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Abstract

We measured the branching fractions for the decay of the 5p 2P1/2 state of 88Sr+ by applying

a recently demonstrated photon-counting sequential method (M. Ramm et al., Phys. Rev. Lett.

111, 023004) to a single ion laser-cooled in a micro fabricated surface trap. The branching fraction

for the decay into the 5s 2S1/2 ground level was found to be p = 0.9453+0.0007
−0.0005 . This result is

in good agreement with recent theoretical calculations but disagrees with previous experimental

measurements, however affected by a one order of magnitude larger uncertainty. This experiment

also demonstrates the reliability and the performances of ion micro trap technology in the domain

of precision measurements and spectroscopy.
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I. INTRODUCTION

Atomic spectroscopy data are, from an historical point of view, one of the most important

experimental inputs that triggered the development of quantum mechanics (e.g. Ängström

measurements of Balmer series of the hydrogen atom). Later on, precision measurements of

the characteristic features of atomic transitions (i.e. transition frequencies, levels lifetimes

and branching fractions) allowed for the development of theoretical methods that now aim

to a complete understanding of atomic level structures, at least in the simpler cases [1]. The

comparison between theory and experiments is then necessary to test these models that are

essential for addressing some fundamental questions like parity non conservation or search

for electron electric dipole moment [2]. Precise knowledge of atomic properties is also very

important for astronomical and cosmological studies [3] in which easily identified atomic

lines give precious information about celestial objects. Finally, the advent of optical clocks

(that display improved performances with respect to atomic microwave clocks that define

the time unit) [4] needs precise models in order to obtain reliable evaluations of systematic

frequency shifts that affect accuracy (e.g. blackbody radiation shift [5]). In the case of

alkali-earth elements, the singly-ionized state is particularly interesting because theoretical

calculations only deal with a single valence electron. Singly ionized alkali-earth elements are

also a system of choice for trapped ion based quantum information experiments [6] and are

among the species used for precision clocks [4]. Therefore, several experimental techniques

have been developed that allow for internal and motional quantum state control [6–8]. By

restricting ourselves to the case of heavier alkali-earth (i.e. species with D metastable

states), these techniques have been recently applied to obtain precision measurements of

spectroscopical quantities on laser-cooled 40Ca+ ions [9–12], 138Ba+ ions [13–15], and 88Sr+

ions [16–19]. In this paper we present the precision measurement of the branching fractions

for the decay of the 5p 2P1/2 state of
88Sr+. In particular, we measured the probability p and

1 − p for the decay of the 5p 2P1/2 to the 5s 2S1/2 and 4d 2D3/2 states to be, respectively,

p = 0.9453+0.0007
−0.0005 and 1 − p = 0.0547+0.0005

−0.0007. This result can also be expressed in terms

of branching ratio BR = p
1−p

as BR = 17.27+0.23
−0.17, affected by a fractional uncertainty of

1.3× 10−2.

Experimental spectroscopy concerning Sr ions has been addressed in several papers, the

results of which are compiled in the reference 20. The experimental transition probabilities
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ASP and APD for the 5s 2S1/2 → 5p 2P1/2 (ν = 711 THz, λ = 422 nm) and 4d 2D3/2 →

5p 2P1/2 (ν = 275 THz, λ = 1092 nm) transitions listed in this compilation (and in the NIST

database [21]) are obtained taking into account measurements of the branching fractions

and of the lifetime τP1/2
. Lifetime and branching fractions of 88Sr+ 5p 2P1/2 level have

been measured in 1967 by A. Gallagher in an Argon discharge by Hanle-effect spectroscopy

[22]. The lifetime of the 5p 2P1/2 level has been later measured with increased precision

with the fast ion beam technique [23, 24]. The NIST database is then based on the two

measurements: BR = 13.4(2.0) [22] and τP1/2
= 7.39(7) ns [24]. A more recent, albeit quite

indirect, experimental measurement of ASP is also given in reference 25.

Theoretical works on 88Sr+ are largely motivated by the use the dipole-forbidden “clock”

5s 2S1/2 → 4d 2D5/2 Sr+ transition (ν = 446 THz, λ = 674 nm) as a secondary frequency

standard [16, 17, 26]. Indeed, in 2006 the International Committee for Weights and Measures

(CIPM) has included this transition among the recommended secondary representation of

the second [27]. The need of exactitude, proper to frequency standards, enforces the accurate

calculation of blackbody frequency shift. In order to calculate such a shift, precise determi-

nations of dipole moments of low lying transition are needed. Such kind of calculations for

88Sr+ have been performed with increasing precision during the last years [28–32]. Several of

these results are resumed and compared in the reference 5. Another theoretical calculation

of dipole moments can be found in a more recent paper devoted to the estimation of parity

non-conservation effects in 87Sr+ and 137Ba+ [33].

The paper is organized as follows. In section II we present the experimental setup and

give some details concerning the surface trap and the implementation of the sequential

method. We present the results in section III, we discuss the systematic errors and describe

the techniques used to determine their contributions to the final result. Finally, in section

IV we compare the result to the literature and briefly discuss possible improvements.

II. EXPERIMENTAL METHODS

A. Trapping, cooling, and laser-locking

The experiments are based on a symmetric five-wires surface trap [34] with a nominal

ion-surface distance d = 131 µm. The trap is micro-fabricated in a cleanroom with standard
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photolithographic techniques on a silica substrate. The 5 µm thick gold electrodes are

obtained by electroplating [35] with an inter-electrode distance of 5 µm in the central region

of the trap. The chip is glued on a ceramic holder and bonded with 20 µm diameter

gold wires. Filtered static voltages (dc) provided by a DAC computer card (Measurement

Computing PCI-DAS) feed the ceramic holder through in vacuo screened kapton wires. The

trap is driven with a radio-frequency (rf) voltage amplitude Vrf ∼ 150 V at a frequency

of 33.2 MHz and typically displays radial frequencies in the 1.5 – 2 MHz range and an

axial frequency of ≃ 200 kHz for Sr+. The trapping potential is tailored (e.g. tilted) by

the application of a set of static voltages to the dc electrodes calculated with the matrix

approach developed in reference 35. The matrix is derived by the analytical calculation

of the electrostatic potential generated by each electrode [36]. The stray electric-fields are

compensated for using a rf correlation technique [37] adapted to surface traps [35].

Sr+ ions are loaded from an oven containing a strontium dendrite (Aldrich, 99.9% pure).

Neutral atoms are ionized by driving a two-photon transition towards a self-ionizing level

[38]. The photo-ionizing laser pulses are issued from a frequency doubled Ti:Sa oscillator

(Tsunami, Spectra-Physics) with a central frequency of 695 THz (λ = 431 nm) and a pulse

duration of ≃ 100 fs.

Single trapped 88Sr+ ions are Doppler cooled using the 711 THz 5s 2S1/2 → 5p 2P1/2

optical transition (see Fig. 1). This transition is driven using laser light generated by a com-

mercial extended-cavity GaN laser diode (Toptica DL100). The laser frequency is locked

to an atomic reference, taking advantage of the near-coincidence (νSr+ − νRb ≃ 440 MHz)

between the 88Sr+ 5s 2S1/2 → 5p 2P1/2 and the 85Rb 5s 2S1/2(F = 2) → 6p 2P1/2(F
′ = 3)

transitions [39]. The 710 962 401 328(40) kHz absolute frequency of this 85Rb transition has

been recently measured by the frequency-comb technique [40]. The electronic signal for laser-

locking is obtained using a saturated-absorption setup, based on a rubidium cell heated to

100◦ C. The detuning of the cooling beam with respect to the 5s 2S1/2 → 5p 2P1/2 transition

is controlled using an acousto-optic modulator (AOM) in a double-pass geometry driven at a

frequency around 220 MHz. Disregarding the power used for frequency and intensity stabil-

isation, up to 500 µW are available at the output of a single-mode polarization-maintaining

optical fibre.

A commercial fiber-laser (Koheras Adjustik Y10) drives the 4d 2D3/2 → 5p 2P1/2 275 THz

“repumping” transition (see figure 1) to avoid the accumulation of the ions into the
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FIG. 1. Low energy levels of 88Sr+. Two laser sources are used to produce fluorescence cycles

of 88Sr+: a cooling laser at 711 THz (421.7 nm) and a repumping laser at 275 THz (1092 nm).

Starting in the 5p 2P1/2 energy level, the electronic excitation can either relax to the ground state

(with a probability p) or to the metastable state 4d 2D3/2 (with probability 1− p).

metastable 4d 2D3/2 state during the cooling process. This laser has a nominal linewidth

of 70 kHz and it is stabilized against long term drifts by a transfer-lock technique using a

scanning ring cavity referenced to the stabilized 711 THz laser-diode [41, 42]. The feedback

loop of the lock is, in our case, relatively slow (bandwidth ≃ 3 Hz) [43].

A magnetic field of B the order of 1× 10−4 T defines a quantization-axis parallel to the

substrate making an angle of 45◦ with the trap axis, orthogonal with respect to the linear

polarization of the repumping and cooling laser beams that also propagate along this axis.

This configuration prevents the ions from being optically-pumped into a metastable dark

state by the repumping laser alone [44].

Spontaneously emitted 711 THz (”blue”) photons are collected by a large-aperture pair

of achromatic lenses, spatially filtered with a 150 µm diameter pinhole, spectrally filtered

by an interference filter (Thorlabs FB420-10, 10 nm bandwidth) and detected by a photon-

counting photomultiplier head (PMT, Hamamatsu H7828). The measured global detection

efficiency ǫ of the setup is ǫ ≃ 1.0× 10−3 (see below for the description of the measurement

technique). The logical pulses at the output of the detector are counted and accumulated

by a stand alone microcontroller-based gated counter and transferred to the computer that

controls the experiment.

5



Laser beams impinging on the ion are switched-on and -off using AOMs in a double-pass

geometry driven through RF switches (Mini-Circuits ZYSWA-2-50DR) and then injected in

single mode polarization maintaining optical fibers. The measured characteristic switching

times are in the hundredths of nanoseconds range. A better than -77 dB extinction ratio has

been measured on the repumping beam using a lock-in amplifier: as discussed below such a

figure is of importance for the estimate of systematic errors. The intensity of the two laser

beams impinging on the ion are actively stabilized using the same ”noise eater” scheme.

At the output of each fiber the beam passes through a polariser and is then sampled by a

beam-splitter and measured by a photodetector. A gateable analogue PID loop with 10 kHz

bandwidth acts on the RF amplitude that drives the AOM in order to keep the measured

intensity constant (residual fluctuation smaller than 5 %). Active intensity stabilization

allows us to improve the control on resonant Rabi frequencies Ω1 and Ω2 associated to

cooling and repumping beams respectively. As explained below, resonant Rabi frequencies,

together with respective detunings δ1 and δ2, determine the time evolution of the density

matrix describing the ion. In particular, the knowledge of these experimental parameters

are needed in order to evaluate systematic errors. We evaluate the resonant Rabi frequencies

of cooling and repumping beams by analyzing a fluorescence spectrum obtained scanning a

probe beam at 711 THz in a sequential way similar to that described in reference 45. For

this analysis, the measurement of the collection efficiency ǫ helps to reduce uncertainties on

the determinations of Rabi frequencies. The details of this technique, beyond the scope of

this paper, will be given elsewhere.

A fully automated procedure is able to detect an ion loss during the data acquisition:

in this case the trap is emptied and a new ion is automatically re-loaded. This proce-

dure allowed us to compress the effective time needed in order to achieve a low statistical

uncertainty.

B. Sequential acquisition

We use a sequential technique largely inspired by the one applied for the first time by

Ramm and co-workers in order to measure the branching fractions of the 4s 2S1/2 state

in 40Ca+ [11]. The same principle has been used more recently for the measurement of

branching fractions of the 6s 2S1/2 state in 138Ba+ [15]. The main differences here, apart
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from the ion species, are the single-ion operation and the trap technology (micro-fabricated

surface trap vs mechanically assembled macro traps). Briefly, in our experiment a single

88Sr+ ion is first Doppler cooled and then prepared in the ground state by switching-off the

cooling beam while the repumping beam stays on. A first counting window is then opened

cooling
80µs

pumping
80µs

measureNb

160µs
measNr

80µs
bck N B

r

80µs

pumping
80µs

background N B
b

160µs

t (µs)
0 80 160 325 420 515 600 770

(a) (b) (c) (d) (e) (f) (g)

FIG. 2. (Color online) Typical acquisition sequence used in a single detection cycle. a) Laser cooling

(80 µs, both lasers are turned on). b) Optical pumping in the ground state (80 µs, 711 THz laser

turned off). c) Measurement of Nb blue photons (160 µs, 711 THz laser turned on, 275 THz laser

turned off). d) Measurement of Nr blue photons (80 µs, 711 THz laser turned off, 275 THz laser

turned on). e) Measurement of the background signal NB
r associated with phase d) (80 µs,711 THz

laser turned off, 275 THz laser turned on). f) Optical pumping in the metastable 4d 2D3/2 state to

prepare the measurement of the background signal NB
b associated with phase c) (80 µs, 711 THz

laser turned on, 275 THz laser turned off). g) Measurement of the background signal NB
b associated

with phase c) (160 µs,711 THz laser turned on, 275 THz laser turned off). This sequence of duration

770 µs is typically repeated ≃ 50 millions of times.

during which the cooling beam drives the 5s 2S1/2 → 5p 2P1/2 transition in the absence of
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the repumping beam. In this phase the ion should scatter an average number of Nb blue

photons ending up in the 4d 2D3/2 long-lived metastable state (lifetime τD = 435(4) ms

[46]). A second counting window is then opened during which the repumping beam drives

the 4d 2D3/2 → 5p 2P1/2 transition in the absence of the cooling beam. In this phase the ion

should scatter a single Nr = 1 blue photon ending up in the ground state, closing in this way

a detection loop. In the absence of photon losses (i.e. for a perfect detection efficiency ǫ = 1)

the probability p (resp. 1− p) for the decay of the 5p 2P1/2 to the 5s 2S1/2 (resp. 4d 2D3/2)

state is obtained by measuring Nb

Nb+Nr
(resp. Nr

Nb+Nr
). This relationship still holds in case

of imperfect collection efficiency (ǫ < 1) because the correction is a common-mode factor

for both measurements (e.g. ǫNb

ǫNb+ǫNr
≡

Nb

Nb+Nr
). The method is based on the assumption

that this behavior is quite robust against variations of experimental conditions (e.g. Rabi

frequencies drifts) [11]. Repeated counts of the number of scattered photons during the

counting windows and an independent measurement of the background counts NB
b and NB

r

associated to each phase (laser photons scattered by trap surfaces, residual ambient light,

photodetector dark counts) allow for the measurement of the branching fractions. Without

considering the systematic effects, the uncertainty is dominated by the statistical error onNr.

A typical chronogram used in the experiment is represented in Figure 2. In an experiment

we acquire many bunches consisting of several hundredths of sequential acquisitions of Nb

and Nr together with the measurements of corresponding backgrounds and we transfer the

corresponding sums of detected photons to the computer.

III. RESULTS

A typical acquisition run consists of > 50 millions of sequence cycles that correspond to

a ”net” acquisition time of the order of 15–20 hours. We performed two of such runs with

different Rabi frequencies and timings in order to check experimentally the estimations of

systematics based on the resolution of optical Bloch equations (OBE), as explained below.

The raw results of the first acquisition (sum of all detected photons in 54’272’970 cycles)

are: Nb = 1′295′709, Nr = 105′439, NB
b = 342′349, NB

r = 50′418. For comparison, the

results for the second run of 111’200’000 cycles are: Nb = 3′521′973, Nr = 244′082, NB
b =

1′657′903, NB
r = 136′141. Without taking into account the systematic effects (see below) and

assuming a Poisson statistics for the photon counting these results give p = 0.9454(6) [BR =
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17.33(20)] and p = 0.9453(5) [BR = 17.27(17)], for the first and second run respectively.

The acquisitions also allow for the evaluation of the average detection efficiency of the setup:

we obtained ǫ = 1.01× 10−3 for the first run and ǫ = 0.97× 10−3 for the second run.

A. Systematic effects

Several systematic effects may affect the raw results presented above. We first consider

the residual birefringence of the detection chain that could induce a polarization-sensitive

detection efficiency altering the isotropic behavior of the 5s 2S1/2 → 5p 2P1/2 transition [11].

This effect can be estimated by repeating the experiment with a different orientation of

magnetic field in order to evaluate it at the level of the statistical uncertainty of the final

result. We therefore acquired the same amount of data with another orientation of the

magnetic field (rotation of 90◦ in a plane parallel to the trap surface, same magnitude). The

raw results are in this case Nb = 1′671′954, Nr = 114′967, NB
b = 478′305, NB

r = 46′035,

which give p = 0.9454(5), perfectly compatible with the results obtained with the orthogonal

orientation. We can therefore put an upper limit of 5 × 10−4 to this effect, in terms of

uncertainty on p.

Collisions and off-resonant excitations of the 4d 2D5/2 long-lived metastable state can also

be a source of systematic shifts. In order to evaluate these effects we performed a detailed

study of collisions in our experimental setup, following a method similar to that exposed in

reference 9. In particular we recorded the fluorescence of a single ion during a total time

of 43 hours with time bins of 5 ms. A first result of this study is a measurement of the

lifetime of the cooled ion in the trap. Without taking into account extrinsic events (e.g.

de-locking of a laser frequency or accidental switching-off), we had to reload a total number

of 99 ions, which gives an average lifetime of 1560 s. The distribution of observed lifetimes

is compatible with an exponential distribution. However, the finite lifetime of the ion in the

trap does not affect directly the measurements because we filter out the acquisitions in which

the ion is not present. During the total acquisition time we also observed events displaying

an abrupt disappearance of the fluorescence that is later recovered also abruptly. Following

reference 9 it is possible to attribute these events to two kinds of phenomena depending on

their duration. In a first case, non-resonant optical pumping and/or fine-structure-changing

collisions can bring the ion in the 4d 2D5/2 state. These events should display a duration
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FIG. 3. (Color online) Histogram of time durations of collision events observed during 43 hours

of operation in the surface trap. Each event is characterized by an abrupt disappearance of the

fluorescence that reappears later in time. The fluorescence is acquired with an integration time

of 5 ms and, within this resolution, the reappearance of the fluorescence is also abrupt. The solid

line is a fit of the experimental data (with the exclusion of the shortest time-bin of the histogram)

with an exponential distribution characterized by an imposed decay time τD5/2
= 390.8 ms (fixed

parameter) and an amplitude on the first bin (adjustable parameter) of 29 events. The statistical

weights of the populations associated to the two classes in this bimodal histogram are 54 % for the

short-lived events and 46 % for the exponentially-distributed events, respectively.

distributed exponentially with the lifetime τD5/2
= 390.8 ms of the 4d 2D5/2 state [18]. On

the other hand, some of the very short dark periods are likely to be the consequence of smaller

perturbations by distant collisions. This interpretation is supported by the analysis of the

histogram of the time durations of the events reported in Fig. 3, in which the two classes of

events clearly separate into one fraction following an exponential distribution characterized

by τD5/2
(the lifetime is not an adjustable parameter for the fit displayed with a continuous

line) and another fraction, accumulated around the origin, that contributes for 54 % of the

events. Let us note that the average time that separates these events (1800 s and 1520 s
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for the long- and short-lived events, respectively) is of the same order of magnitude as what

has been observed by Barton and co-workers under similar pressure conditions [9]. Contrary

to the case of reference 9, we do not observe events displaying gradual reappearance of the

fluorescence (within our resolution). A possible explanation of this behaviour resides in the

the lower depth of pseudo-potential well in our surface trap. This characteristic may not

allow an ion that reaches high temperatures to stay trapped and being re-cooled with long

characteristic times.

The upper limits of the systematic shift induced by these two classes of collisions can be

estimated by considering the worst case in which each collision produces a total unbalance

in two elementary acquisition cycles (when the ion first ”disappears” and then when it

”reappears”). Because these collision events statistically affect very few acquisition cycles,

their role is however marginal: in terms of p the shift is bounded by 2× 10−7 (see table I).

Other systematic effects arise from the dead time of the photomultiplier, the finite lifetime

of the 4d 2D3/2 state, the finiteness of the durations of acquisition windows, the finiteness

of the extinction ratio of AOM switching. All these effects can be evaluated by solving the

OBE that describe the time evolution of the atomic density matrix during an acquisition

sequence as a function of driving lasers parameters (i.e. Ω1, Ω2, δ1, δ2). We numerically solve

the OBE including all the Zeeman sub-levels involved in the experiment (i.e. 8 sub-levels)

and taking into account the effect of magnetic field B and laser polarizations. This multi-

level approach allows us to better estimate the characteristic times associated to optical

pumping in the experimental conditions. We feed the OBE with the raw branching fraction

p = 0.9453 from our experiments as a best first order approximation to calculate systematic

shifts

To estimate the systematic shift associated with the dead-time τPM = 70 ns of our

photomultiplier, we use the time-dependent solution of the OBE to calculate the conditional

probability q that, following a first detection event, another photoelectron is emitted within

a 70 ns time window. Since we know that after the emission of a photon, the ion is in the

ground-state, the probability q is given by the following expression:

q = 1− exp

(

−

∫ τPM

0

εASPσPP (t) dt

)

, (1)

where ASP is the transition probability for the 5s 2S1/2 → 5p 2P1/2 transition and σPP (t)

is the level 5p 2P1/2 population at time t. By neglecting losses of more than one photon
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Effect systematic shift on p

Collisions < 2× 10−7 -

PM dead time 7× 10−6
−3× 10−6

+5× 10−6

D3/2 lifetime &
1× 10−5

+2× 10−4

finite windows −2× 10−5

Laser leaks 1× 10−8
±1× 10−8

Total 2× 10−5
+2× 10−4

−2× 10−5

TABLE I. Systematic errors estimations on the branching fraction p calculated using the solutions

of OBE that describe the time evolution of the atomic density matrix during an acquisition sequence

as a function of experimentally determined parameters (i.e. driving lasers parameters with nominal

values Ω1 = 2π × 8.7 MHz, Ω2 = 2π × 18 MHz, δ1 = −2π × 27.5 MHz, δ2 = 2π × 80 MHz, and

B = 10−4 T). The uncertainties on the systematic errors are calculated considering a (conservative)

20% uncertainty on Rabi frequencies. The nominal value for the dead time of photodetector is

used ( τPM = 70 ns) and an uncertainty of 20% is also supposed in order to evaluate the error

bar associated with this contribution. Calculations based on OBE show that an increase of the

duration of the window (f) in Fig. 2 up to 160 µs would result in a reduced systematic shift and

uncertainty on p: (−2+18
−4

)× 10−7 (contribution of the third row).

and the contribution of the background photons, the total number of undetected photons

in the measurement of Nb photons is then qNb. In the nominal experimental conditions

q = 1.4 × 10−4. This underestimation of Nb induces a systematic shift of (7+5

−3) × 10−6

on p (see table I). The uncertainty is evaluated by assuming a (very conservative) relative

uncertainty of 20% on τPM and Ω1, the two parameters that mostly affects this systematic

shift.

The finite lifetime of the 4d 2D3/2 state and the finite duration of the sequence time-

windows modify the average number of photons detected in each measurement phase with

respect to the ideal case (infinite lifetime, infinite detection an preparation windows). We

can identify two main physical mechanisms responsible for this shift: the state preparation
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errors and the imperfect shelving in the metastable state that ends up with the ion in

the fluorescence cycle during a measurement window. By comparing the average photon

numbers obtained by solving the OBE (that take into account the experimental window

durations and the lifetime τD = 435 ms) with the ideal case we obtain an estimate of the

systematic shift associated to these effects in our experimental conditions. The estimated

contribution to the systematic shift that affects p is (1+20

−2 ) × 10−5 (see table I). As in the

case of the effect of τPM , the uncertainty that affects this shift is evaluated by assuming a

relative uncertainty of 20% on Ω1 which is the parameter that mainly affects the shift. The

analysis of the solutions of the OBE allowed us to find that the relatively large value of this

uncertainty is due to the short duration of the pumping phase (f) preceding the measurement

phase of NB
b (g) (see Fig. 2). Calculations also show that an increase of the duration of the

window (f) up to 160 µs gives a systematic shift affecting p of (−2+18

−4 )× 10−7.

The last class of systematic shifts that we estimate are those induced by the imperfect

extinctions of the two lasers. This shift is obtained by comparing the results of the OBE

that describe the experiments with perfect extinction to the case in which the extinction

ratio is fixed to -77 dB as measured in the experiment. The estimated contribution of the

imperfect extinction to the systematic shift that affects p is (1 ± 1) × 10−8 (see table I),

dominated by the repumping beam leaks.

It is interesting to note that some effects partially cancel because they affect in a similar

(albeit not identical) way signal and background. As an example, this is the case for the

errors due to the relaxation of the shelved electronic excitation during the measurement

of Nb and NB
b . The compensation is not perfect because the two measurements do not

start with the ion in the same electronic state. However the transient dynamics in a typical

experiment only covers a small fraction of the respective acquisition windows.

The summary of systematic errors is reported in table I. Taking into account these errors

the final result for the branching fraction p is p = 0.9453+0.0007
−0.0005 [BR = 17.27+0.23

−0.17].

IV. DISCUSSION

In this section we discuss how our experimental determination of BR compares to other

experimental results and theoretical calculations present in the literature. First, we compare

in Fig. 4 the experimental determination of BR obtained by Gallagher [22] with our result.
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As in the case of Ca+ studied in reference 10, there is no agreement between our data and

Gallagher’s experiments (performed in an Argon discharge).

1817161514131211

Branching ratio

Exp. Gallagher [22]  

Exp. This work 

Th.  Jiang et al. [5]

Th.  Safronova [32]

Th.  Dutta et al. [33]

FIG. 4. (Color online) Comparison of our measurement of the branching ratio BR (filled diamond,

red) with other experimental measurements or theoretical calculations. Vertical axis separation

is used to offset the data from different works. The error bars (whenever present) represent the

standard error associated to the determination of BR. Reference 33 does not give information

about standard error.

We can also compare these results to the theoretical estimates of BR = ASP/APD that

can be obtained starting from the calculated transition probabilities. The three points on

the bottom of Fig. 4 (open symbols) have been calculated (with their error bars, whenever

applicable) starting from data in references 5, 32, and 33. As outlined in reference 32, there

is no agreement between recent theoretical calculations and the experimental determination

of BR by Gallagher. This contrasts with the present experimental determination that is

indeed compatible, within the smaller error bar, with the calculations of references 5 and

32.

By using the lifetime τP = 7.39(7) ns measured by Pinnington and co-workers [24], the

determinations of p can be also recast in terms of transition probabilities ASP = p/τP and

14



APD = (1−p)/τP . This is the strategy adopted in order to compile the NIST database [20, 21]

134132130128126124122120118

Transition rate ASP  (x10
6
  s

-1
)

Exp. Gallagher [22]

Exp. [22] + [24] (NIST Database [21]) 

Exp. Meir et al. [25]

Exp. This work + Pinnington et al. [24]

Th.  Jiang et al. [5]

Th.  Safronova [32]

Th.  Dutta et al. [33]

FIG. 5. (Color online) Comparison of measurements and calculations of the transition probability

ASP . Vertical axis separation is used to offset different measurements. In order to

that takes advantage of the relatively small uncertainty on τP . In such a way it is possible

to directly test the experimental determinations against the original quantities calculated

in theoretical papers. In Figure 5 we plot a compilation of the experimental determinations

of ASP and the theoretical calculations of the same quantity. All the determinations are

compatible within the uncertainties attributed to measurements or calculations; let us note

that the error bar associated to the present work is dominated by the uncertainty that affects

τP . We included in this compilation the results of reference 25, even though the method

for the determination of ASP was in this case quite indirect and the exact value of ASP not

crucial for their study.

In Figure 6 we present the compilation concerning the transition probabilities APD. The

error bar associated to the present work is in this case dominated by the uncertainty that
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FIG. 6. (Color online) Comparison of measurements and calculations of the transition probability

APD.

affects BR. It is interesting to note that our work brings back in agreement theory and

experimental observations, in a similar way to what is discussed in reference 12 for 40Ca+.

It is interesting to analyse the limitations of this method and the possible improvements

that could reduce the uncertainty of the present result. Photon counting statistical uncer-

tainty (dominated by the relatively low total number of photons detected during the Nr

measurement phase) gives the largest contribution to our error bar. Therefore a longer ac-

quisition time will improve the precision of this measurement. Systematic shift uncertainty

could eventually limit this precision. The design of an optimised time sequence can reduce

the uncertainty that has its origin in the finite lifetime of the 4d 2D3/2 state and window

finiteness down to the level of ≃ 1×10−6 in terms of fractional uncertainty on p. In this case

the main contribution is given by the dead time of the detector. An improved photon counter

(dead time down to ≃ 20 ns) and a careful characterization of its dead time could allow for
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a precision improvement within a factor of ten maintaining realistic acquisition times. Such

a gain, possibly associated with an improved determination of the 5p 2P1/2 lifetime, would

be interesting in order to put more stringent constraints on theoretical calculations.

In conclusion we measured the branching fractions for the decay of the 5p 2P1/2 state of

88Sr+: the probability p and 1− p for the decay of the 5p 2P1/2 to the 5s 2S1/2 and 4d 2D3/2

states are, respectively, p = 0.9453+0.0007
−0.0005 and 0.0547+0.0005

−0.0007, with a fractional uncertainty

(statistical and systematics) on p down to 7 × 10−4. In terms of branching ratio the result

is BR = 17.27+0.23
−0.17, affected by a fractional uncertainty of 1.3 × 10−2. This result can be

compared to previous experimental determinations and to theoretical calculations: when

considering the branching ratio and the transition probability APD our work brings back

in agreement theory and experimental observations and constitutes an important check for

the validity of recent theories. Finally, this experiment demonstrates the reliability and the

performances of ion micro trap technology in the domain of precision measurements and

spectroscopy.
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