Existence of global Chebyshev nets on surfaces of absolute Gaussian curvature less than 2π

Abstract : We prove the existence of a global smooth Chebyshev net on complete, simply connected surfaces when the total absolute curvature is bounded by 2π. Following Samelson and Dayawansa, we look at Chebyshev nets given by a dual curve, splitting the surface into two connected half-surfaces, and a distribution of angles along it. An analogue to the Hazzidakis formula is used to control the angles of the net on each half-surface with the integral of the Gaussian curvature of this half-surface and the Cauchy boundary conditions. We can then prove the main result using a theorem about splitting the Gaussian curvature with a geodesic, obtained by Bonk and Lang.
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01233113
Contributeur : Yannick Masson <>
Soumis le : dimanche 14 février 2016 - 14:57:28
Dernière modification le : samedi 7 janvier 2017 - 01:03:21
Document(s) archivé(s) le : dimanche 15 mai 2016 - 10:04:47

Fichier

note.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01233113, version 1

Collections

Citation

Yannick Masson, Laurent Monasse. Existence of global Chebyshev nets on surfaces of absolute Gaussian curvature less than 2π. Journal of Geometry, Springer Verlag, 2016, 〈http://link.springer.com/article/10.1007/s00022-016-0319-1〉. 〈hal-01233113〉

Partager

Métriques

Consultations de la notice

213

Téléchargements de fichiers

396