complexity of solving punctual coor-

dination is reduced by representing the environment us-

ing Topological Map [9,10] and by solving coordination

with an appropriate auction protocol [11]. However,

the auction protocol has to allocate inter-dependent

tasks [12,7].

The Topological Map represents the environment

as a graph of paths connecting key positions (or way-

points). The Topological Map is the main element al-

lowing the robot architecture to link reactive control [13]

and multi-task planning. This way, by considering only

few key positions in the environment, the robots can

punctually coordinate their movements to visit a set of

task-positions (at least one robot per task). The pro-

posed coordination is based on Markov Decision Pro-

cesses (MDPs) oriented by several goal-tasks to indi-

vidually plan movements and a specific auction-based

protocol to assign tasks between robots.

The remainder of the paper is organized as follows:

Research background of the proposed approach is de-

scribed in Section 2. The robot architecture is detailed

in Section 3. Distributed decision making using Con-

tinuous coordination is presented in Section 4. The Se-

quential Simultaneous Auctions coordination protocol

is detailed in Section 5. Section 6 describes experimen-

tal results before ending with a discussion and a con-

clusion in Sections 7 and 8 respectively.

2 Background

In open environments with uncertain obstacle shapes

and movement achievements, robots have to be au-

tonomous in their movement control and supervision.

Hierarchically, the robot autonomy results in its ca-

pability of: modeling the robot environment, comput-

ing individual policies of actions and negotiating task

assignments. This section introduces the background

of the proposed approach. Starting with generic robot

planning methods discussed regarding multi-task mis-

sions, methods dealing with uncertain and multi-robot

context are reviewed.

2.1 Map and Path Planning

Two main kinds of maps have been proposed in the

literature to localize robots in their environment: the

occupancy Grid Maps and the Topological Maps. Oc-

cupancy Grid Maps consist in a metric sampling of the

space in elementary cells [10]. Each cell could be quali-

fied as free, obstacle or unknown. The occupancy Grid

Maps are the most common environment representation

used for mobile robots. Robot movements are decom-

posed by elementary movements (cell-by-cell), then, Po-

tential Fields, Rapidly-exploring Random Trees and Markov

Decision Processes represent the most popular path plan-

ning approaches used for mobile robots.

In Potential Field approaches, robots are artificially

attracted by a positive force oriented to the target while

repulsive forces allow the robot to keep a safe distance

from obstacles [14]. Applying several sources of attrac-

tive forces allows the robot to orient its movements

towards one of them (the closest or the most attrac-

tive). This approach is myopic since the robot chooses

the current most interesting task without anticipating

future choices. Furthermore, potential field has to be

propagated in each cell of the map.

Rapidly-exploring Random Tree (RRT) algorithm

consists in building iteratively a set of reachable posi-

tions by applying random elementary movements [15].

The algorithm terminates on a non-optimal solution

when a branch of the tree finishes at the target position.

Using 2 RRTs, one starting from the robot position and

another from the target position allows to speed up the

path computation [15]. As far as we know, RRT is not

used to handle multi-target missions.

Markov Decision Process (MDP) is a decision mak-

ing formalism handling uncertainty. MDPs generalize

paths planning on graphs with stochastic edge tran-

sitions and they have been successfully used in mo-

bile robotics [5,16,17,6,18]. MDP formalism is generic,

however, using this formalism for multi-target problems

based on Grid Map will produce intractable state space.

For instance, a 200 m2 apartment mapping at 1 cm

precision will result in a minimum of 2× 106 cells and



Punctual vs Continuous Auc. Coord. for Multi-Robot and Multi-Task Topo. Nav. 3

4× 2× 106 possible elementary movements considering

only 4 movement directions while tens of key-positions

could describe the apartment. Reducing the map def-

inition will permit to speed-up path planing in order

to handle multi-task positions in punctual coordination

phases. A Topological Map is a graph representation

where nodes match particular locations and edges rep-

resent the path connectivity [9]. Nodes match seman-

tic descriptions (intersection, corner etc.) [9,19] or per-

ceptive snapshots [20]. This way, the Topological Map

is defined as succession of local configurations linked

by local possible displacements. Metric knowledge in a

global system (as using Voronöı diagram from a Grid

Map [21]) can be interesting but is optional.

Using Topological Map, the proposed approach aims

to map the environment with a minimum number of

key-positions while guarantying that key-positions are

reachable using reactive control. This way, robots would

punctually handle multi-target path planning using MDP

framework.

2.2 MDP Framework

An MDP is defined as a tuple 〈S,A, t, r〉 with S and A

respectively, the state and the action sets that define

the system and its control capabilities. The transition

function, defined as t : S×A×S → [0, 1], gives the prob-

ability t(s, a, s′) to reach state s′ from s while executing

action a ∈ A. The reward function (r : S × A → R),

returns the reward r(s, a) obtained by executing the

action a from the state s.

Solving an MDP consists in searching an optimal

policy π∗ that maximizes the expected gain. A policy

is a function π : S → Amapping each state to an action.

The value V π of the expected gain regarding a policy π

can be computed by solving the Bellman equation [22].

This value depends on a parameter γ ∈ [0, 1] which

balances the importance between future and immediate

rewards:

V π(s) = r(s, a) + γ
∑
s′∈S

t(s, a, s′)V π(s′)

where a = π(s)
(1)

Commonly, the states match the possible configu-

rations of the robot in its environment. For a robot in

a static known environment and with a perfect esti-

mation of its position, MDP states match all possible

positions in the environment [5,6]. Because of imper-

fect perception skills, the robot may not be able to ob-

serve its state. Partially Observable MDPs (POMDPs)

extend MDPs to partially observable settings where a

robot makes decisions from its history of actions and

partial observations about its state [17]. The history of

information can be summarized as a belief state which

consist of a probability distribution on possible state

configurations. Unfortunately, partial observability in-

creases the computation complexity of computing an

optimal policy.

2.3 Distributed Policy Computation

In multi-agent systems under distributed control, a po-

licy is assigned to each agent. The problem consists

in computing the optimal decentralized joint policy. A

joint policy is a set of individual policies, one for each

agent. In cooperative settings, an optimal policy is a po-

licy that maximizes the expected gains of the system [1].

Computing such an optimal policy is NEXP-hard.

Most existing approaches compute the joint decen-

tralized policy in a centralized way and needs impor-

tant computational resources. Expressive and complete

multi-agent models are difficult to solve since they lead

to huge state or belief state spaces. It is notably true

in case of multi-task problems (as traveling salesmen

problems) where states have to represent which tasks

are achieved or not [18].

However, policy computation could be distributed

as well. In generic distributed approaches, each agent

computes its own policy while considering that the poli-

cies of other agents are fixed [23,24]. In such cases, any

policy actualization of an agent induces modification in

the individual transition and reward functions of the

other agents. Thus, each agent iteratively updates its

policy until an equilibrium is reached.

Ad-hoc distributed approaches are widely used to

solve specific problems. The paper focuses on coordina-

tion problems considering that dependencies between

robot policies only result from tasks allocation.

2.4 Coordination by Tasks Allocation

In consensus approaches [2], auction-based coordina-

tion consists in attributing tasks or resources as items

among agents. These approaches were successfully used

in robotics [11]. In Contract Net [3] or MURDOCH [4],

an item (object, resource or task) is put up for sale by

a robot who becomes manager. The other robots are

potential clients for the item. Clients send bids for the

item to the manager and the item is allocated to the

client with the highest bid.

Bids and attribution rules can be defined differently

to optimize the sum of individual interests or to lead

to balanced allocations [25]. Individual MDPs and Bell-

man equation can be used to compute individual gains

regarding a set of tasks or regarding the addition or
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the subtraction of one task (or several) to the set of

already assigned tasks. This mechanism has been used

to evaluate bids in robot auctions for coordination [5].

The value of each task depends on the tasks already as-

signed to the agent. This generally requires to put back

in sale, several times, tasks with strong dependencies.

Combinatorial auctions [12], where agents can bid

on a set of items, are able to express synergies between

items’ values. This kind of auctions reaches optimal

tasks allocation in a unique simultaneous sale [7] by

biding on combinations of items. However, agents have

to detect and evaluate synergy between tasks. This in-

duces several policy computations, one per possible task

allocation. Thus, the number of policy computations is

exponential with the number of task combinations.

In punctual coordination during the mission execu-

tion, robots have to efficiently and quickly coordinate

their actions. The main issue is both to perform fast

policy computations and to allocate several interdepen-

dent items while minimizing policy actualization. In the

proposed approach, a control architecture based on re-

active controllers permits to reduce policy computation

complexity without defining belief states. Robots build

and solve MDPs based on a low density Topological

Map and oriented by several tasks. Finally, a Sequen-

tial Simultaneous Auctions protocol is defined and used

to distribute tasks between robots with a few expected

number of iterations.

3 Robot Architecture

Previous section shows that controlling a group of robots

for multi-task missions is a difficult problem. The pro-

posed robot control architecture (Fig. 1) is based on

hierarchical separation between decision and control in

two levels: Functional and Deliberative [26,27]. The

originality of the proposed architecture mainly lies in

the definition of the Topological Map as the key ele-

ment connecting perception, decision making and con-

trol. The architecture aims to reduce the complexity

of distributed policy computation by considering low

density graph model under realistic hypothesis.

The Functional level provides an interface to per-

form local tasks such as catching an object, following a

trajectory, describing the environment, etc. The Delib-

erative level plans the sequence of local tasks in order to

reach the goals. The proposed Functional level is split

into Perception and Control parts and the Deliberative

level is split into Representation and Supervision parts.

Each part of this control architecture is detailed in the

remaining of the section.

3.1 Perception Part

The perception part refines the sensors input stream

to produce usable information for the localization and

robot control. It is composed of several refiner modules

working in parallel: Local Interpreter, Odometer and

Landmark Detector.

The Local Interpreter allows to separate navigable

space free of obstacles in the perceived area and to add

a semantic perceptive state to the local configuration.

The obstacles shapes around the robot are defined as

a list of polygons (Fig. 2b). In fact, obstacle detection

is only efficient in a limited range around the robot

because of obstacle obstruction and image or laser re-

finement (number of pixels or number of beams). In a

limited range around the robot, shapes could be defined

with enough accuracy.

Therefore, from obstacle shapes, the Local Inter-

preter associates a semantic to the local configuration.

The local configuration is defined by the number of ob-

stacles and more importantly the numbers of exits to

move out of the local area. An exit is detected if the

distance between obstacles allows the robot to move

through or if there are no other obstacle, in the local

perception, which prevent the robot to move on (e.g.

Fig. 2b has 3 exits). Exits can be delimited by one or

two obstacles (open or regular exits). Considering lo-

cal configuration of open or regular exits, we dissociate

eight semantic perceptive states from the free space (no

obstacle) to the intersection (4 exits or more) (Fig. 2

c).

In parallel to the Local Interpreter, we consider that

the robot is equipped with an Odometer giving an esti-

mation of the robot displacement and a Landmark De-

tector allowing the robot to recognize a place crossed

several times. We consider that these two refiners per-

Perception

Representation

Control

- topology

- position

actuators

Executive

Decision Making

Supervision

- local task

- policy
inconsistency -

- local model

re ner_1

re ner_2

re ner_3

Activ-
ator

Toppological model

- valuation

controller_1

controller_2

controller_3

sensors

F
u
n
c
ti

o
n
a
l 
  
  

  
  
  

  
  
  

 D
e
li
b
e
ra

ti
v
e

- movement

- local model

- landmark

Fig. 1 The topology-based hierarchical architecture.
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mit the robot to maintain an accurate enough localiza-

tion in the environment and more specifically to mark

funnel and intersection area with unique identifier what-

ever the used entrance in the area. However, this pa-

per does not focus on localization problems. Seman-

tic place recognition coupled with metric information

achieve good performances in indoor environments [10].

This hypothesis is valid also in urban environments us-

ing visual sensors [20,19].

3.2 Control Part

The control part produces an immediate response to

a local situation given by the refined perception (Local

model and movement estimation) in order to permit re-

active robot to navigation in presence of obstacles [13].

It is composed of several controller modules which can

Free
obstacle

on left

coridor tion

(a) (b)

(c)

Forkobstacle

on right

1

1

1

1

1 1

1

2

3

2

2

2

2

2

34

Fig. 2 From local perception to semantic characterization:
(a) the robot in the environment ; (b) the corresponding local
model, this configuration has 3 exits (in gray dotted lines) ;
(c) the possible 8 local semantic states.

be parametrized and activated on demand. The robot

control is defined by one metric Reaching Controller

and one Topological Controllers parametrized by a lo-

cal task.

Reaching Controller is defined as the default con-

troller of the robot to reach a distant target. If an ob-

stacle of the local model defined by Local Interpreter

refiner prevents the robot to reach the target, two can-

didate local targets are built, one on the left and an-

other on the right of the obstacle. The target inducing

the minimal deviation is chosen. This way, the robot

smoothly moves to the target while avoiding convex

obstacles. The local task is defined as a target distant

position with respect to the current robot position. The

target position is actualized according to movement es-

timation that prevents using the Reaching Controller

for long movements.

The Topological Controller defines control rules di-

rectly from the local model rather than from metric tar-

gets. The Topological Controller works in a similar way

to the Reaching Controller but by targeting the middle

of an exit in the local navigable space (Fig. 2b, c). The

Topological Controller is independent to the movement

estimation while the exit to target is topologically de-

fined. Therefore, local task associates an exit to target

to the current semantic perception state by considering

that local exits are indexed from the robot’s left to its

right (Fig. 2b, c). The Topological Controller permits

the robot to navigate in corridor, to circle an obstacle

and to choose a direction in an intersection.

The controllers could be activated or not depending

on the semantic of the local configuration and to the

current local task. The current local task is given by

the Deliberative level according to the next distant task

position to reach.

3.3 Representation Part

The Representation part manages the knowledge about

the environment to allow localization, decision mak-

ing and supervision of task achievement. This part is

mainly composed of a Topological Map directly built

from the Functional level capacities: refiners and con-

trollers (Fig. 1).

The Topological Map 〈W, P 〉 (Fig. 3) is a graph

where: the nodes represent particular waypoints; the

edges represent the paths connectivity between the no-

des. A waypoint w ∈ W in the map identifies a key

position in the environment where the local semantic

perception state spw switch between punctual and sta-

ble semantic perception states. Punctual semantic per-

ception state is a state that is available in a limited
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range and (most of the time) that requires the robot

to take a decision in the direction to move on: dead-

end, funnel and intersection. In contrary, stable seman-

tic perception state identifies corridor and one obstacle

configurations. A waypoint w ∈ W is also character-

ized by its position and orientation (xw, yw, θw) and

the landmark identifier idw.

A path p ∈ P is characterized by the initial wp and

target w′p nodes and the control supervision rule srp ∈
SR used to move from wp to w′p (Reaching or Topo-

logical Controllers with local task parameters). Using

this configuration, the Topological Map induces topo-

logical control in stable semantic perception states and

reaching control in punctual states.

Several attributes are associated to the knowledge

about the path p in order to permit efficient control

and decision making. An attribute cp gives the related

movement cost and matches the average path dura-

tion. In fact, the movement cost between two positions

varies according to the type of ground, the slope or

the obstruction of the path. According to the possible

error during a movement, the function dp (deviation)

gives the probability to reach other waypoints by mov-

ing from wp to w′p. We assume that dp(w
′
p) returns the

highest probability.

The Topological Map 〈W,P 〉 is defined as:

W = {(xw, yw, θw, spw, idw) ∈ R3 × SP × N},
P = {(wp, w′p, srp, cp, dp)

wp, w
′
p ∈W, srp ∈ SR,

cp ∈ R, dp : W → [0, 1] }

Structuring knowledge in a stochastic collision-free

connectivity permits to plan a safe and efficient path

between two positions [28]. Given a global topology, the

deliberation module has to compute a policy of actions

-

-

-

-

- perception limit 

Fig. 3 Example of a Topological Map.

to reach several goals. However, the topological map-

ping has to maintain a consistent knowledge about the

node localization and the normalized deviation func-

tions. Evaluating or learning the deviation function is

out of the scope of this paper.

3.4 Supervision Part

The Supervision part connects the topological model,

the goals and the control. It aims to choose the con-

trol tasks (local task) to perform regarding a global po-

licy. Local tasks are defined in the topology according

to punctual or stable semantic perception states and

match the Reaching Controller with a target position

or the Topological Controller with a local exit to target.

Supervision part is split into a decision making module

and an executive module (Fig. 1). The executive mod-

ule supervises the local task to activate regarding the

policy computed by the decision-making module.

The proposed approach uses MDP formalism cou-

pled with reactive control to ensure long-term planning

with smooth robot movements under uncertainty. In

multi-robot missions, the policy has to be computed

cooperatively by integrating communication protocols.

The next two sections describe the main contribution

of our approach by focusing on Punctual Task alloca-

tion and Sequential Simultaneous Auctions to compute

cooperative policies.

4 From Continuous to Punctual Task

Allocation

Cooperative multiagent decision-making problems are

composed of individual decision making problems and

collective decision making problems. Given a robot i,

the individual decision making problem consists in de-

termining all paths to take in order to visit all its at-

tributed tasks Gi. The collective decision making prob-

lem consists in distributing tasks between robots in a

way that minimizes consuming resources (movements

and mission duration) to achieve all the tasks G. Both

levels require the agents to be coordinated.

An allocation of tasks G = 〈G1, G2, . . . , Gn〉 defines

a collection of subsets of tasks, one for each robot i ∈
[1, . . . , n]. By assuming that a task is assigned to one

and only one robot, auction protocols allocate each task

g to the robot i maximizing the utility value ui(Gi, g)

taking into account other allocated tasks Gi.
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4.1 Continuous Coordination

To solve the coordination problem, solutions based on

a continuous approach assign one task at a time to each

robot and need an active coordination process all over

the mission execution. Using utility values computed in

a distributed way, Continuous coordination mechanism

based on Simultaneous Auctions with single attribution

was implemented (Algo. 4.1). This solution attributes a

task to each robot at the beginning of the mission and

at each time a robot finishes to execute its task.

Algorithm 1 Simultaneous Auctions
Require: List of robots and list of tasks
1: Wait for all (robot × task) utility values.
2: while robots and tasks in lists do
3: Search the highest utility value in lists.
4: Associate the selected task and robot.
5: Remove selected robot and task from lists.
6: end while
7: return Pairs of (robot, task). (Max. 1 per robot)

Simultaneous Auctions are started with all robots

and the set of available tasks (all the uncompleted and

unattributed tasks). Robots compute and communicate

their new utility values resulting from their current po-

sition. The utility values is computed from a goal con-

stant reward rg decreased by the movement cost to

reach it. The tasks assigned to the free robots (all the

robots at the beginning) are pull out the set of available

tasks. This mechanism prevents idle time while other

robots terminate their tasks and guarantees to select

new task with respect to “one per robot” future task

attributions.

Simultaneous Auctions allow us to formalize a Con-

tinuous coordination process similar to the ones pro-

posed in previous works in the literature (cf. Section

2.4). Furthermore, the proposed solution reaching a com-

plete allocation in Punctual coordination is an aug-

mented version of the Simultaneous Auctions algorithms

(cf. Section 5). This way, the differences between Con-

tinuous and Punctual coordination will be easily high-

lighted. From Continuous approach, to reach coordina-

tion where several tasks are attributed per robot, the

first difficulty is to individually compute utility values

regarding different set of attributed tasks.

4.2 Individual Decision Making

The utility values mainly depend on the robot i’s po-

licy to reach a set of tasks Gi. In the proposed ap-

proach, individual Goal-Oriented Markov Decision Pro-

cesseses (GO-MDPs) are used to compute policies and

associated utility values. GO-MDPs allow each robot to

make optimal decisions in order to perform sequentially

several tasks. A GO-MDP 〈Si, Ai, ti, ri〉 is defined like

a standard MDP that includes a memory of achieved

goals in the state definition.

An optimal GO-MDP policy π∗i,Gi
is computed for

each robot i from its Topological Map and a set of goal-

tasks Gi to perform (Gi ⊂Wi). A state s ∈ Si includes

the last recognized waypoints ws ∈ Wi and the set of

achieved goals Gs ⊆ Gi. The actions match the set

of paths Pi. An action ps is added for every waypoint

ws ∈ Gi as a symbolic action validating that the goal

located in ws is performed:

Si = { s = (ws, Gs) | ws ∈Wi, Gs ⊆ Gi }
Ai = { pa ∈ Pi } ∪ { ps = (ws, ws) | ws ∈ Gi }

(2)

When executing an action pa from the waypoint

ws, the transition function t returns the probabilities

to reach neighbor positions according to the deviation

function dpa . A transition for each validation action

reaches the corresponding state where the set of achieved

goals is augmented if the waypoint matches a goal lo-

cation to reach by the robot i (i.e. ws ∈ Gi):

ti(s, pa, s
′) =

{
dpa(ws′) if Gs′ = Gs
0 else

(3)

ti(s, ps, s
′) =


1 if Gs′ = Gs ∪ (Gi ∩ ws)

and ws′ = ws
0 else

(4)

The reward function returns a negative value re-

garding the movement cost related to the path, and a

positive constant gain rg common to all robots if a new
task location is reached. Therefore, the GO-MDP struc-

ture guarantees that the positive rewards rg can only

be perceived once per goal.

ri((ws, Gs), pa) = cpa

ri((ws, Gs), ps) =

{
rg if ws ∈ Gi −Gs
0 else

(5)

4.3 Robot Utility Values

Using Continuous approach, a utility value is computed

based on the individual expected gain to perform a task.

At each time-step, the sets of attributed tasks are com-

posed by zero or one task (∀Gi, Gi = ∅ or {g}). The

individual expected gain of a robot i is defined as the

Bellman value (Eq. 1) attached to optimal policy to

perform {g} from the current position wic ∈ W of the

robot in the environment:

ui(∅, g) = V π
∗
i,{g}(wic) (6)
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b

c

d

a

Fig. 4 Minimal movement allocation (dark arrows) versus
minimal duration allocation (doted arrows) with 2 robots and
4 goals.

Punctual Coordination aims to find the optimal al-

location G∗ in the set of all candidates DG which max-

imizes the sum of expected gains.

value(G) =

n∑
i=1

gni(Gi) (7)

G∗ = argmax
G∈DG

(value(G)) (8)

The utility value of a task g can be computed by

comparing the robot expected gain gni when the task

g is included or not to its allocation Gi:

ui(Gi, g) = gni(Gi + g)− gni(Gi) if g /∈ Gi
gni(Gi)− gni(Gi − g) if g ∈ Gi

(9)

The utility ui(Gi, g) of a task g ∈ G for a robot i

matches the difference between the expected gain re-

garding the referent allocation Gi and the new one G′i
built by addition/subtraction of the task g (G′i = Gi+g
or G′i = Gi − g).

4.4 Altruistic Expected Gain

In Punctual auction coordination, using individual ex-

pected gain allows the fleet of robots to reach alloca-

tions which minimizes the movement cost but not neces-

sarily the mission duration (Fig. 4). In fact, the minimal

movement cost solution does not consider the parallel

execution of the mission which might result to allocate

all the tasks to only one robot.

We propose to compute the expected gain gni(Gi)

with an altruistic heuristic consisting in subtracting a

social cost from the individual expected gain. The so-

cial cost individually evaluates the impact of the robot

attribution Gi on the rest of the group. The proposed

social cost aims to decrease the time needed to complete

the mission by balancing the allocation. It matches the

difference between the assignment size |Gi| and an ideal

size gs∗ (gs∗ = |G|/n for example). The more important

is the difference, the greater is the social cost.

gni(Gi) = V
π∗i,Gi
i (sic)− oc

|gs∗−|Gi||∑
j=0

j (10)

The social cost is based on the multiplication of an

opportunity cost oc constant. The opportunity cost de-

fines the threshold value that allows a robot to unbal-

ance its allocation. The first task unbalancing the al-

location costs oc, the second costs 2oc and so on. The

notion of decreasing individual rewards with opportu-

nity costs has been already used in multi-robot planning

of constrained missions [29].

Utility functions are bounded by zero and the max-

imal possible utility value considering only the individ-

ual expected gains. The opportunity cost oc can be de-

fined proportionally to the maximal utility:

oc = noc × max
i, Gi, g

(ui(Gi, g)) with noc ∈ [0, 1] (11)

This way, a normalized opportunity cost noc at 1.0

prevents unbalanced allocation. Using this framework,

It is presented in the following section the Sequential

Simultaneous Auctions protocol which allows a team of

robots to quickly and efficiently allocate a set of tasks.

5 Sequential Simultaneous Auctions

GO-MDPs coupled with altruistic expected gain allows

the robots to compute utility values according to syner-

gies between tasks. Furthermore, this solution permits

to parametrize more or less balanced allocation. How-

ever, the evaluation of all allocations to retain the one

maximizing the sum of utilities, leads to an exponential

enumeration of possibilities and involves an impractica-

ble number of multi-task policy computations.

The proposed Sequential Simultaneous Auctions pro-

tocol (SSA) aims to allow all the robots to compute

new policies involving all unassigned tasks at Punctual

Coordination Phases. The SSA protocol starts with an

initial allocation (possibly empty) and converges to a

locally optimal solution deduced from exchanged util-

ity values. At each iteration, SSA repeats a Simultane-

ous Auctions process to search for modifications which

improve the built allocation with respect to the utility

value function definition (Eq. 9).

5.1 Protocol Definition

In order to evaluate each task utility value for the cur-

rent allocation, each robot builds and solves several

GO-MDPs. SSA protocol permits to combine utility
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values in order to improve the allocation. The process

is iterated until no more improvement in the allocation

is found. SSA is split into 5 steps:

1) Opening: SSA is opened with a robot demand

which becomes the manager. A demand results from

modifications in the individual knowledge which induce

updates in the set of tasks and utility values. This step

permit to list the participants. The participants are all

the robots with an efficient communication connection

with the manager. Once registration is done, robots can

not enter or leave the SSA before the end of the proto-

col. This prevents robots to move out of communication

ranges.

2) Task identification: This step consists in taking

inventory of all uncompleted tasks by the communicat-

ing robots. Step 2 also allows robots to merge knowledge

and compute shared parameters such as the opportu-

nity cost constant. Finally, a heuristic initializes the

allocation G. For example, the initial allocation could

be empty, random or based on the existing allocation

before the SSA opening.

3) Value computation: Each robot i computes its

own optimal policies based on GO-MDPs. A GO-MDP

is defined for each task g not yet attributed to the robot

i (g ∈ G − Gi) at the current iteration in order to

evaluate the individual expected gain of adding each

of those tasks to the robot i. This step involves |G| −
|Gi| policy computations on 2|Gi|+1 states. However,

individual GO-MDPs are strongly similar, that permits

to speed up the computing process. The general idea is

to reuse policies of previously solved GO-MDPs. These

policies allow robots to compute and exchange their

current utilities regarding all tasks in G.

4) Allocation update: Once the last utility message

(n×|G| messages) is received by the manager, the allo-

cation G can be updated. This consist in a modified ver-

sion of the Simultaneous Auctions algorithm (Algo. 4.1)

that takes into account already attributed tasks. The

allocation is updated by switching a task from a robot

(sender), if exists, to another (receiver) with a greater

utility value. Task modifications are chosen in sequen-

tial order by selecting tasks with the greatest difference

between sender and receiver in a manner that induces

unique task modification per robot. If at least one up-

date has been done, the protocol returns to Step 3.

5) Closing: When no more updates is possible (robots’

utilities do not allow to increase the task allocation) a

consensus is found with a locally optimal task alloca-

tion. At this moment, robots end the SSA Punctual co-

ordination phase and start completing their individual

set of tasks.

SSA protocol locks robots during its process. The

use of broadcast communication permits the allocation

update process to be done separately by each robot in

a distributed way without manager. The group has to

always wait for all robots’ step 3 value computation to

end before switching to Step 4 Allocation update.

SSA protocol is parametrized by the heuristics used

to initialize the allocation (Step 2) and the assignment

rules that update the allocation from the utilities (step

3). SSA protocol permits task allocation between het-

erogeneous robots. The utility function definition is not

necessarily shared by all the robots (while they share

similar coherence in reward and cost definitions). More-

over, each robot can have its own individual topological

model.

5.2 Convergence

The convergence of SSA protocol is guaranteed by the

fact that the updated allocation (Step 4) which has a

greater value than the previous one. The main reason

comes from the following assumptions: the allocation

is modified in a way that involves a unique modifica-

tion per robot at each iteration and the individual gain

functions are constant during the SSA process.

The demonstration is done by considering that it is

always positive for a robot to perform a task (the con-

stant task reward rg is much greater than movement

costs). Thus, adding a task to the allocation of a robot

always leads to an improvement in the individual gains

(Eq. 10) and the utilities are positive (Eq. 9). This fa-

cilitates the proof but it is not a restriction.

Each update based on the utility function (Eq. 9) for

a task g , induces an improvement in the utility between

old and new individual allocations of the sender and

receiver robots. Thus, the loss in gain of the sender is

lower than the gain of the receiver. Each update induces

that the sum of gains of the group is increased by the

sum of the differences in the utilities of the sender and

the receiver.

The convergence is conditioned by a unique modifi-

cation in each robot’s allocation at the same iteration in

Step 4. The utility function is defined for a single task

and the difference in gain function of a robot, in case

of several modifications at a time, is not equal to the

sum of its utility values. Each modification may lead to

utility actualizations.

However, the update of the allocation (step 4) can

include several modifications concerning different robots.

This way, increasing the number of robots, theoreti-

cally, weakly impacts the number of SSA iterations. It

is also expected that increasing the number of robots
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will speed up the SSA coordination if gain functions aim

at balancing the number of tasks between robots (oc '
maximal difference between task individual relevances).

Considering that the expected gain values only de-

pend on the allocations and there is a finite number of

possible allocations, there is therefore at least one op-

timal allocation which maximizes the sum of expected

gains (Eq. 7). Thus, the finite number of solutions and

the convergence of the allocation value ensure that SSA

will terminate. Furthermore, the resulting allocation G
is locally optimal regarding the range-1 allocations (al-

locations built with a single difference in task assign-

ments).

5.3 Desynchronization

The proposed SSA protocol is not fully desynchronized

and the robots have to continuously wait for all the

other robots. In SSA, the distribution of the process is

limited by Step 4 (allocation update), where the robots

have to be synchronized before actualizing a common

new allocation. Asynchronous individual processes may

lead to of inconsistencies in task assignments (unallo-

cated or multi-allocated tasks).

The SSA can be upgraded to a Desynchronized SSA

protocol (D-SSA) based on locking tasks to prevent in-

constancies in allocations. The idea consists in adding a

mechanism that avoids several robots to take the same

task. Considering a task g, the robot i with the higher

utility locks the task g and communicates an unreach-

able utility for g (higher than the maximal one). Later,

if another robot j communicates a utility value greater

than the hidden one of the robot i, the task g will be

unlocked. The robot i removes the task from its assign-

ment and communicates again, its real value. This way,

the robot j can take and lock the task at its turn. This

mechanism guarantees the coherence of the allocations

built by asynchronous robots without forcing synchro-

nization steps.

In D-SSA protocol, each robot is focused only on

its individual task assignment and not on the global

allocation. Even if several robots are interested in the

same tasks, the lock mechanism ensures that each task

will be assigned to one and only one robot at the end

of the process. As SSA protocol, it is possible to start

D-SSA with an empty allocation where no task is as-

signed. D-SSA ends if all robots’ processes are in step

(4) “allocation update” with no modification on the al-

location. This corresponds to a situation where all tasks

are allocated and locked.

It is expected that SSA and D-SSA will converge

on similar solutions. However, synchronization on Step

(a) (b) (c)

Fig. 5 From left to right: Pioneer robot, the experimental
area and its aerial view.

4 ensure SSA to be deterministic. D-SSA execution and

the resulting solution depends on individual duration of

utilities’ computation and latencies in communication.

6 Experiments

SSA and D-SSA protocols are designed to speed up the

mission execution while minimizing robot consumed re-

sources. However, protocols need a finite but undeter-

mined number of iterations to converge to the solution

and each iteration requires policy computations. D-SSA

protocol based on topological decision making is used

by fleet of cooperative robots that aim to visit a set of

positions (tasks). The task positions are described by

an initial efficient topological map. The map and the

environment are statics during our scenario and fully

operational. In this optimal configuration, the experi-

ment aims at quantifying the number of tasks the fleet

of robots can deal with and to estimate how Punctual

coordination performs compared to continuous coordi-

nation. In Section 7, we will discuss the ability of our

approach to deal with dynamic maps (exploration sce-

narios).

The first series of experiments are both performed in

real and simulated conditions to validate the approach

coupling the hybrid architecture and the D-SSA pro-

tocols. These experiments allow us to evaluate the re-

quired coordination time in function of the number of

robots, the size of the map and the number of tasks.

The second series of experiment are simulated and per-

mit to statistically evaluate the efficiency of using GO-

MDP coupled with the D-SSA protocol compared to

continuous coordination where one task per robot is

allocated and performed at a time. The evaluation con-

cerns both mission duration and individual consump-

tion of resources.
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6.1 Evaluating Coordination Time

Several experiments were performed in the context of

the R-Discover project1 in order to validate the ap-

proach in real settings. Two scenarios were tested in an

open-space environment and in an urban experimental

environment (Fig. 5). In both scenarios, a fleet of robots

has to visit a set of task locations and the robots have

to return to their initial positions.

The scenario in the open-space environment per-

mits to test the Desynchronized Sequential Simultane-

ous Auctions (D-SSA) protocol on real mobile robots

(Fig. 6a). Experiments use 3 Pioneer robots equipped

with simple odometers, standard laptop computers and

Wifi devices. D-SSA protocol was configured with an

opportunity cost to reach balanced allocation (0.1 time

the maximal distance between 2 waypoints). The mis-

sion execution is divided into three phases: the initial

coordination phase where the robots compute their po-

licies ; the task execution phase consisting in following

the computed policies and the return home phase. The

Topological Map is built by spreading randomly goal-

task waypoints in the free area and adding paths to

connect them using reaching target controller.

These scenarios validate the architecture and allow

us to estimate the time spent by coordination phases. A

robot equipped with an ordinary laptop requires around

half a second to compute a policy involving 8 tasks and

around 1 second for 10 tasks. During an SSA iteration,

the evaluation procedure requires to compute several

multi-task policies, one for each non-attributed task to

the robot. In the experiment, with 3 robots and up to

20 tasks (more than 6 expected tasks per robot) the

unique initial coordination phase (considering initially

that no task is allocated) reaches 1 minute (22 seconds

for 13 tasks in the experiment presented Fig. 6a). The

time required by an iteration of the SSA protocol grows

exponentially with the number of tasks per robot.

The scenario in the urban environment enhances

the first scenario by adding static obstacles (sidewalks)

(Fig. 5 and 6b) and using the corresponding map (Fig. 3).

Robots are equipped with a plan laser at 45 degrees to

detect sidewalks that are around one meter in front of

them. Experimental results show that the control archi-

tecture based on the proposed Topological Map allows

robots to maintain their localization in a 32×26 meters

environment despite weak and inaccurate local percep-

tions.

In computer simulations, we increased the number

of robots (n) to 10 and kept 4 expected tasks per robot

(|G| = 4n). We counted the number of modifications

1 French National Research Agency (ANR) R-Discover
project videos: www.greyc.fr/node/1629

Fig. 6 Task allocation in free area (left), Task allocation and
topological navigation in urban area (right).
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Fig. 7 Average numbers of iterations per robot (with D-
SSA) by increasing the number of robots and tasks (n robots
and 4n tasks).

in attribution of each robot. A modification matches

an iteration of D-SSA requiring the actualization of

the policies and the utilities. A set of 200 simulations

with random task positions has been performed for each

considered fleet size (n ∈ [2 . . . 10]). Figure 7 presents

the average number of modifications regarding all the

robots and regarding only the robot with the highest

number of modifications.

Figure 7 shows that few modifications, in regard to

the total number of tasks, are necessary to converge to

a range-1 locally optimal allocation. Statistically, this

means that each robot’s D-SSA process leads a number

of modifications which is proportional to the number of

expected tasks per robot (|G|/n).

6.2 Punctual vs. Continuous Coordination

The second series of experiments addresses the interest

of Punctual versus Continuous coordination of the fleet

of mobile robots. The empirical evaluation focuses on

gains in mission duration and sum of movements using

D-SSA protocol in Punctual coordination. Experiments

were performed in ideal settings: static environments

and deterministic Topological Maps.

We consider a simulated urban environment (Fig. 8a)

similar to the real one (Fig. 3) and a more Labyrinthine

www.greyc.fr/node/1629
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Fig. 8 Urban (top) and Labyrinth (botom) environments.

environment (Fig. 8b). The experiments were done for

3 robots and between 1 to 14 randomly located goals

(50 random generations). For each configuration, (we

ran 50× 13× 2 configurations), we retained the differ-

ence in duration time and in the sum of movements’

costs using initial D-SSA strategy and Continuous auc-

tion strategy. The sum of movements’ costs is computed

considering all the paths taken during the mission ex-

ecution by all the robots. D-SSA is initialized with a

normalized opportunity cost fixed to 0.1 and an empty

initial allocation.

Figure 9 presents the average difference and the ex-

trema in mission duration times. The difference is given

for the D-SSA protocol in percentage regarding the du-

ration resulting from Continuous auction strategy. The

duration did not take coordination phase into account.

In fact, simulations did not use a computer per robot

and the computation was not parallelized as in real sit-

uations. Figure 9 gives the gains considering the sum of

the robots’ movements. Those gains are computed in a

similar way as the gains in term of durations.

With less than 4 goals, we observe less movements

but longer durations. In several configurations, the D-

SSA protocol unbalances the task allocation while Con-

tinuous Coordination forces one task per robot.

Difference regarding the overall mission duration:

——— ——— ———

Difference regarding the sum of robot movements:

Fig. 9 Best, worst and average Difference in percent by using
D-SSA protocol in Punctual Coordination despite using Con-
tinuous coordination in Labyrinth and Urban environments.

For 4 goals and more, the altruistic mechanism (Sec-

tion 4.3) used in D-SSA to coordinate the policies leads,

in average, to less movements and shorter missions. The

average gains increase slowly to around 20% between 7

to 14 tasks. The results do not highlight significant dif-

ferences between urban and labyrinthine environments.

Negative effects on the sum of movements using D-

SSA concern only few configurations. However, negative

impacts on duration are more significant and can reach

−60% with more than 7 goals. The benchmark of con-

figurations regarding positive, null and negative effects

on duration (Fig. 10) shows that, from 9 goals (more

than 3 per robot), the duration of D-SSA increases in

less than one configuration over six.

7 Discussion

The evaluation of the coordination times validates the

interest to build the robot decision and control using

the Topological Map. The proposed Topological Map

permits to model the environment with few waypoints

regarding coherent robot perception and control ca-

pabilities (Fig. 1). However, the paper does not ad-

dress the question of simultaneous topological localiza-

tion and mapping considering the Topological Map pro-
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Fig. 10 Percentage of configurations with positive (white),
null (gray) and negative (dark red) effects on duration using
D-SSA.

posed in the architecture. In the proposed experiment

the map is provided and the robots decision making

handle several task-positions. The computed individ-

ual policies are optimal. The Topological Map coupled

with Markov Decision Processes offers the possibility to

address punctual distributed task allocation.

Compared to the Continuous approach, using Punc-

tual long-term coordination allows groups of robots to

decrease both mission duration and the sum of move-

ments. Protocols like D-SSA allow the robot to coordi-

nate in a distributed way and can be done by robots

equipped with ordinary laptop.

The initial D-SSA requires a lot of time to converge

to the solution. This time increases exponentially ac-

cording to the number of tasks per robot and linearly

according to the topology size. Despite the few num-

bers of D-SSA iterations, D-SSA duration is directly

impacted by optimally solving GO-MDPs at each D-

SSA iteration. The proposed approach is interesting

while coordination durations are coherent with the ex-
pected gains in the mission execution. This is actually

the case in our urban-like domains where a multi-task

robots’ mission takes several tens of minutes to be per-

formed and requires a unique initial coordination phase

of about one minute.

In conclusion, Continuous coordination is more suit-

able in scenarios characterized by frequent computation

as in exploration scenarios with weak initial knowledge.

The continuous approach can be enriched to handle

lost communication because of moving robots and com-

munication range constraints [30]. On the other hand,

while considering mission scenarios with important ini-

tial knowledge inducing no or few actualizations (as in

simple navigation, in search and rescue or in exploration

with a limited unknown areas), approaches based on

Punctual long-term coordination can significantly in-

crease the efficiency.

In case of loss in communication, Punctual coordi-

nation phases can be processed during the mission at

some Rendezvous points defined in a more or less inten-

tional way [8]. Coordination phases that occur during

the mission execution can be speed-up considering the

current allocation as the initial allocation of the D-SSA

protocol. Furthermore, in intensional Punctual coordi-

nation, it is possible to mix Punctual and Continuous

approaches by computing robot policies with only the

subset of goals to reach between two Rendezvous points.

Finally, experimental results have shown interest-

ing improvements in mission durations while the so-

cial cost heuristic only balances the allocation between

robots in term of the number of tasks. In multi-robot

missions where only the overall mission duration has to

be optimized, coordination will require specific mecha-

nism where the group has to detect the robot with the

longest mission and try to minimize its part.

8 Conclusion

This paper presented a control architecture coupled

with a distributed policy computation framework used

for mobile multi-robot coordination. The robot archi-

tecture is based on reactive functional modules allowing

the robots to plan their movements regarding the pro-

posed Topological Map. The Topological Map permits

the robot to plan the sequence of semantic perception

states according to used reactive control. Based on the

architecture enriched with Goal-Oriented Markov De-

cision Process (GO-MDP), each robot individual plan

can involve several tasks to perform.

Coordinate distributed policies was achieved by us-

ing Auction Protocols. We proposed Sequential Simul-

taneous Auctions (SSA) protocols to allow robots to

coordinate their policies regarding all the goal-tasks

in Punctual coordination phases. SSA protocol is pro-

posed as an heuristic to handle combinatorial auctions.

SSA protocol converges to a range-1 locally optimal al-

location. SSA protocol was extended with a Desynchro-

nized protocol (D-SSA) more suitable in mobile robot

applications.

Experiments validated the proposed approach in real

settings. The architecture allows robots to uncouple

smooth reactive control and long-term mission plan-

ning, thus permitting more flexibility for complex tasks

achievement. D-SSA protocol coordinates effectively the

robots policies involving several tasks per robot with a

few number of iterations. Each iteration induces dis-

tributed GO-MDPs solving. Finally, experimental re-

sults in virtual simulations allow us to conclude about

the average reduction on both duration times and move-

ments by using Punctual rather than Continuous coor-

dination.

However, Punctual coordination requires exponen-

tial computation resources regarding the number of goals.
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In the proposed approach, coordination durations was

mainly impacted by optimally solving GO-MDPs in

each SSA iteration. Future works will deal with devel-

oping more efficient approach to solve GO-MDPs while

still ensuring that SSA converges.
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