T. Cavalier-smith, Origins of the machinery of recombination and sex, Heredity, vol.88, issue.2, pp.125-166, 2002.
DOI : 10.1038/sj.hdy.6800034

C. Zimmer, On the Origin of Sexual Reproduction, Science, vol.324, issue.5932, pp.1254-1260, 2009.
DOI : 10.1126/science.324_1254

U. Goodenough and J. Heitman, Origins of Eukaryotic Sexual Reproduction, Cold Spring Harbor Perspectives in Biology, vol.6, issue.3, p.16154, 2014.
DOI : 10.1101/cshperspect.a016154

A. Schurko and J. Logsdon, Using a meiosis detection toolkit to investigate ancient asexual ???scandals??? and the evolution of sex, BioEssays, vol.107, issue.6, pp.579-89, 2008.
DOI : 10.1002/bies.20764

M. Ramesh, S. Malik, and J. Logsdon, A Phylogenomic Inventory of Meiotic Genes, Current Biology, vol.15, issue.2, pp.185-91, 2005.
DOI : 10.1016/j.cub.2005.01.003

S. Malik, A. Pightling, L. Stefaniak, A. Schurko, and J. Logsdon, An Expanded Inventory of Conserved Meiotic Genes Provides Evidence for Sex in Trichomonas vaginalis, PLoS ONE, vol.23, issue.8, p.2879, 2008.
DOI : 10.1371/journal.pone.0002879.s001

L. Parfrey, D. Lahr, A. Knoll, and L. Katz, Estimating the timing of early eukaryotic diversification with multigene molecular clocks, Proceedings of the National Academy of Sciences, vol.108, issue.33, pp.13624-13633, 2011.
DOI : 10.1073/pnas.1110633108

L. Fritz-laylin, S. Prochnik, M. Ginger, J. Dacks, M. Carpenter et al., The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility, Cell, vol.140, issue.5, pp.631-673, 2010.
DOI : 10.1016/j.cell.2010.01.032

J. Chi, F. Mahé, J. Loidl, J. Logsdon, and M. Dunthorn, Meiosis Gene Inventory of Four Ciliates Reveals the Prevalence of a Synaptonemal Complex-Independent Crossover Pathway, Molecular Biology and Evolution, vol.31, issue.3, pp.660-72, 2014.
DOI : 10.1093/molbev/mst258

M. Carr, B. Leadbeater, and S. Baldauf, Conserved Meiotic Genes Point to Sex in the Choanoflagellates, Journal of Eukaryotic Microbiology, vol.57, issue.1, pp.56-62, 2010.
DOI : 10.1111/j.1550-7408.2009.00450.x

J. Chi, M. Parrow, and M. Dunthorn, (Alveolata, Dinoflagellata) is Supported by an Inventory of Meiotic Genes, Journal of Eukaryotic Microbiology, vol.9, issue.3, pp.322-329, 2014.
DOI : 10.1111/jeu.12110

C. Field, M. Behrenfeld, J. Randerson, and P. Falkowski, Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components, Science, vol.281, issue.5374, pp.237-277, 1998.
DOI : 10.1126/science.281.5374.237

D. Nelson, P. Tréguer, M. Brzezinski, A. Leynaert, and B. Quéguiner, Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation, Global Biogeochemical Cycles, vol.33, issue.3, p.359, 1995.
DOI : 10.1029/95GB01070

S. Adl, A. Simpson, C. Lane, J. Luke?, D. Bass et al., The Revised Classification of Eukaryotes, Journal of Eukaryotic Microbiology, vol.56, issue.5, pp.429-93, 2012.
DOI : 10.1111/j.1550-7408.2012.00644.x

V. Chepurnov, D. Mann, K. Sabbe, and W. Vyverman, Experimental Studies on Sexual Reproduction in Diatoms, In: International Review of Cytology, vol.237, pp.91-154, 2004.
DOI : 10.1016/S0074-7696(04)37003-8

F. Round, R. Crawford, and D. Mann, The Diatoms: Biology and Morphology of the Genera, 1990.

E. Armbrust, J. Berges, C. Bowler, B. Green, D. Martinez et al., The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism, Science, vol.306, issue.5693, pp.79-86, 2004.
DOI : 10.1126/science.1101156

C. Bowler, A. Allen, J. Badger, J. Grimwood, K. Jabbari et al., The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, vol.9, issue.7219, pp.239-283, 2008.
DOI : 10.1038/nature07410

URL : https://hal.archives-ouvertes.fr/cea-00910244

A. Falciatore, R. Casotti, C. Leblanc, C. Abrescia, and C. Bowler, Transformation of Nonselectable Reporter Genes in Marine Diatoms, Marine Biotechnology, vol.1, issue.3, pp.239-51, 1999.
DOI : 10.1007/PL00011773

N. Poulsen, P. Chesley, and N. Kröger, MOLECULAR GENETIC MANIPULATION OF THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE), Journal of Phycology, vol.42, issue.5, pp.1059-65, 2006.
DOI : 10.1126/science.160015

M. Siaut, M. Heijde, M. Mangogna, A. Montsant, S. Coesel et al., Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum, Gene, vol.406, issue.1-2, pp.23-35, 2007.
DOI : 10.1016/j.gene.2007.05.022

W. Kooistra, R. Gersonde, L. Medlin, and D. Mann, The origin and evolution of the diatoms: Their adaptation to a planktonic existence Evolution of primary producers in the sea, pp.207-256, 1988.

D. Honda, T. Shono, K. Kimura, S. Fujita, M. Iseki et al., Homologs of the Sexually Induced Gene 1 (sig1) Product constitute the Stramenopile Mastigonemes, Protist, vol.158, issue.1, pp.77-88, 2007.
DOI : 10.1016/j.protis.2006.08.004

I. Vanstechelman, K. Sabbe, W. Vyverman, P. Vanormelingen, and M. Vuylsteke, Linkage Mapping Identifies the Sex Determining Region as a Single Locus in the Pennate Diatom Seminavis robusta, PLoS ONE, vol.159, issue.3, p.60132, 2013.
DOI : 10.1371/journal.pone.0060132.s002

A. Schurko, J. Logsdon, and B. Eads, Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution, BMC Evolutionary Biology, vol.9, issue.1, p.78, 2009.
DOI : 10.1186/1471-2148-9-78

G. Mlambo, I. Coppens, and N. Kumar, Aberrant Sporogonic Development of Dmc1 (a Meiotic Recombinase) Deficient Plasmodium berghei Parasites, PLoS ONE, vol.76, issue.12, p.52480, 2012.
DOI : 10.1371/journal.pone.0052480.s003

N. Stacey, T. Kuromori, Y. Azumi, G. Roberts, C. Breuer et al., Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination, The Plant Journal, vol.33, issue.2, pp.206-222, 2006.
DOI : 10.1111/j.1365-313X.2006.02867.x

K. Lindner, J. Gregán, S. Montgomery, and S. Kearsey, Essential Role of MCM Proteins in Premeiotic DNA Replication, Molecular Biology of the Cell, vol.13, issue.2, pp.435-479, 2002.
DOI : 10.1091/mbc.01-11-0537

A. Strunnikov and R. Jessberger, Structural maintenance of chromosomes (SMC) proteins. Conserved molecular properties for multiple biological functions, European Journal of Biochemistry, vol.142, issue.1
DOI : 10.1074/jbc.274.11.7302

I. Prieto, N. Pezzi, J. Buesa, L. Kremer, I. Barthelemy et al., STAG2 and Rad21 mammalian mitotic cohesins are implicated in meiosis, EMBO reports, vol.409, issue.6, pp.543-50, 2002.
DOI : 10.1093/embo-reports/kvf108

N. Suwaki, K. Klare, and M. Tarsounas, RAD51 paralogs: Roles in DNA damage signalling, recombinational repair and tumorigenesis, Seminars in Cell & Developmental Biology, vol.22, issue.8, pp.898-905, 2011.
DOI : 10.1016/j.semcdb.2011.07.019

S. Acharya, P. Foster, P. Brooks, and R. Fishel, The Coordinated Functions of the E. coli MutS and MutL Proteins in Mismatch Repair, Molecular Cell, vol.12, issue.1, pp.233-279, 2003.
DOI : 10.1016/S1097-2765(03)00219-3

S. Hanson, A. Schurko, B. Hecox-lea, M. Welch, D. Stelzer et al., Inventory and Phylogenetic Analysis of Meiotic Genes in Monogonont Rotifers, Journal of Heredity, vol.104, issue.3, pp.357-70, 2013.
DOI : 10.1093/jhered/est011

A. Forche, K. Alby, D. Schaefer, A. Johnson, J. Berman et al., The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains, PLoS Biology, vol.169, issue.5, pp.1084-97, 2008.
DOI : 10.1371/journal.pbio.0060110.st006

M. Carpenter, Z. Assaf, S. Gourguechon, and W. Cande, Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis, Journal of Cell Science, vol.125, issue.10, pp.2523-2555, 2012.
DOI : 10.1242/jcs.103879

V. Dassow, P. John, U. Ogata, H. Probert, I. Bendif et al., Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton, The ISME Journal, vol.219, issue.6, pp.1365-77, 2015.
DOI : 10.1093/molbev/msq199

URL : https://hal.archives-ouvertes.fr/hal-01245155

N. Davidovich and S. Bates, SEXUAL REPRODUCTION IN THE PENNATE DIATOMS PSEUDO-NITZSCHIA MULTISERIES AND P. PSEUDODELICATISSIMA (BACILLARIOPHYCEAE), Journal of Phycology, vol.34, issue.1
DOI : 10.1046/j.1529-8817.1998.340126.x

D. 'alelio, D. Amato, A. Luedeking, A. Montresor, and M. , Sexual and vegetative phases in the planktonic diatom Pseudo-nitzschia multistriata, Harmful Algae, vol.8, pp.225-257, 2009.

S. Keeney, Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis, pp.81-123, 2008.
DOI : 10.1007/7050_2007_026

S. Keeney, C. Giroux, and N. Kleckner, Meiosis-Specific DNA Double-Strand Breaks Are Catalyzed by Spo11, a Member of a Widely Conserved Protein Family, Cell, vol.88, issue.3, pp.375-84, 1997.
DOI : 10.1016/S0092-8674(00)81876-0

J. Henry, R. Camahort, D. Rice, L. Florens, S. Swanson et al., Mnd1/Hop2 Facilitates Dmc1-Dependent Interhomolog Crossover Formation in Meiosis of Budding Yeast, Molecular and Cellular Biology, vol.26, issue.8, pp.2913-2936, 2006.
DOI : 10.1128/MCB.26.8.2913-2923.2006

W. Zhao, D. Saro, M. Hammel, Y. Kwon, Y. Xu et al., Mechanistic insights into the role of Hop2-Mnd1 in meiotic homologous DNA pairing, Nucleic Acids Research, vol.42, issue.2, pp.906-923, 2014.
DOI : 10.1093/nar/gkt924

K. Nishant, C. Chen, M. Shinohara, A. Shinohara, and E. Alani, Genetic Analysis of Baker's Yeast Msh4-Msh5 Reveals a Threshold Crossover Level for Meiotic Viability, PLoS Genetics, vol.97, issue.8, p.1001083, 2010.
DOI : 10.1371/journal.pgen.1001083.s004

T. Snowden, S. Acharya, C. Butz, M. Berardini, and R. Fishel, hMSH4-hMSH5 Recognizes Holliday Junctions and Forms a Meiosis-Specific Sliding Clamp that Embraces Homologous Chromosomes, Molecular Cell, vol.15, issue.3, pp.437-51, 2004.
DOI : 10.1016/j.molcel.2004.06.040

A. Lynn, R. Soucek, and G. Börner, ZMM proteins during meiosis: Crossover artists at work, Chromosome Research, vol.33, issue.5, pp.591-605, 2007.
DOI : 10.1007/s10577-007-1150-1

R. Mercier, S. Jolivet, D. Vezon, E. Huppe, L. Chelysheva et al., Two Meiotic Crossover Classes Cohabit in Arabidopsis, Current Biology, vol.15, issue.8, pp.692-701, 2005.
DOI : 10.1016/j.cub.2005.02.056

M. Sym, J. Engebrecht, and G. Roeder, ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis, Cell, vol.72, issue.3, pp.365-78, 1993.
DOI : 10.1016/0092-8674(93)90114-6

B. Rockmill and G. Roeder, RED1: a yeast gene required for the segregation of chromosomes during the reductional division of meiosis., Proceedings of the National Academy of Sciences, vol.85, issue.16, pp.6057-61, 1988.
DOI : 10.1073/pnas.85.16.6057

M. Ferdous, J. Higgins, K. Osman, C. Lambing, E. Roitinger et al., Inter-Homolog Crossing-Over and Synapsis in Arabidopsis Meiosis Are Dependent on the Chromosome Axis Protein AtASY3, PLoS Genetics, vol.162, issue.2, p.1002507, 2012.
DOI : 10.1371/journal.pgen.1002507.s011

Y. Watanabe and P. Nurse, Cohesin Rec8 is required for reductional chromosome segregation at meiosis, Nature, vol.400, issue.6743, pp.461-465, 1999.
DOI : 10.1038/22774

A. Bardhan, Many functions of the meiotic cohesin, Chromosome Research, vol.33, issue.8, pp.909-933, 2010.
DOI : 10.1007/s10577-010-9169-0

S. Keeney, Mechanism and control of meiotic recombination initiation, Curr Top Dev Biol, vol.52, pp.1-53, 2001.
DOI : 10.1016/S0070-2153(01)52008-6

A. Shinoharaa and M. Shinohara, Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination, Cytogenetic and Genome Research, vol.107, issue.3-4, pp.201-208, 2004.
DOI : 10.1159/000080598

M. Kurzbauer, C. Uanschou, D. Chen, and P. Schlogelhofer, The Recombinases DMC1 and RAD51 Are Functionally and Spatially Separated during Meiosis in Arabidopsis, The Plant Cell, vol.24, issue.5, pp.2058-70, 2012.
DOI : 10.1105/tpc.112.098459

U. Abdu, A. González-reyes, A. Ghabrial, and T. Schüpbach, The Drosophila spn-D gene encodes a RAD51C-like protein that is required exclusively during meiosis, Genetics, vol.165, pp.197-204, 2003.

T. Takanami, A. Mori, H. Takahashi, S. Horiuchi, and A. Higashitani, Caenorhabditis elegans Ce-rdh-1/rad-51 functions after double-strand break formation of meiotic recombination, Chromosome Research, vol.11, issue.2, pp.125-160, 2003.
DOI : 10.1023/A:1022863814686

Z. Lin, H. Kong, M. Nei, and H. Ma, Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer, Proceedings of the National Academy of Sciences, vol.103, issue.27, pp.10328-10361, 2006.
DOI : 10.1073/pnas.0604232103

J. Walker, M. Saraste, M. Runswick, and N. Gay, Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J, vol.1, pp.945-51, 1982.

B. Rowan, D. Oldenburg, and A. Bendich, RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis, Journal of Experimental Botany, vol.61, issue.10, pp.2575-88, 2010.
DOI : 10.1093/jxb/erq088

H. Cerutti, M. Osman, P. Grandoni, and A. Jagendorf, A homolog of Escherichia coli RecA protein in plastids of higher plants., Proceedings of the National Academy of Sciences, vol.89, issue.17, pp.8068-72, 1992.
DOI : 10.1073/pnas.89.17.8068

J. Bendtsen, H. Nielsen, V. Heijne, G. Brunak, and S. , Improved Prediction of Signal Peptides: SignalP 3.0, Journal of Molecular Biology, vol.340, issue.4, pp.783-95, 2004.
DOI : 10.1016/j.jmb.2004.05.028

A. Gruber, G. Rocap, P. Kroth, E. Armbrust, and T. Mock, Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage, The Plant Journal, vol.13, issue.3, pp.519-547, 2015.
DOI : 10.1111/tpj.12734

V. Chepurnov, D. Mann, W. Vyverman, K. Sabbe, and D. Danielidis, SEXUAL REPRODUCTION, MATING SYSTEM, AND PROTOPLAST DYNAMICS OF SEMINAVIS (BACILLARIOPHYCEAE)1, Journal of Phycology, vol.11, issue.5, pp.1004-1023, 2002.
DOI : 10.1046/j.1529-8817.1999.3510152.x

J. Perry, N. Kleckner, and G. Börner, Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling, Proceedings of the National Academy of Sciences, vol.102, issue.49, pp.17594-17603, 2005.
DOI : 10.1073/pnas.0508581102

T. Tsubouchi, H. Zhao, and G. Roeder, The Meiosis-Specific Zip4 Protein Regulates Crossover Distribution by Promoting Synaptonemal Complex Formation Together with Zip2, Developmental Cell, vol.10, issue.6, pp.809-828, 2006.
DOI : 10.1016/j.devcel.2006.04.003

J. Bähler, T. Wyler, J. Loidl, and J. Kohli, Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis, The Journal of Cell Biology, vol.121, issue.2, pp.241-56, 1993.
DOI : 10.1083/jcb.121.2.241

J. Loidl and H. Scherthan, Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila, Journal of Cell Science, vol.117, issue.24, pp.5791-801, 2004.
DOI : 10.1242/jcs.01504

M. Egel-mitani, L. Olson, and R. Egel, Meiosis in Aspergillus nidulans: Another example for lacking synaptonemal complexes in the absence of crossover interference, Hereditas, vol.105, issue.2, pp.179-87, 2008.
DOI : 10.1111/j.1601-5223.1982.tb00870.x

A. Villeneuve and K. Hillers, Whence Meiosis?, Cell, vol.106, issue.6, pp.647-50, 2001.
DOI : 10.1016/S0092-8674(01)00500-1

H. Xu, M. Beasley, S. Verschoor, A. Inselman, M. Handel et al., A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse, EMBO reports, vol.5, issue.4, pp.378-84, 2004.
DOI : 10.1038/sj.embor.7400121

R. Howard-till, A. Lukaszewicz, M. Novatchkova, and J. Loidl, A Single Cohesin Complex Performs Mitotic and Meiotic Functions in the Protist Tetrahymena, PLoS Genetics, vol.121, issue.3, p.1003418, 2013.
DOI : 10.1371/journal.pgen.1003418.s009

S. Malik, M. Ramesh, A. Hulstrand, and J. Logsdon, Protist Homologs of the Meiotic Spo11 Gene and Topoisomerase VI reveal an Evolutionary History of Gene Duplication and Lineage-Specific Loss, Molecular Biology and Evolution, vol.24, issue.12, pp.2827-2868, 2007.
DOI : 10.1093/molbev/msm217

T. Sprink and F. Hartung, The splicing fate of plant SPO11 genes, Frontiers in Plant Science, vol.9, p.214, 2014.
DOI : 10.1186/1471-2156-9-83

A. Worden, J. Lee, T. Mock, P. Rouzé, M. Simmons et al., Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas, Science, vol.324, issue.5924, pp.268-72, 2009.
DOI : 10.1126/science.1167222

URL : https://hal.archives-ouvertes.fr/hal-00693449

F. Hartung and H. Puchta, Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants, Gene, vol.271, issue.1, pp.81-87, 2001.
DOI : 10.1016/S0378-1119(01)00496-6

V. Cloud, Y. Chan, J. Grubb, B. Budke, and D. Bishop, Rad51 Is an Accessory Factor for Dmc1-Mediated Joint Molecule Formation During Meiosis, Science, vol.337, issue.6099, pp.1222-1227, 2012.
DOI : 10.1126/science.1219379

H. Tsubouchi and G. Roeder, The Importance of Genetic Recombination for Fidelity of Chromosome Pairing in Meiosis, Developmental Cell, vol.5, issue.6, pp.915-940, 2003.
DOI : 10.1016/S1534-5807(03)00357-5

J. Leu, P. Chua, and G. Roeder, The Meiosis-Specific Hop2 Protein of S. cerevisiae Ensures Synapsis between Homologous Chromosomes, Cell, vol.94, issue.3, pp.375-86, 1998.
DOI : 10.1016/S0092-8674(00)81480-4

P. Chi, S. Filippo, J. Sehorn, M. Petukhova, G. Sung et al., Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase, Genes & Development, vol.21, issue.14, pp.1747-57, 2007.
DOI : 10.1101/gad.1563007

W. Crismani, V. Portemer, N. Froger, L. Chelysheva, C. Horlow et al., MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in Arabidopsis thaliana, PLoS Genetics, vol.168, issue.1, p.1003165, 2013.
DOI : 10.1371/journal.pgen.1003165.s003

URL : https://hal.archives-ouvertes.fr/hal-01190669

H. Blanton, S. Radford, S. Mcmahan, H. Kearney, J. Ibrahim et al., REC, Drosophila MCM8, Drives Formation of Meiotic Crossovers, PLoS Genetics, vol.168, issue.3, p.40, 2005.
DOI : 10.1371/journal.pgen.0010040.st003

M. Lutzmann, C. Grey, S. Traver, O. Ganier, A. Maya-mendoza et al., MCM8- and MCM9-Deficient Mice Reveal Gametogenesis Defects and Genome Instability Due to Impaired Homologous Recombination, Molecular Cell, vol.47, issue.4, pp.523-557, 2012.
DOI : 10.1016/j.molcel.2012.05.048

URL : https://hal.archives-ouvertes.fr/hal-00733290

J. Park, D. Long, K. Lee, T. Abbas, E. Shibata et al., The MCM8-MCM9 Complex Promotes RAD51 Recruitment at DNA Damage Sites To Facilitate Homologous Recombination, Molecular and Cellular Biology, vol.33, issue.8, pp.1632-1676, 2013.
DOI : 10.1128/MCB.01503-12

K. Abe, K. Osakabe, S. Nakayama, M. Endo, A. Tagiri et al., Arabidopsis RAD51C Gene Is Important for Homologous Recombination in Meiosis and Mitosis, PLANT PHYSIOLOGY, vol.139, issue.2, pp.896-908, 2005.
DOI : 10.1104/pp.105.065243

J. Bleuyard and C. White, The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis, The EMBO Journal, vol.23, issue.2, pp.439-488, 2004.
DOI : 10.1038/sj.emboj.7600055

URL : https://hal.archives-ouvertes.fr/inserm-00595813

V. Wettstein, D. Rasmussen, S. Holm, and P. , The Synaptonemal Complex in Genetic Segregation, Annual Review of Genetics, vol.18, issue.1, pp.331-413, 1984.
DOI : 10.1146/annurev.ge.18.120184.001555

J. Higgins, E. Sanchez-moran, S. Armstrong, G. Jones, and F. Franklin, The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over, Genes & Development, vol.19, issue.20, pp.2488-500, 2005.
DOI : 10.1101/gad.354705

S. Agarwal and G. Roeder, Zip3 Provides a Link between Recombination Enzymes and Synaptonemal Complex Proteins, Cell, vol.102, issue.2, pp.245-55, 2000.
DOI : 10.1016/S0092-8674(00)00029-5

E. Hoffmann and R. Borts, Meiotic recombination intermediates and mismatch repair proteins, Cytogenetic and Genome Research, vol.107, issue.3-4, pp.232-280, 2004.
DOI : 10.1159/000080601

D. Vries, F. De-boer, E. Van-den-bosch, M. Baarends, W. Ooms et al., Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation, Genes & Development, vol.19, issue.11, pp.1376-89, 2005.
DOI : 10.1101/gad.329705

K. Osman, E. Sanchez-moran, J. Higgins, G. Jones, and F. Franklin, Chromosome synapsis in Arabidopsis: analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex, Chromosoma, vol.33, issue.3, pp.212-221, 2006.
DOI : 10.1007/s00412-005-0042-4

N. Bhalla, D. Wynne, V. Jantsch, and A. Dernburg, Correction: ZHP-3 Acts at Crossovers to Couple Meiotic Recombination with Synaptonemal Complex Disassembly and Bivalent Formation in C. elegans, PLoS Genetics, vol.4, issue.11, p.1000235, 2008.
DOI : 10.1371/annotation/ffbb52bd-7ceb-404c-8c96-93577bf83932

C. Adelman and J. Petrini, ZIP4H (TEX11) Deficiency in the Mouse Impairs Meiotic Double Strand Break Repair and the Regulation of Crossing Over, PLoS Genetics, vol.5, issue.3, p.1000042, 2008.
DOI : 10.1371/journal.pgen.1000042.s007

L. Chelysheva, D. Vezon, A. Chambon, G. Gendrot, L. Pereira et al., The Arabidopsis HEI10 Is a New ZMM Protein Related to Zip3, PLoS Genetics, vol.24, issue.7, p.1002799, 2012.
DOI : 10.1371/journal.pgen.1002799.s010

URL : https://hal.archives-ouvertes.fr/hal-01190765

L. Chelysheva, G. Gendrot, D. Vezon, M. Doutriaux, R. Mercier et al., Zip4/Spo22 Is Required for Class I CO Formation but Not for Synapsis Completion in Arabidopsis thaliana, PLoS Genetics, vol.143, issue.5, p.83, 2007.
DOI : 10.1371/journal.pgen.0030083.sg003

K. Mochizuki, M. Novatchkova, and J. Loidl, DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena, Journal of Cell Science, vol.121, issue.13, pp.2148-58, 2008.
DOI : 10.1242/jcs.031799

D. Mann and A. Stickle, (Bacillariophyta), British Phycological Journal, vol.1972, issue.2, pp.167-81, 1989.
DOI : 10.1016/0014-4827(69)90451-0

I. Manton, K. Kowallik, V. Stosch, and H. , Observations on the fine structure and development of the spindle at mitosis and meiosis in a marine centric diatom (Lithodesmium undulatum), Journal of Microscopy, vol.22, issue.3, pp.295-320, 1969.
DOI : 10.1111/j.1365-2818.1969.tb00678.x

R. Drum, Electron microscope observations of diatoms, ???sterreichische Botanische Zeitschrift, vol.59, issue.1-5, pp.321-351, 1969.
DOI : 10.1007/BF01379632

R. Kolodner, Biochemistry and genetics of eukaryotic mismatch repair., Genes & Development, vol.10, issue.12, pp.1433-1475, 1996.
DOI : 10.1101/gad.10.12.1433

J. Eisen, A phylogenomic study of the MutS family of proteins, Nucleic Acids Research, vol.26, issue.18, pp.4291-300, 1998.
DOI : 10.1093/nar/26.18.4291

J. Higgins, S. Armstrong, F. Franklin, and G. Jones, The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis, Genes & Development, vol.18, issue.20, pp.2557-70, 2004.
DOI : 10.1101/gad.317504

T. De-los-santos, N. Hunter, C. Lee, B. Larkin, J. Loidl et al., The MUS81/MMS4 endonuclease acts independently of double-holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast, Genetics, vol.164, pp.81-94, 2003.

G. Li, Mechanisms and functions of DNA mismatch repair, Cell Research, vol.62, issue.1, pp.85-98, 2008.
DOI : 10.1126/science.7761852

A. Srivatsan, N. Bowen, and R. Kolodner, Mispair-specific Recruitment of the Mlh1-Pms1 Complex Identifies Repair Substrates of the Saccharomyces cerevisiae Msh2-Msh3 Complex, Journal of Biological Chemistry, vol.289, issue.13, pp.9352-64, 2014.
DOI : 10.1074/jbc.M114.552190

T. Marti, C. Kunz, and O. Fleck, DNA mismatch repair and mutation avoidance pathways, Journal of Cellular Physiology, vol.6, issue.1, pp.28-41, 2002.
DOI : 10.1002/jcp.10077

A. Amato, Diatom reproductive biology: Living in a crystal cage, Int J Plant Reprod Biol, vol.2, pp.1-10, 2010.

M. Mizuno, Evolution of centric diatoms inferred from patterns of oogenesis and spermatogenesis, Phycological Research, vol.32, issue.Suppl., pp.156-65, 2008.
DOI : 10.1111/j.1440-1835.2008.00497.x

J. Flot, B. Hespeels, X. Li, B. Noel, I. Arkhipova et al., Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga, Nature, vol.19, issue.7463, pp.453-460, 2013.
DOI : 10.1038/nature12326

URL : https://hal.archives-ouvertes.fr/hal-01282538

R. Guillard, Culture of phytoplankton for feeding marine invertebrates Culture of Marine Invertebrate Animals, pp.29-60, 1975.

M. Van-bel, S. Proost, C. Van-neste, D. Deforce, Y. Van-de-peer et al., TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes, Genome Biology, vol.14, issue.12, p.134, 2013.
DOI : 10.1186/1471-2105-10-356

R. Finn, J. Clements, and S. Eddy, HMMER web server: interactive sequence similarity searching, Nucleic Acids Research, vol.39, issue.suppl, pp.29-37, 2011.
DOI : 10.1093/nar/gkr367

R. Edgar and . Muscle, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1799, 2004.
DOI : 10.1093/nar/gkh340

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, vol.30, issue.12, pp.2725-2734, 2013.
DOI : 10.1093/molbev/mst197

J. Gillard, V. Devos, M. Huysman, D. Veylder, L. et al., Physiological and Transcriptomic Evidence for a Close Coupling between Chloroplast Ontogeny and Cell Cycle Progression in the Pennate Diatom Seminavis robusta, PLANT PHYSIOLOGY, vol.148, issue.3, pp.1394-411, 2008.
DOI : 10.1104/pp.108.122176

A. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, issue.15, pp.2114-2134, 2014.
DOI : 10.1093/bioinformatics/btu170

M. Grabherr, B. Haas, M. Yassour, J. Levin, D. Thompson et al., Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nature Biotechnology, vol.30, issue.7, pp.644-52, 2011.
DOI : 10.1101/GR.229202. ARTICLE PUBLISHED ONLINE BEFORE MARCH 2002

B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, p.25, 2009.
DOI : 10.1186/gb-2009-10-3-r25

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2087, 2009.
DOI : 10.1093/bioinformatics/btp352

E. Howe, R. Sinha, D. Schlauch, and J. Quackenbush, RNA-Seq analysis in MeV, Bioinformatics, vol.27, issue.22, pp.3209-3219, 2011.
DOI : 10.1093/bioinformatics/btr490

M. Larkin, G. Blackshields, N. Brown, R. Chenna, P. Mcgettigan et al., Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, issue.21, pp.2947-2955, 2007.
DOI : 10.1093/bioinformatics/btm404

URL : https://hal.archives-ouvertes.fr/hal-00206210

M. Adelfi, M. Borra, R. Sanges, M. Montresor, A. Fontana et al., Selection and validation of reference genes for qPCR analysis in the pennate diatoms Pseudo-nitzschia multistriata and P. arenysensis, Journal of Experimental Marine Biology and Ecology, vol.451, pp.74-81, 2014.
DOI : 10.1016/j.jembe.2013.11.003

M. Pfaffl, G. Horgan, and L. Dempfle, Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic Acids Research, vol.30, issue.9, p.36, 2002.
DOI : 10.1093/nar/30.9.e36

K. Matsuzaki, A. Shinohara, and M. Shinohara, Forkhead-Associated Domain of Yeast Xrs2, a Homolog of Human Nbs1, Promotes Nonhomologous End Joining Through Interaction With a Ligase IV Partner Protein, Lif1, Genetics, vol.179, issue.1, pp.213-238, 2008.
DOI : 10.1534/genetics.107.079236

T. Nakagawa and R. Kolodner, Saccharomyces cerevisiae Mer3 Is a DNA Helicase Involved in Meiotic Crossing Over, Molecular and Cellular Biology, vol.22, issue.10, pp.3281-91, 2002.
DOI : 10.1128/MCB.22.10.3281-3291.2002

W. Crismani, C. Girard, N. Froger, M. Pradillo, J. Santos et al., FANCM Limits Meiotic Crossovers, Science, vol.336, issue.6088, pp.1588-90, 2012.
DOI : 10.1126/science.1220381

URL : https://hal.archives-ouvertes.fr/hal-01004174

K. Kikuchi, Y. Taniguchi, A. Hatanaka, E. Sonoda, H. Hochegger et al., Fen-1 Facilitates Homologous Recombination by Removing Divergent Sequences at DNA Break Ends, Molecular and Cellular Biology, vol.25, issue.16, pp.6948-55, 2005.
DOI : 10.1128/MCB.25.16.6948-6955.2005

D. Tishkoff, A. Boerger, P. Bertrand, N. Filosi, G. Gaida et al., Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2, Proceedings of the National Academy of Sciences, vol.94, issue.14, pp.7487-92, 1997.
DOI : 10.1073/pnas.94.14.7487

J. Duxin, B. Dao, P. Martinsson, N. Rajala, L. Guittat et al., Human Dna2 Is a Nuclear and Mitochondrial DNA Maintenance Protein, Molecular and Cellular Biology, vol.29, issue.15, pp.4274-82, 2009.
DOI : 10.1128/MCB.01834-08

B. Xiong, S. Li, J. Ai, S. Yin, Y. Ouyang et al., BRCA1 Is Required for Meiotic Spindle Assembly and Spindle Assembly Checkpoint Activation in Mouse Oocytes1, Biology of Reproduction, vol.79, issue.4, pp.718-744, 2008.
DOI : 10.1095/biolreprod.108.069641

S. Badie, J. Escandell, P. Bouwman, A. Carlos, M. Thanasoula et al., BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping, Nature Structural & Molecular Biology, vol.14, issue.9, pp.1461-1470, 2010.
DOI : 10.1038/nsmb.1943

R. Radakovits, R. Jinkerson, S. Fuerstenberg, H. Tae, R. Settlage et al., Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana, Nature Communications, vol.313, p.686, 2012.
DOI : 10.1038/ncomms1688

T. Schwarzacher and . Meiosis, Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants, Journal of Experimental Botany, vol.54, issue.380, pp.11-23, 2003.
DOI : 10.1093/jxb/erg042

K. Osman, J. Higgins, E. Sanchez-moran, S. Armstrong, and F. Franklin, Pathways to meiotic recombination in Arabidopsis thaliana, New Phytologist, vol.33, issue.3, pp.523-567, 2011.
DOI : 10.1111/j.1469-8137.2011.03665.x

Q. Luo, Y. Li, Y. Shen, and Z. Cheng, Ten Years of Gene Discovery for Meiotic Event Control in Rice, Journal of Genetics and Genomics, vol.41, issue.3, pp.125-162, 2014.
DOI : 10.1016/j.jgg.2014.02.002

F. Baudat, Y. Imai, and B. De-massy, Meiotic recombination in mammals: localization and regulation, Nature Reviews Genetics, vol.86, issue.11, pp.794-806, 2013.
DOI : 10.1016/j.molcel.2005.09.021

URL : https://hal.archives-ouvertes.fr/hal-00875210

J. Andrews, G. Bouffard, C. Cheadle, J. Lü, K. Becker et al., Gene Discovery Using Computational and Microarray Analysis of Transcription in the Drosophila melanogaster Testis, Genome Research, vol.10, issue.12, pp.2030-2073, 2000.
DOI : 10.1101/gr.10.12.2030

T. Garcia-muse and S. Boulton, Meiotic recombination in Caenorhabditis elegans, Chromosome Research, vol.33, issue.5, pp.607-628, 2007.
DOI : 10.1007/s10577-007-1146-x

E. Winter, The Sum1/Ndt80 Transcriptional Switch and Commitment to Meiosis in Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, vol.76, issue.1, pp.1-15, 2012.
DOI : 10.1128/MMBR.05010-11

A. Shodhan, A. Lukaszewicz, M. Novatchkova, and J. Loidl, Msh4 and Msh5 Function in SC-Independent Chiasma Formation During the Streamlined Meiosis of Tetrahymena, Genetics, vol.198, issue.3, pp.983-93, 2014.
DOI : 10.1534/genetics.114.169698

R. Howard-till, A. Lukaszewicz, and J. Loidl, The Recombinases Rad51 and Dmc1 Play Distinct Roles in DNA Break Repair and Recombination Partner Choice in the Meiosis of Tetrahymena, PLoS Genetics, vol.140, issue.3, p.1001359, 2011.
DOI : 10.1371/journal.pgen.1001359.s006