THE MAHLER MEASURE OF TRINOMIALS OF HEIGHT 1

V. FLAMMANG

Abstract

We study the Mahler measure of the trinomials $z^n \pm z^k \pm 1$. We give two criteria to identify those whose Mahler measure is less than 1.381356... = M(1 + z_1 + z_2). We prove that these criteria are true for n sufficiently large.

1 Introduction

The Mahler measure of a polynomial $P(z) = a_0 z^n + \ldots + a_n = a_0 \prod_{j=1}^{n} (z - \alpha_j) \in \mathbb{C}[X]$, $a_0 \neq 0$, as defined by D. H. Lehmer [L] in 1933, is

$$M(P) = |a_0| \prod_{j=1}^{n} \max(1, |\alpha_j|).$$

In 1962, K. Mahler [Ma] gave the following definition

$$M(P) = \exp \left(\int_0^1 \log |P(e^{2\pi it})| dt \right),$$

which is equivalent to Lehmer’s definition by Jensen’s formula [J]

$$\int_0^1 \log |e^{2\pi it} - \alpha| dt = \log \max(1, |\alpha|).$$

The polynomial P is reciprocal if $z^n P(1/z) = P(z)$ and an algebraic number is reciprocal if its minimal polynomial is reciprocal. C.J. Smyth [Sm1] has proved that, if the algebraic number $\alpha \neq 0, 1$ is nonreciprocal, then $M(\alpha) \geq \theta_0$, where $\theta_0 = 1.324717 \ldots$ is the smallest Pisot number which is the real root of the polynomial $z^3 - z - 1$.

Concerning the Mahler measures of reciprocal polynomials, D. Boyd [B1] [B3] computed all irreducible, noncyclotomic integer polynomials P with degree $D \leq 20$ having $M(P) < 1.3$. M.J. Mossinghoff [M], using the same algorithm, extended the computation to $D \leq 24$. The author, G. Rhin and J-M Sac-Epée [FRSE] employed a new method that uses a large family of explicit auxiliary functions to produce improved bounds on the coefficients of polynomials with small Mahler measure and determined all irreducible polynomials P with $M(P) < \theta_0$ and $D \leq 36$ and polynomials P with $M(P) < 1.31$ and $D = 38$ or 40. More recently, M.J. Mossinghoff, G. Rhin and Q. Wu [MRW] computed all primitive, irreducible, noncyclotomic polynomials P with degree at most 44 and $M(P) < 1.3$.

C.J. Smyth [Sm2] has also shown that θ_0 is an isolated point in the spectrum of Mahler measures of nonreciprocal algebraic integers. We have done an exhaustive search of nonreciprocal polynomials of height 1 and Mahler measure less than 1.381356... up to degree 12. We observed that the smallest points of the spectrum are either trinomials of the type $P(z) = z^n \pm z^k \pm 1$ or their irreducible factors. As the number of nonreciprocal polynomials grows quickly, we have studied trinomials of height 1 with Mahler measure less than 1.381356... from degree 13 up to degree 20. They are either irreducible and give a new point of the spectrum or are divisible by $z^2 + z + 1$. In the latter case, their quotient gives a new point of the spectrum. The results of these computations are in the Appendix. For example, the six smallest known points are (more points of the spectrum are given in the Appendix):

1
Conjecture 1. C.J. Smyth (private communication) claims that the following conjecture is true: Let

\[\lambda \]

Then, in 2012, J. Condon [Co] has studied the quantities

\[\mu \]

where

\[c \]

all integer. For any trinomial

\[P \]

one-variable polynomials. This set contains the five first points of our list. D. Boyd and M. Mossinghoff [BM] have computed a set of 48 small Mahler measures of two-variable polynomials. This set contains the five first points of our list. The four first points were found by D. Boyd.

In Section 2, we establish Conjecture 1 when

\[n = 1, \]

\[\frac{1}{2} \]

\[k \]

feasible in practice to use it to obtain a general formula for polynomials of our families whose results that we need are easier to obtain by following Duke’s proof because it does not depend considerably more general results. However, some polynomials of our families are reducible. So the factorization of the polynomial. Although Condon’s formula is more precise, it is not feasible in practice to use it to obtain a general formula for polynomials of our families whose factorization depends on \(n \) and \(k \). It makes sense to recall here a result of W. Ljunggren [Lj] on the irreducibility of trinomials of height 1. He proved:

- if \(n = n_1 d, k = k_1 d, (n_1, k_1) = 1, n \geq 2k \) then the polynomial

\[g(x) = x^n + \epsilon x^k + \epsilon' \]

\(\epsilon = \pm 1, \epsilon' = \pm 1 \), is irreducible, apart from the following three cases, where \(n_1 + k_1 \equiv 0 \mod 3 \): \(n_1, k_1 \) both odd, \(\epsilon = 1; n_1 \) even, \(\epsilon' = 1; k_1 \) even, \(\epsilon = \epsilon' \). Then \(g(x) \) then being a product of the polynomial

\[x^{2d} + \epsilon^k \epsilon^m x^d + 1 \]

and a second irreducible polynomial.

In Section 2, we establish Conjecture 1 when \(n \) is sufficiently large relative to \(k \) for the second family of trinomials \(z^n - z^k + 1 \). Section 3 deals with the third family. We give the main elements of the proof that differ from those of Section 2. In Section 4, we give a second criterion equivalent to the first one and involving resultants of trinomials of the three families with some cyclotomic polynomials.
2 Proof of Conjecture 1 for \(n \) large

We prove the following result:

Theorem 1. 1. For the second family of trinomials, we have:

\[
\log M(z^n - z^k + 1) = \log M(z_1 + z_2 + 1) + \frac{c(n, k)}{n^2} + 0 \left(\frac{k}{n^3} \right)
\]

where \(c(n, k) = -\pi \sqrt{3}/36 \) if 3 does not divide \(n + k \) and \(c(n, k) = \pi \sqrt{3}/12 \) otherwise.

2. For the third family of trinomials, we have:

\[
\log M(z^n - z^k - 1) = \log M(z_1 + z_2 + 1) + \frac{c(n, k)}{n^2} + 0 \left(\frac{k}{n^3} \right)
\]

where \(c(n, k) = -\pi \sqrt{3}/18 \) if 3 does not divide \(n + k \) and \(c(n, k) = \pi \sqrt{3}/6 \) otherwise.

The constants involved in \(O \) are effective.

The proof follows the same scheme as Duke’s one in [D].

Corollary 1. There exists a computable constant \(c_0 \geq 2 \) such that if \(n > c_0 k \) then \(M(z^n - z^k \pm 1) - M(z_1 + z_2 + 1) < 0 \) if 3 does not divide \(n + k \) and > 0 otherwise.

We choose to present first the proof in detail for the second family of trinomials \(z^n - z^k + 1 \).

Let \(z = e^{it} \) for \(0 \leq t \leq 2\pi \). When \(t \) belongs to \(\bigcup_{l=0}^{k-1} \left(\frac{\pi + 6\pi l}{3k}, \frac{5\pi + 6\pi l}{3k} \right) \), i.e. \(\left| 1 - z^k \right| > 1 \), we have

\[
\log (z^n - z^k + 1) = \log (1 - z^k) + \sum_{m \geq 1} \frac{(-1)^{m-1}}{m} \left(\frac{z^n}{1 - z^k} \right)^m
\]

and when \(t \) belongs to \(\left(0, \frac{\pi}{3k} \right) \cup \left(\frac{5\pi + 6\pi(k-1)}{3k}, 2\pi \right) \cup \bigcup_{l=0}^{k-2} \left(\frac{5\pi + 6\pi l}{3k}, \frac{7\pi + 6\pi l}{3k} \right) \), i.e. \(\left| 1 - z^k \right| < 1 \), we have

\[
\log (z^n - z^k + 1) = \log (z^n) + \sum_{m \geq 1} \frac{(-1)^{m-1}}{m} \left(\frac{1 - z^k}{z^n} \right)^m.
\]

Put \(\lambda_{n,k} = \log M(z^n - z^k + 1) = \frac{1}{2\pi} \int_0^{2\pi} \log |z^n - z^k + 1| \, dt \)

and

\[
\lambda = \log M(z_1 + z_2 + 1) = \frac{1}{2\pi} \int_0^{2\pi} \log +|z + 1| \, dt.
\]

Putting \(u = tk \), we have

\[
\sum_{l=0}^{k-1} \int_{\frac{\pi + 6\pi l}{3k}}^{\frac{5\pi + 6\pi l}{3k}} \log |1 - e^{itk}| \, dt = \frac{1}{k} \sum_{l=0}^{k-1} \int_{\frac{\pi}{3} + 2\pi l}^{\frac{2\pi}{3} + 2\pi l} \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} \log |1 - e^{iu}| \, du = 2 \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} \log |1 - e^{iu}| \, du = 2 \int_{0}^{\frac{2\pi}{3}} \log |1 - e^{iu}| \, du = \int_{0}^{2\pi} \log |1 + e^{iu}| \, du.
\]
Hence
\[\lambda_{n,k} - \lambda = \frac{1}{2\pi} \text{Re} \sum_{m \geq 1} \frac{(-1)^{m-1}}{m} (c_1(m) + c_2(m)), \]
where
\[c_1(m) = \sum_{l=0}^{k-1} \int_{\pi l 2\pi (k-1)}^{\pi (l+1) 2\pi (k-1)} e^{m\text{iu}} (1 - e^{i\mu})^{-m} e^{m\text{it}} d\mu \]
and
\[c_2(m) = \int_{0}^{\pi} e^{-m\text{iu}} (1 - e^{i\lambda})^{-m} d\lambda. \]

Put \(u = tk \) then
\[c_1(m) = \frac{1}{k} \sum_{l=0}^{k-1} \int_{\pi l 2\pi (k-1)}^{\pi (l+1) 2\pi (k-1)} e^{m\text{iu}} (1 - e^{i\mu})^{-m} d\mu \]
\[= \frac{1}{k} \sum_{l=0}^{k-1} \left(\int_{\pi l 2\pi (k-1)}^{\pi (l+1) 2\pi (k-1)} e^{m\text{iu}} (1 - e^{i\mu})^{-m} d\mu + \int_{\pi (l+1) 2\pi (k-1)}^{\pi (l+2) 2\pi (k-1)} e^{m\text{iu}} (1 - e^{i\mu})^{-m} d\mu \right) \]
\[= \frac{1}{k} \left(\sum_{l=0}^{k-1} e^{2\pi m t \text{i}} \right) \left(2 \int_{\pi}^{\pi} e^{m\text{iu}} (1 - e^{i\mu})^{-m} d\mu \right). \]
Thus, \(\text{Re} \ c_1(m) = 2 \text{Re} \int_{\pi}^{\pi} e^{m\text{iu}} (1 - e^{i\lambda})^{-m} d\lambda \) if \(k \) divides \(m \) and \(\text{Re} \ c_1(m) = 0 \) otherwise.

By the same argument, we obtain \(\text{Re} \ c_2(m) = 2 \text{Re} \int_{0}^{\pi} e^{-m\text{iu}} (1 - e^{i\lambda})^{-m} d\lambda \) if \(k \) divides \(m \) and \(\text{Re} \ c_2(m) = 0 \) otherwise.

Put \(m = kq \). In order to estimate \(c_1(kq) + c_2(kq) \), we need to integrate by parts three times the integrals \(\int_{\pi}^{\pi} e^{-m\text{iu}} (1 - e^{i\lambda})^{-m} d\lambda \) and \(\int_{0}^{\pi} e^{-m\text{iu}} (1 - e^{i\lambda})^{-m} d\lambda \).

We obtain for each integral four types of terms that we have to study.

- The first type of term is \(\left[\frac{e^{m\text{iu}} (1 - e^{i\lambda})^{-m}}{inq} \right]_{\pi}^{\pi} \) and \(\left[-\frac{e^{-m\text{iu}} (1 - e^{i\lambda})^{-m}}{inq} \right]_{0}^{\pi} \). It is easy to see that the sum of such terms is not real and thus does not occur in \(\text{Re}(c_1(kq) + c_2(kq)) \).

- The second type of term is \(\left[kq(kq + 1)e^{-m\text{iu}(nq+2)}(1 - e^{i\lambda})^{-m} \right]_{\pi}^{\pi} \) and \(\left[kq(kq - 1)e^{-m\text{iu}(nq-2)}(1 - e^{i\lambda})^{-m} \right]_{0}^{\pi} \). These terms are in modulus \(\leq \frac{K_1 k}{n^2} \).

- Now we have to estimate the modulus of the third type of term

\[I = -\frac{kq(kq + 1)(kq + 2)}{nq(nq + 1)(nq + 2)} \int_{\pi}^{\pi} e^{i\lambda(nq+3)} (1 - e^{i\lambda})^{-kq+3} d\lambda \]
coming from the integration of \(c_1(kq) \).

In the integral \(I_1 = \int_{\pi}^{\pi} |1 - e^{i\lambda}|^{-kq+3} d\lambda \), put \(v = \frac{\lambda}{2} \).

Thus \(I_1 = 2 \int_{\pi}^{\pi} \frac{dv}{(2 \sin v)^{kq+3}} \).
For any $v \in \left[\frac{\pi}{6}, \frac{\pi}{2} \right]$, \(\frac{1}{2 \sin v} \leq -\frac{3}{2\pi}v + \frac{5}{4} \) so that
\[
I_1 \leq 2 \int_{\pi/6}^{\pi/2} \left(-\frac{3}{2\pi}v + \frac{5}{4} \right)^{kq+3} \, dv \leq \frac{4\pi}{3(kq+4)}.
\]
Finally, we get \(|I| \leq \frac{K_2 k^2}{n^3} \).

In the same way, we have to estimate the modulus of
\[
J = -\frac{kq(kq-1)(kq-2)}{nq(nq-1)(nq-2)} \int_0^{\frac{\pi}{3}} e^{-it(nq-3)}(1 - e^{it})^{kq-3} \, dt,
\]
due to the integration of \(c_2(kq) \).

For \(q > 3 \), in the integral \(J_1 = \int_0^{\pi/3} |1 - e^{it}|^{kq-3} \, dt \), put \(v = \frac{t}{2} \).

Thus \(J_1 = 2 \int_0^{\pi/6} (2\sin v)^{kq-3} \, dv \).

For any \(v \in [0, \frac{\pi}{6}] \), \(2\sin v \leq \sqrt{3} v + 1 - \frac{\sqrt{3}\pi}{6} \) so that
\[
J_1 \leq 2 \int_0^{\pi/6} \left(\sqrt{3} v + 1 - \frac{\sqrt{3}\pi}{6} \right)^{kq-3} \, dv \leq \frac{2}{\sqrt{3} (kq-2)}.
\]
Thus, we get \(|J| \leq \frac{K_3 k^2}{n^3} \) for \(m \geq 1 \).

Finally, the only terms that occur in \(\text{Re}(c_1(kq) + c_2(kq)) \) are those which contain \(\frac{kq}{inq(nq+1)} \) in \(c_1(kq) \) and \(\frac{kq}{inq(nq-1)} \) in \(c_2(kq) \).

We obtain
\[
\text{Re}(c_1(kq) + c_2(kq)) = \text{Re} \left(\frac{kq}{in^2q^2} \left(e^{i\frac{\pi}{3}(nq+1)}(1 - e^{i\frac{\pi}{3}})^{-kq-1} + e^{-i\frac{\pi}{3}(nq-1)}(1 - e^{-i\frac{\pi}{3}})^{kq-1} \right) \right) + 0 \left(\frac{k^2}{n^3} \right)
\]
\[
= \frac{2kq\sqrt{3}}{n^2q^2} \cos \left(\frac{\pi}{3} q(n+k) \right) + 0 \left(\frac{k^2}{n^3} \right)
\]
Hence
\[
\lambda_{n,k} - \lambda = \frac{\sqrt{3}}{\pi n^2} \sum_{q \geq 1} (-1)^{q-1} \cos \left(\frac{\pi}{3} q(n+k) \right) + 0 \left(\frac{k}{n^3} \right)
\]
\[\text{i. e.} \]
\[
\lambda_{n,k} - \lambda = \begin{cases}
-\frac{\sqrt{3}}{36n^2} + 0 \left(\frac{k}{n^3} \right) & \text{if } 3 \text{ does not divide } n+k \\
\frac{\sqrt{3}}{12n^2} + 0 \left(\frac{k}{n^3} \right) & \text{if } 3 \text{ divides } n+k
\end{cases}
\]
3 The family $z^n - z^k - 1$

Here, we have $\lambda_{n,k} = \log M(z^n - z^k - 1) = \frac{1}{2\pi} \int_0^{2\pi} \log|z^n - z^k - 1|dt = \frac{1}{2\pi} \int_0^{2\pi} \log|-z^n + z^k + 1|dt = \log M(-z^n + z^k + 1)$ so we work with $\log(-z^n + z^k + 1)$.

If t belongs to $(0, \frac{2\pi}{3k}) \cup \left(\frac{4\pi + 6(k-1)\pi l}{3k}, 2\pi\right)$, then $|1 + e^{itk}| > 1$

and if t belongs to $\bigcup_{l=0}^{k-1} \left(\frac{2\pi + 6\pi l}{3k}, \frac{8\pi + 6\pi l}{3k}\right)$ then $|1 + e^{itk}| < 1$.

Hence

$$\lambda_{n,k} - \lambda = -\frac{1}{2\pi} \text{Re} \sum_{m \geq 1} \frac{(-1)^{m-1}}{m} (c_1(m) + c_2(m))$$

where

$$c_1(m) = \int_0^{\frac{2\pi}{3k}} e^{inmt}(1 + e^{itk})^{-m} dt + \sum_{l=0}^{k-2} \int_{\frac{4\pi + 6\pi l}{3k}}^{\frac{8\pi + 6\pi l}{3k}} e^{inmt}(1 + e^{itk})^{-m} dt + \int_{\frac{4\pi + 6(k-1)\pi}{3k}}^{2\pi} e^{inmt}(1 + e^{itk})^{-m} dt$$

and

$$c_2(m) = \sum_{l=0}^{k-1} \int_{\frac{2\pi + 6\pi l}{3k}}^{\frac{4\pi + 6\pi l}{3k}} e^{-inmt}(1 + e^{itk})^m dt.$$

By the same argument as in Section 1, we obtain $\text{Re} c_1(m) = 2 \text{Re} \int_0^{\frac{2\pi}{3k}} e^{inmt/k}(1 + e^{it})^{-m}$ if k divides m and $\text{Re} c_1(m) = 0$ otherwise and $\text{Re} c_2(m) = 2 \text{Re} \int_0^{\frac{2\pi}{3k}} e^{-inmt/k}(1 + e^{it})^m dt$ if k divides m and $\text{Re} c_2(m) = 0$ otherwise.

As before, we put $m = kq$. We integrate three times by parts and keep only the terms with $\frac{m}{m^2q^2}$.

We get $c_1(kq) + c_2(kq) = 2(-1)^{kq} kq \sqrt{3} \cos \left(\frac{2\pi}{3} q(n - 2k)\right) + 0 \left(\frac{k^2}{n^3}\right)$.

i.e. $\lambda_{n,k} - \lambda = \sqrt{3} \frac{\cos \left(\frac{2\pi}{3} q(n - 2k)\right)}{n^2} + 0 \left(\frac{k}{n^3}\right)$

Therefore,

$$\lambda_{n,k} - \lambda = \begin{cases}
\frac{\pi \sqrt{3}}{18n^2} + 0 \left(\frac{k}{n^3}\right) & \text{if } 3 \text{ does not divide } n + k \\
\frac{\pi \sqrt{3}}{6n^2} + 0 \left(\frac{k}{n^3}\right) & \text{if } 3 \text{ divides } n + k
\end{cases}$$
4 An equivalent criterion

We claim that the following conjecture is true:

Conjecture 2. Let ϵ, η be equal to ± 1. Put $r_1 = \text{resultant}(z^n + \epsilon z^k + \eta, z^2 + z + 1)$ and $r_2 = \text{resultant}(z^n + \epsilon z^k + \eta, z^2 - z + 1)$.

1. $M(z^n + z^k + 1) < \lambda$ iff $z^n + z^k + 1$ divides $z^n + z^k + 1$.
2. $M(z^n - z^k + 1) < \lambda$ with n odd iff $\{r_1, r_2\} = \{1, 1\}$ or $\{1, 7\}$.
3. $M(z^n - z^k - 1) < \lambda$ with n even iff $\{r_1, r_2\} = \{1, 1\}$ or $\{1, 7\}$.

In this section, we prove that:

Theorem 2. Conjectures 1 and 2 are equivalent.

Proof

Put $j = e^{\frac{2i\pi}{n}}$.

1. 3 divides $n + k$ \iff $(n \equiv 1 \mod 3$ and $k \equiv 2 \mod 3)$ or $(n \equiv 2 \mod 3$ and $k \equiv 1 \mod 3)$$\iff j^n + j^k + 1 = j^2 + j + 1 = 0$.

2. We give the proof for the family $z^n - z^k + 1$. The argument is the same for the family $z^n - z^k - 1$.

- Suppose that 3 divides $n + k$. If $n \equiv 1 \mod 3$ and $k \equiv 2 \mod 3$ then $r_1 = |j^n - j^k + 1|^2 = |j - j^2 + 1|^2 = 4$ and $r_2 = |(-j)^n - (-j)^k + 1|^2 = |-j - j^2 + 1|^2 = 4$.
- Suppose that 3 does not divide $n + k$. It is easy to see that this is equivalent to 3 divides $nk(n - k)$.

Thus, the situations $\{r_1, r_2\} = \{1, 1\}$ or $\{1, 7\}$ are not possible.

Acknowledgements

The author wishes to thank C. J. Smyth for his communication concerning the first criterion and for the reference of D. Boyd’s paper and G. Rhin for his precious help.

The author also thanks the referee for his useful recommendations.
Appendix

Smallest known Mahler measures of nonreciprocal polynomials with coefficients -1, 0, 1 up to degree 20.

1.324717 = M(z^3 - z^2 + 1)
1.349716 = M(z^5 - z^4 + z^2 - z + 1) = M \left(\frac{z^7 + z^4 + 1}{z^2 + z + 1} \right)
1.359914 = M(z^6 - z^5 + z^3 - z^2 + 1) = M \left(\frac{z^8 + z + 1}{z^2 + z + 1} \right)
1.364199 = M(z^5 - z^2 + 1)
1.367854 = M(z^9 - z^8 + z^6 - z^5 + z^3 - z + 1) = M \left(\frac{z^{11} + z^4 + 1}{z^2 + z + 1} \right)
1.370226 = M(z^9 - z^8 + z^6 - z^5 + z^3 - z^2 + 1) = M \left(\frac{z^{11} + z + 1}{z^2 + z + 1} \right)
1.370957 = M(z^6 - z^5 - 1)
1.371612 = M(z^{11} - z^{10} + z^8 - z^7 + z^6 - z^4 + z^3 - z + 1) = M \left(\frac{z^{13} + z^8 + 1}{z^2 + z + 1} \right)
1.372910 = M(z^{11} - z^{10} + z^8 - z^7 + z^5 - z^4 + z^2 - z + 1) = M \left(\frac{z^{13} + z^2 + 1}{z^2 + z + 1} \right)
1.373895 = M(z^7 - z^4 + 1)
1.374571 = M(z^{12} - z^{10} + z^9 - z^7 + z^6 - z^4 + z^3 - z + 1) = M \left(\frac{z^{14} + z^{13} + 1}{z^2 + z + 1} \right)
1.375128 = M(z^{14} - z^{13} + z^{11} - z^{10} + z^9 - z^7 + z^6 - z^4 + z^3 - z + 1) = M \left(\frac{z^{16} + z^{11} + 1}{z^2 + z + 1} \right)
1.375619 = M(z^{15} - z^{14} + z^{12} - z^{11} + z^9 - z^7 + z^6 - z^4 + z^3 - z + 1) = M \left(\frac{z^{17} + z^{10} + 1}{z^2 + z + 1} \right)
1.376087 = M(z^{15} - z^{14} + z^{12} - z^{10} + z^9 - z^7 + z^6 - z^4 + z^3 - z + 1) = M \left(\frac{z^{17} + z^{13} + 1}{z^2 + z + 1} \right)
1.376755 = M(z^{17} - z^{16} + z^{14} - z^{13} + z^{11} - z^{10} + z^9 - z^7 + z^6 - z^4 + z^3 - z + 1) = M \left(\frac{z^{19} + z^{11} + 1}{z^2 + z + 1} \right)
1.376795 = M(z^{15} - z^{14} + z^{12} - z^{11} + z^9 - z^8 + z^6 - z^5 + z^3 - z^2 + 1) = M \left(\frac{z^{17} + z + 1}{z^2 + z + 1} \right)
1.377059 = M(z^{17} - z^{16} + z^{14} - z^{13} + z^{12} - z^{10} + z^9 - z^7 + z^6 - z^4 + z^3 - z + 1) = M \left(\frac{z^{19} + z^{14} + 1}{z^2 + z + 1} \right)
1.377280 = M(z^9 - z^5 - 1)
1.377299 = M(z^{18} - z^{17} + z^{15} - z^{14} + z^{12} - z^{10} + z^9 - z^7 + z^6 - z^4 + z^3 - z + 1) = M \left(\frac{z^{20} + z^{13} + 1}{z^2 + z + 1} \right)
1.377364 = M(z^9 - z^8 + 1)
1.377543 = M(z^{17} - z^{16} + z^{15} - z^{13} + z^{12} - z^{10} + z^9 - z^7 + z^6 - z^4 + z^3 - z + 1) = M \left(\frac{z^{19} + z^{17} + 1}{z^2 + z + 1} \right)
1.377904 = M(z^{10} - z^7 - 1)
1.378234 = M(z^8 - z^5 - 1)
1.378672 = M(z^{11} - z^9 - 1)
1.378783 = M(z^{11} - z^6 + 1)
1.379300 = M(z^{12} - z^{11} - 1)
1.379367 = M(z^7 - z^6 + 1)
1.379458 = M(z^{13} - z^{10} + 1)
1.379545 = M(z^9 - z^7 - 1)
1.375619 = M(z^{15} - z^{14} + z^{12} - z^{11} + z^9 - z^8 + z^6 - z^4 + z^3 - z + 1) = M \left(\frac{z^{17} + z^7 + 1}{z^2 + z + 1} \right)
1.379576 = M(z^{13} - z^7 - 1)
1.379633 = M(z^{12} - z^7 - 1)
\[
1.379730 = M(z^{14} - z^9 - 1)
1.379849 = M(z^{11} - z^8 + 1)
1.379954 = M(z^{15} - z^{11} - 1)
1.378082 = M(z^{18} - z^{16} + z^{15} - z^{13} + z^{12} - z^{10} + z^9 - z^7 + z^6 - z^4 + z^3 - z + 1) = M\left(\frac{z^{20} + z^{19} + 1}{z^2 + z + 1}\right)
1.379849 = M(z^{22} + z^{16} - 1)
1.380031 = M(z^{10} - z^9 - 1)
1.380046 = M(z^{15} - z^8 + 1)
1.380116 = M(z^{15} - z^{14} + 1)
1.380131 = M(z^{13} - z^9 - 1)
1.380175 = M(z^{16} - z^{13} - 1)
1.380277 = M(z^4 - z^3 - 1)
1.380350 = M(z^{17} - z^9 - 1)
1.380369 = M(z^{17} - z^{15} - 1)
1.380418 = M(z^{14} - z^{11} - 1)
1.380418 = M(z^{18} - z^{11} - 1)
1.380460 = M(z^{13} - z^{12} + 1)
1.3805098 = M(z^{19} - z^{13} - 1)
1.3805307 = M(z^{18} - z^{17} - 1)
1.380541 = M(z^{17} - z^{11} - 1)
1.380557 = M(z^{19} - z^{16} + 1)
1.380558 = M(z^{19} - z^{10} + 1)
1.380596 = M(z^{15} - z^{13} - 1)
1.380680 = M(z^{19} - z^{12} + 1)
1.380684 = M(z^{20} - z^{11} - 1)
1.380691 = M(z^{18} - z^{13} - 1)
1.380707 = M(z^{17} - z^{14} + 1)
1.380719 = M(z^{16} - z^{15} - 1)
1.380799 = M(z^{19} - z^{15} - 1)
1.380879 = M(z^{20} - z^{17} - 1)
1.380882 = M(z^{19} - z^{18} + 1)
\]
References

UMR CNRS 7502, IECL, Université de Lorraine, Département de Mathématiques, UFR MIM, Ile du Saulcy, 57045 METZ cedex 01, FRANCE
E-mail address :valerieflammang@univ-lorraine.fr