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Existence of global Chebyshev nets on sur-
faces of absolute Gaussian curvature less than
2π

Yannick Masson and Laurent Monasse

Abstract. We prove the existence of a global smooth Chebyshev net
on complete, simply connected surfaces when the total absolute curva-
ture is bounded by 2π. Following Samelson and Dayawansa, we look
at Chebyshev nets given by a dual curve, splitting the surface into two
connected half-surfaces, and a distribution of angles along it. An ana-
logue to the Hazzidakis’ formula is used to control the angles of the net
on each half-surface with the integral of the Gaussian curvature of this
half-surface and the Cauchy boundary conditions. We can then prove
the main result using a theorem about splitting the Gaussian curvature
with a geodesic, obtained by Bonk and Lang.
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1 Introduction

In this paper we call surface a Riemannian 2-manifold, whose metric
will be denoted g, and we consider complete, simply connected surfaces. A
Chebyshev net Φ on a surface is a parameterization of the surface satisfying

∀(u1, u2) ∈ R2,
∣∣∂1Φ(u1, u2)

∣∣
g(Φ(u1,u2))

=
∣∣∂2Φ(u1, u2)

∣∣
g(Φ(u1,u2))

= 1, (1)

which means that length is preserved in two directions, called the primal
coordinates. Let Ω(u1, u2) be the angle between the coordinate curves at
Φ(u1, u2).

A question of interest both for the existence of bi-Lipschitz maps [4] and
for applications in textile or architectural shape design [7, 5] is the existence of
a Chebyshev net on a given surface. While local existence of a Chebyshev net
holds for all surfaces [2], two approaches have been explored to obtain global
existence. The first approach relies on a geometric proof on more general
Alexandrov surfaces. The first result on global existence of a Chebyshev net
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on complete and simply connected Alexandrov surfaces has been obtained
by Bakelman [1]. Existence is proved on every sector Qα delimited by two
geodesics crossing at an angle α such that

∫
Qα

K+ < α and
∫
Qα

K− < π−α,

where K+ and K− denote, respectively, the positive and negative parts of
the Gaussian curvature K. A global Chebyshev net is then obtained on the
surface for α = π/2. Burago, Ivanov and Malev [4] improved this result by
showing that a complete and simply connected Alexandrov surface S admits a
global Chebyshev net under the relaxed constraints

∫
S
K+ < 2π and

∫
S
K− <

2π, but this net is not necessarily smooth on a Riemannian surface as the
coordinate curves might present kinks at the boundaries between adjacent
sectors.

A second analytical approach was developed by Samelson and Dayawansa
[9] using the dual coordinates. A geodesic cutting the surface into two con-
nected components R+ and R− is chosen as a dual curve. In each connected
component, existence and uniqueness of a smooth solution to Servant’s equa-
tions (see (5) below) in the dual coordinates is proved for any smooth distri-
bution of angles along the dual curve. Then, choosing a constant angle π/2
along the geodesic and using an estimate on the angle Ω of the net on R±, it
is shown that the solution to Servant’s equations is a diffeomorphism under
the condition that

∫
R± K

+ < π/2 and
∫
R± K

− < π/2. In the present paper,
we add some arguments to the proof to improve this result by relaxing the
constraints on the integrals of the Gaussian curvature. Our main result is the
following:

Theorem 1.1. Let S be a complete, simply connected, C∞ surface. Suppose
that

∫
S
|K| < 2π. Then S admits a global Chebyshev net.

Let us note that the Hazzidakis’ formula [8] suggests that this result is
optimal in the sense that a smooth global Chebyshev net does not exist on a
complete, simply connected surface S such that |

∫
S
K| > 2π.

The paper is organized as follows. In Section 2, we restate two existing
results in a form that is useful for our purpose. The first one is that the
estimates obtained on half the surface in [9] can be doubled using a theorem
proved by Bonk and Lang [3] stating that the surface can be split by a
geodesic into two connected components (called half-surfaces) such that each
component contains half of the integral of K+ and K− on the surface. The
second result concerns the existence (and uniqueness) of a smooth solution to
Servant’s equations proved in [9] which we restate by specifying the boundary
conditions from the choice of a dual curve and an arbitrary smooth angle
distribution on that curve. Then in Section 3, we prove the existence of a
Chebyshev net on each half-surface. To that end, we first observe that it is
sufficient to keep the angles Ω of the net uniformly away from 0 and π for Φ
to be a global diffeomorphism. This means that no nonlocal self-intersection
of the parameterization can occur when Φ is locally injective everywhere.
Proving an analogue to the Hazzidakis’ formula in the dual coordinates, we
are able to choose an adequate (constant) angle distribution on the dual
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geodesic curve to control the angles in each half-surface. Finally, we conclude
the proof in Section 4 by assembling the intermediate results.

2 Preliminaries

In this section, we restate two existing results on splitting the surface
into two components and on the solution to Servant’s equations.

2.1 Splitting the surface into two components

We give a restatement of [3, prop. 6.1] applied to the continuous non-
negative function K−.

Proposition 2.1. Let S be a smooth, complete surface homeomorphic to the
plane. Suppose that

∫
S
K+ < 2π and

∫
S
K− <∞. Then there exists a prop-

erly embedded, complete geodesic γ, splitting S into two connected components
S1 and S2 such that∫

S1

K+ =

∫
S2

K+,

∫
S1

K− =

∫
S2

K−. (2)

2.2 Solution to Servant’s equations

Following Samelson and Dayawansa [9], we introduce the change of vari-
ables D : (u1, u2) 7→ (x1, x2) = (u1 − u2, u1 + u2) to the dual coordinates.
We use upper case letters Φ and Ω for the primal parameterization and an-
gle between primal coordinate curves, lower case letters ϕ = Φ ◦ D−1 and
ω = Ω ◦ D−1 for their dual counterparts. The first fundamental form in a
Chebyshev net is then

g = (du1)2 + 2 cos(Ω(u1, u2))du1du2 + (du2)2 (3)

= sin2

(
ω(x1, x2)

2

)
(dx1)2 + cos2

(
ω(x1, x2)

2

)
(dx2)2. (4)

A derivation of (1) along coordinates (u1, u2) leads to Servant’s equa-
tions, expressed here in the dual coordinates (x1, x2),

∂2
22ϕ

i − ∂2
11ϕ

i +

2∑
k,l=1

Γik,l(ϕ)
(
∂2ϕ

k∂2ϕ
l − ∂1ϕ

k∂1ϕ
l
)

= 0, for i = 1, 2, (5)

where Γik,l denote the Christoffel symbols, together with the Cauchy bound-
ary conditions {

ϕ(x1, 0) = γ(x1),

∂2ϕ(x1, 0) = ψ(x1),
∀x1 ∈ R, (6)

for given functions γ, ψ : R → S. The following result on smooth solutions
with smooth boundary conditions is proved in [9].

Proposition 2.2. Assume that γ, ψ are C∞ functions. Then there exists a
unique C∞ solution ϕ to (5)-(6).
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The primal parameterization Φ = ϕ ◦ D, where ϕ is the solution to
(5)-(6), is then a Chebyshev net if and only if (1) is satisfied by Φ on the
boundary. This is expressed, on the dual coordinates, by

〈
∂1ϕ(x1, 0), ∂2ϕ(x1, 0)

〉
g(ϕ(x1,0))

= 0,∣∣∂1ϕ(x1, 0)
∣∣2
g(ϕ(x1,0))

+
∣∣∂2ϕ(x1, 0)

∣∣2
g(ϕ(x1,0))

= 1,
∀x1 ∈ R. (7)

But (7) is equivalent to the existence of an arc length parameterized curve γ̃
and an angle distribution ω̄ : R→ (0;π) along γ̃ such that

ϕ(x1, 0) = γ̃(α(x1)),

∂2ϕ(x1, 0) = cos

(
ω̄(x1)

2

)
n(α(x1)),

∀x1 ∈ R, (8)

where t(x1) is the tangential vector to γ̃ at x1, n(x1) is the normal vector to
this curve at x1 such that (t(x1), n(x1)) is positively oriented, and

α(x1) =

∫ x1

0

sin

(
ω̄(s)

2

)
ds.

Moreover, we have ω̄(x1) = ω(x1, 0) where ω is the angle between the primal
coordinate curves. The Cauchy boundary conditions for Servant’s equations
(5) satisfying the Chebyshev property (1) are now prescribed by specifying

• an arc length parametrized curve γ̃ : R→ S;
• an angle distribution ω̄ : R → (0;π) uniformly bounded away from 0

and π.

We will say that a map ϕ : R2 → S is a local Chebyshev net on S if it
satisfies Servant’s equations (5) with Cauchy boundary conditions (8).

3 Existence of a Chebyshev net on each half-surface

In this section we prove the existence of a Chebyshev net on each half-
surface. The key ingredient is a new Hazzidakis-type formula on the dual (see
Lemma 3.2) which allows us to specify a suitable angle distribution along the
geodesic (see Lemma 3.4).

3.1 Global injectivity of the map ϕ

Lemma 3.1. Let S be a complete, simply connected, C∞ surface. A mapping
ϕ : R2 → S satisfying (1) is a global Chebyshev net if it satisfies

∃ε > 0 s.t. ε < ω(x1, x2) < π − ε, ∀(x1, x2) ∈ R2 (9)

where ω is the angle of the map defined in (3).

Proof. Let ds2 be the metric (3) associated with ϕ. Since ω satisfies (9),
(R2, ds2) is a geodesically complete, simply connected, C∞ surface. Moreover,
ϕ : (R2, ds2)→ S is a local isometry. That ϕ is a global isometry follows from
[6, prop. 2.106]. Hence ϕ : R2 → S is a global Chebyshev net. �
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3.2 Hazzidakis’ formula on the dual

Lemma 3.1 shows that the map ϕ can be proved to be a diffeomorphism
by deriving a uniform estimate on the angle ω of the net. To this purpose,
we derive an equivalent to the Hazzidakis’ formula in the dual coordinates.
We derive the result from the classical relation (see for instance [10]):

∂2
12Ω(u1, u2) = −K

(
Φ(u1, u2)

)
sin(Ω(u1, u2)). (10)

Lemma 3.2. Let ϕ be a local Chebyshev net of S. Define the three points
A = ϕ(x0, y0), B = ϕ(x0 + h, y0), and C = ϕ(x0 + h

2 , y0 + h
2 ). Consider the

dual line γ = ϕ(·, y0) (containing the points A and B) and let ABC be the
triangle delimited by the two primal lines AC and BC and the dual line γ,
depicted on Figure 1. Then the following holds:

∀(x0, y0) ∈ R2, ∀h > 0,

ω(x0 + h
2 , y0 + h

2 ) =
ω(x0, y0) + ω(x0 + h, y0)

2
+

∫
AB

kγ −
∫
ABC

K (11)

where ω is the angle of the net introduced in (3) and kγ is the geodesic cur-
vature of γ defined as

kγ = − 1

|∂1ϕ|g(ϕ)

〈
∂1

(
∂1ϕ

|∂1ϕ|g(ϕ)

)
,

∂2ϕ

|∂2ϕ|g(ϕ)

〉
g(ϕ)

dual curve γ

primal curve primal curve

π−ωA
2

π−ωB
2

ωC

A B

C

Γ+

Figure 1. Scheme of the Hazzidakis’ formula on triangle ABC

The proof of Lemma 3.2 hinges on the following lemma.

Lemma 3.3. Let ϕ : R2 → S be a local Chebyshev net of S. The following
holds for all y0 ∈ R:

∂2ω(·, y0) = 2kγ sin

(
ω(·, y0)

2

)
. (12)
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Proof. Define ∂x1 := ∂1ϕ and ∂x2 := ∂2ϕ. Using the commutation of ∂x1 and
∂x2 , we obtain

∂1

〈
∂x1

|∂x1 |g(ϕ)

, ∂x2

〉
g(ϕ)

=

〈
∂1

(
∂x1

|∂x1 |g(ϕ)

)
, ∂x2

〉
g(ϕ)

+
1

2 |∂x1 |g(ϕ)

∂2

(
|∂x1 |2g(ϕ)

)
= − |∂x2 |g(ϕ) |∂x1 |g(ϕ) kγ +

1

2 |∂x1 |g(ϕ)

∂2

(
sin2

(ω
2

))
.

Moreover, 〈∂x1 , ∂x2〉g(ϕ) = 0, |∂x1 |g(ϕ) = sin(ω2 ) and |∂x2 |g(ϕ) = cos(ω2 ) due
to (4), so that (12) holds. �

Proof. (Hazzidakis’ formula): Let (u0, v0) = D−1(x0, y0). Let Γ+ be the tri-
angle delimited by the dual curve joining A to B and the two primal curves
joining B to C and C to A (see Figure 1):

Γ+ = ϕ
({

(x, y) ∈ R2|x0 ≤ x ≤ x0 + h, y0 ≤ y ≤ y0 + h
2 −

∣∣x− x0 − h
2

∣∣})
= Φ

({
(u, v) ∈ R2|u ≤ u0 + h

2 , v ≤ v0, u+ v ≥ u0 + v0

})
.

Integrating (10) on Γ+ leads to

−
∫

Γ+

K =

∫ u0+
h
2

u0

∫ v0

u0+v0−u
∂2

12Ω(u, v)dvdu

=

∫ u0+
h
2

u0

(∂1Ω(u, v0)− ∂1Ω(u, u0 + v0 − u)) du

= Ω(u0 + h
2 , v0)− Ω(u0, v0)

− 1

2

∫ u0+
h
2

u0

(∂1 − ∂2)Ω(u, u0 + v0 − u)du

− 1

2

∫ u0+
h
2

u0

(∂1 + ∂2)Ω(u, u0 + v0 − u)du

= Ω(u0 + h
2 , v0)− Ω(u0, v0)− 1

2

[
Ω(u0 + h

2 , v0 − h
2 )− Ω(u0, v0)

]
− 1

2

∫ x0+y0+h

x0+y0

∂2ω(−y0 + x, y0)dx

= Ω(u0 + h
2 , v0)− 1

2
Ω(u0, v0)− 1

2
Ω(u0 + h

2 , v0 − h
2 )−

∫
AB

∂2ω

2 sin(ω2 )

= ω(x0 + h
2 , y0 + h

2 )− 1

2
ω(x0, y0)− 1

2
ω(x0 + h, y0)−

∫
AB

kγ .

This completes the proof. �
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3.3 Angle distribution along the dual curve

Lemma 3.4. Let γ be a geodesic of S which splits this surface into two con-
nected components S1 and S2. If

max
i=1,2

∫
Si

K+ + max
i=1,2

∫
Si

K− < π, (13)

then there exists a distribution ω̄ : R → (0;π) such that the solution of
Servant’s equations (5) given by the Cauchy boundary conditions γ and ω̄ in
(8) is a C∞-diffeomorphism.

Proof. Lemma 3.2 applied with x0 = x1 − x2, y0 = 0 and h = 2x2 leads to
the following estimate:

∀(x1, x2) ∈ R2, inf
s∈R

ω̄(s)−max
i=1,2

∫
Si

K+ ≤ ω(x1, x2) ≤ max
i=1,2

∫
Si

K−+sup
s∈R

ω̄(s).

Hence, choosing for instance the constant distribution of angles along γ such
that

ω̄(x) =
π

2
+

1

2
max
i=1,2

∫
Si

K+ − 1

2
max
i=1,2

∫
Si

K−

gives a global Chebyshev net owing to Lemma 3.1. �

4 Proof of the main theorem

Let γ be a geodesic splitting S into two connected components S1 and
S2, as resulting from Proposition 2.1. Then the hypotheses of Lemma 3.4 are
satisfied upon choosing the geodesic γ and the constant distribution of angles
ω̄ = π

2 + 1
4

∫
S
K as Cauchy boundary conditions in (8). This proves the main

theorem.
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