
HAL Id: hal-01233924
https://hal.science/hal-01233924v3

Preprint submitted on 24 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

P vs NP
Frank Vega

To cite this version:

Frank Vega. P vs NP. 2015. �hal-01233924v3�

https://hal.science/hal-01233924v3
https://hal.archives-ouvertes.fr

December 24, 2015 20:47 WSPC/INSTRUCTION FILE output

P VS NP

FRANK VEGA

La Portada, Cotorro

Havana, Cuba

vega.frank@gmail.com

P versus NP is one of the most important and unsolved problems in computer science.

This consists in knowing the answer of the following question: Is P equal to NP? This

incognita was first mentioned in a letter written by Kurt Gı̈¿ 1
2

del to John von Neumann
in 1956. However, the precise statement of the P versus NP problem was introduced in

1971 by Stephen Cook in a seminal paper. Under the assumption of P = NP, we show

that P = EXP is also hold. Since P is not equal to EXP, we prove that P is not equal to
NP by the Reductio ad absurdum rule.

Keywords: P; NP; EXP; NP-complete; SUBSET-PRODUCT; SUBSET-SUM.

1. Introduction

P versus NP is a major unsolved problem in computer science. This problem was

introduced in 1971 by Stephen Cook [1]. It is considered by many to be the most

important open problem in the field [3]. It is one of the seven Millennium Prize

Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize

for the first correct solution [3].

The argument made by Alan Turing in the twentieth century states that for any

algorithm we can create an equivalent Turing machine [9]. There are some definitions

related to this model such as the deterministic Turing machine. A deterministic

Turing machine has only one next action for each step defined in its program or

transition function [7].

Another huge advance in the last century was the definition of a complexity

class. A language over an alphabet is any set of strings made up of symbols from

that alphabet [2]. A complexity class is a set of problems, which are represented as

a language, grouped by measures such as the running time, memory, etc [2].

In computational complexity theory, the class P contains those languages that

can be decided in polynomial-time by a deterministic Turing machine [8]. A language

L is in class NP if there is a polynomial-time decidable and polynomially balanced

relation RL such that for all strings x: There is a string y in RL(x, y) if and only if

x ∈ L [7]. The string y is known as the certificate.

The biggest open question in theoretical computer science concerns the relation-

ship between these two classes:

Is P equal to NP?

1

December 24, 2015 20:47 WSPC/INSTRUCTION FILE output

2 Frank Vega

In a 2002 poll of 100 researchers, 61 believed the answer to be no, 9 believed the

answer is yes, and 22 were unsure; 8 believed the question may be independent of

the currently accepted axioms and so impossible to prove or disprove [5].

We shall define an interesting problem called MAS. We show MAS is a succinct

version of the known problem SUBSET–PRODUCT. When we accept or reject the

succinct instances of MAS, then we are accepting or rejecting the equivalent large

instances of SUBSET–PRODUCT. If we assume that P = NP , then the prob-

lems MAS and SUBSET–PRODUCT could be in P–complete. However, this would

imply that MAS is also in EXP–complete, because MAS is a succinct version of

SUBSET–PRODUCT and SUBSET–PRODUCT would be in P–complete. Indeed,

in Papadimitriou’s book is proved the following statement: “NEXP and EXP are

nothing else but P and NP on exponentially more succinct input” [7]. Neverthe-

less, MAS cannot be in EXP–complete and P–complete at the same time, because

this will be a contradiction. Therefore, we can claim that P 6= NP as a result of

applying the Reductio ad absurdum rule.

2. The class NP-complete

We say that a language L1 is polynomial-time reducible to a language L2, written

L1 ≤p L2, if there exists a polynomial-time computable function f : {0, 1}∗ →
{0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

A fundamental complexity class is NP–complete [6]. A language L ⊆ {0, 1}∗ is

NP–complete if

(1) L ∈ NP , and

(2) L′ ≤p L for every L′ ∈ NP .

Furthermore, if L is a language such that L′ ≤p L for some L′ ∈ NP–complete,

then L is NP–hard [2]. Moreover, if L ∈ NP , then L ∈ NP–complete [2]. No

polynomial-time algorithm has yet been discovered for any NP–complete problem

[3].

A principal NP–complete problem is SUBSET–SUM [2]. In this problem we are

given a finite set S ⊂ N and a target t ∈ N. We ask whether there is a subset

S′ ⊆ S whose elements sum to t. We may define this problem as a language:

SUBSET–SUM = {〈S; t〉 : ∃S′ ⊆ S such that t =
∑
k∈S′

k}.

Another important NP–complete problem is SUBSET–PRODUCT [4]. An in-

stance of this problem is a finite list L of natural numbers not necessarily distinct

and a target t ∈ N. We ask whether there is a sublist L′ ⊆ L such that the product

December 24, 2015 20:47 WSPC/INSTRUCTION FILE output

P vs NP 3

of the elements in L′ is exactly t. This problem is defined as a language in the

following way:

SUBSET–PRODUCT = {〈L; t〉 : ∃L′ ⊆ L such that t =
∏
k∈L′

k}.

3. The problem MULTIPLE-ARRAYS-SUM

We will define a new problem as follows:

Definition 1. MULTIPLE-ARRAYS-SUM (MAS)

INSTANCE: A dictionary D and two natural numbers m and n, where D will

not contain a key 〈i, j〉 when i > m or j > n and if D contains the key 〈i, j〉 for
some 1 ≤ i ≤ m and 1 ≤ j ≤ n, then D[〈i, j〉] ∈ Z+. Besides one array B where

length(B) = m and B[i] ∈ Z+ for each 1 ≤ i ≤ m.

QUESTION: Is there a subset T ⊆ {1, 2, 3, . . . , n − 1, n} such that B[1] =∑
j∈T H(D, 1, j), B[2] =

∑
j∈T H(D, 2, j), B[3] =

∑
j∈T H(D, 3, j), . . . , B[m] =∑

j∈T H(D,m, j), where the function H(D, i, j) returns D[〈i, j〉] when D contains

the key 〈i, j〉 otherwise returns 0?

Theorem 2. MAS ∈ NP .

Proof. Given an instance 〈D;m;n;B〉 of MAS, we could verify whether a sub-

set T ⊆ {1, 2, 3, . . . , n − 1, n} is a certificate for 〈D;m;n;B〉 in polynomial-

time. We verify whether each element of T is an integer between 1 and n.

Then, we check whether B[1] =
∑
j∈T H(D, 1, j), B[2] =

∑
j∈T H(D, 2, j), B[3] =∑

j∈T H(D, 3, j), . . . , B[m] =
∑
j∈T H(D,m, j). In addition, the function H can be

executed in polynomial time [2]. Since this iteration over the elements in the set T

and searching in the dictionary D just comparing or summing their values can be

done in polynomial time, we obtain that MAS ∈ NP .

We say that a language L1 is logarithmic-space reducible to a language L2,

written L1 ≤L L2, if there exists a logarithmic-space computable function f :

{0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic-space reduction is frequently used for P and below [7].

Theorem 3. SUBSET–SUM ≤L MAS.

Proof. Given an arbitrary instance 〈S; t〉 of SUBSET–SUM, we will do the follow-

ing actions:

December 24, 2015 20:47 WSPC/INSTRUCTION FILE output

4 Frank Vega

(1) We define a one-to-one function κs which maps to a single integer between

1 and |S| each element of S. This means κs(x) 6= κs(y) if and only if x 6= y

for x, y ∈ S. We may define this function as the order from left to right in

which the elements of S appear over the input, such that the first element

has mapped the integer 1 on κs, the second element has mapped the integer

2 on κs and so on ... until the last element which has mapped the integer

|S|.
(2) Next, we create a dictionary D and define the numbers m = 1 and n = |S|.
(3) After that, we iterate for each x ∈ S adding the value of x in D as follows:

D[〈1, κs(x)〉] = x.

(4) Finally, we create the array B of length 1 such that B[1] = t.

A subset S′ ⊆ S whose elements sum to t can be interpreted as a subset T ′ ⊆
{1, 2, 3, . . . , |S| − 1, |S|} such that x ∈ S′ if and only if κs(x) ∈ T ′. Certainly, if S′

is a certificate of 〈S; t〉, then the instance 〈D;m;n;B〉 belongs to MAS, because

t = B[1] =
∑
j∈T ′ H(D, 1, j). Moreover, if T ′ is a certificate of 〈D;m;n;B〉, then

the instance 〈S; t〉 belongs to SUBSET–SUM, since there will be |T ′| elements in S

that sum t. The reason is because the elements of D[〈1, j〉] iterating through all j

between 1 and |S| is exactly the set S and t = B[1]. Hence, we obtain the following

result:

〈S; t〉 ∈ SUBSET–SUM if and only if 〈D;m;n;B〉 ∈MAS.

In addition, the construction of dictionary D and array B can be done in

logarithmic-space. Certainly, we can write the dictionary D directly to the out-

put only using one string k that simulates the value of κs for each element x ∈ S.

In the beginning the value of k is 0 and when we find the first element x ∈ S from

left to right in the input, then we increment k in 1 and write the entry D[〈1, k〉] = x

to the output. After that, we find the second element y ∈ S from left to right in

the input and increment k in 1 again to write the entry D[〈1, k〉] = y to the output.

Consequently, we repeat the same procedure over and over again until we reach the

last element of S, and thus, we obtain that SUBSET–SUM ≤L MAS.

Theorem 4. MAS ∈ NP–complete.

Proof. Since every logarithmic-space reduction is also a polynomial-time reduction

and SUBSET–SUM ≤L MAS, then MAS ∈ NP–hard. Furthermore, MAS ∈ NP ,

and therefore, MAS ∈ NP–complete.

4. P versus NP

We will state our principal result:

Theorem 5. MAS is actually SUBSET–PRODUCT on exponentially more suc-

cinct representation.

December 24, 2015 20:47 WSPC/INSTRUCTION FILE output

P vs NP 5

Proof. Given an arbitrary instance 〈L; t〉 of SUBSET–PRODUCT, we will do the

following actions:

(1) We create a function κc which maps to a single integer between 1 and |L|
each element of L, such that if we pick two elements x, y ∈ L, then they

will have different values on κc, even though they might represent the same

number.

(2) If the number N is the amount of different prime factors in t, then we create

a one-to-one function κt which maps to a single integer between 1 and N

each prime factor of t. This means κt(p) 6= κt(q) if and only if p 6= q for

every two primes p and q that divide to t.

(3) Next, we create a dictionary D and define the numbers m = (N + 1) and

n = |L|.
(4) After that, we iterate for each x ∈ L filling the values of D as follows: If x

can be expressed as pw × r where p is a prime factor of t, w ∈ N and the

natural number r is not divisible by p, then D[〈κt(p), κc(x)〉] = w otherwise

D will not contain the key 〈κt(p), κc(x)〉.
(5) Then, we iterate for each x ∈ L continue filling the values of D in the

following way: If x has at least one prime factor p such that p does not

divide to t, then D[〈N + 1, κc(x)〉] = 1 otherwise D will not contain the

key 〈N + 1, κc(x)〉.
(6) Finally, we create the array B of length N+1 such that if the number t can

be expressed as pw × r where p is a prime factor, w ∈ N and the natural

number r is not divisible by p, then we assign B[κt(p)] = w. In addition,

we make B[N + 1] = 0.

A sublist L′ ⊆ L whose elements multiplication is exactly t can be interpreted as

a subset T ′ ⊆ {1, 2, 3, . . . , |L|−1, |L|} such that x ∈ L′ if and only if κc(x) ∈ T ′. Since

t is equal to the product of the powers of its different prime factors as pB[κt(p)] ×
qB[κt(q)]×. . .×rB[κt(r)], we obtain that B[κt(p)] =

∑
j∈T ′ H(D,κt(p), j), B[κt(q)] =∑

j∈T ′ H(D,κt(q), j), . . . , B[κt(r)] =
∑
j∈T ′ H(D,κt(r), j), because the product of

powers Ai and Aj under the same base A will imply the addition of their exponents

i and j in the result A(i+j). In addition, the keys that contain (N+1) in D guarantee

there will not be included any other prime in the multiplication which is not a prime

factor of t, since 0 = B[N+1] =
∑
j∈T ′ H(D,N+1, j). Indeed, T ′ will be a certificate

for 〈D;m;n;B〉 in MAS.

We can make the reverse transformation in the other direction too. Certainly,

if 〈D;m;n;B〉 is an arbitrary instance of MAS, then we could translate it into

an instance 〈L; t〉 of SUBSET–PRODUCT. For this purpose, we create a one-

to-one function κr which maps to a single prime number the integers between 1

and m in the following way: κr(i) = p if and only if p is the i-th prime. Then,

we iterate for each j = 1, 2, 3, . . . , n defining the elements of list L as follows:

((κr(1))H(D,1,j)× (κr(2))H(D,2,j)× (κr(3))H(D,3,j)× . . .× (κr(m))H(D,m,j)). Finally,

December 24, 2015 20:47 WSPC/INSTRUCTION FILE output

6 Frank Vega

we define t as ((κr(1))B[1] × (κr(2))B[2] × (κr(3))B[3] × . . .× (κr(m))B[m]). Now, if

〈D;m;n;B〉 is in MAS, then there is a sublist L′ ⊆ L whose elements multiplica-

tion is exactly t. Indeed, we can affirm that we can always find for every instance

〈L; t〉 of SUBSET–PRODUCT another equivalent instance 〈D;m;n;B〉 of MAS

and viceversa. Consequently, we obtain that

〈L; t〉 ∈ SUBSET–PRODUCT if and only if 〈D;m;n;B〉 ∈MAS

where 〈D;m;n;B〉 always contains the exponents of the prime factors of t over

the natural numbers in the instance 〈L; t〉 just ignoring the case in which the ex-

ponent value is 0. But definitely, the size of a number |(pu × qv × . . . × rw)| is

exponentially larger than |u| + |v| + . . . + |w| when p, q, . . . , r are different prime

numbers and u, v, . . . , w ∈ N. In conclusion, we can confirm the problem MAS is

just a succinct version of SUBSET–PRODUCT.

Theorem 6. P 6= NP .

Proof. We start assuming that P = NP . But, if P = NP , then MAS

and SUBSET–PRODUCT would be in P–complete, because all currently known

NP–complete are NP–complete under logarithmic-space reduction including our new

problem MAS [4]. A succinct version of a problem that is complete for P can be

shown not to lie in P , because it will be complete for EXP [7]. Since MAS is a

succinct version of SUBSET–PRODUCT and SUBSET–PRODUCT would be in

P–complete, then we obtain that MAS should be also in EXP–complete.

Since the classes P and EXP are closed under reductions, and MAS is complete

for both P and EXP , then we could state that P = EXP [7]. However, as result of

Hierarchy Theorem the class P cannot be equal to EXP [7]. To sum up, we obtain

a contradiction under the assumption that P = NP , and thus, we can claim that

P 6= NP as a direct consequence of the Reductio ad absurdum rule.

5. Conclusions

This proof explains why after decades of studying the NP problems no one has

been able to find a polynomial-time algorithm for any of more than 300 important

known NP–complete problems [4]. Indeed, it shows in a formal way that many

currently mathematically problems cannot be solved efficiently, so that the attention

of researchers can be focused on partial solutions or solutions to other problems.

Although this demonstration removes the practical computational benefits of a

proof that P = NP , it would represent a very significant advance in computational

complexity theory and provide guidance for future research. In addition, it proves

that could be safe most of the existing cryptosystems such as the public-key cryp-

tography [6]. On the other hand, we will not be able to find a formal proof for every

theorem which has a proof of a reasonable length by a feasible algorithm.

December 24, 2015 20:47 WSPC/INSTRUCTION FILE output

P vs NP 7

References

[1] S. A. Cook, The complexity of theorem-proving procedures, Proceedings of the 3rd
IEEE Symp. on the Foundations of Computer Science, (1971), pp. 151–158.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms,
2 edn. (MIT Press, 2001).

[3] L. Fortnow, The Status of the P versus NP Problem, Communications of the ACM
52(9) (2009) 78–86.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, 1 edn. (San Francisco: W. H. Freeman and Company, 1979).

[5] W. I. Gasarch, The P=?NP poll, SIGACT News 33(2) (2002) 34–47.
[6] O. Goldreich, P, Np, and Np-Completeness (Cambridge: Cambridge University Press,

2010).
[7] C. H. Papadimitriou, Computational complexity (Addison-Wesley, 1994).
[8] M. Sipser, Introduction to the Theory of Computation, 2 edn. (Thomson Course Tech-

nology, 2006).
[9] A. M. Turing, On Computable Numbers, with an Application to the Entschei-

dungsproblem, Proceedings of the London Mathematical Society 42 (1936) 230–265.

