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The optical properties of a hematite-epoxy coating are predicted numerically and compared with el-
lipsometry measurements. The highly-heterogeneous dispersion of nanocubic hematite particles in the
epoxy resin is simulated using a previously developed two-scales random model. The local anisotropic
permittivity tensor of hematite particles, and that of the epoxy, are estimated by ellipsometry mea-
surements carried out on a macroscopic hematite and epoxy samples. Fourier-based methods using a
“discrete” Green operator are used to treat complex permittivities. They predict the effective and local
electric displacement field in the quasi-static approximation. The former is close to two estimates based
on the Hashin-Shtrikman bounds and a self-consistent approximation. Good agreement is found between
experimental data and FFT computations in the whole range of the visible spectrum.
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1. Introduction

Various forms of hematite crystals and polycristals have been synthesized and used in optical
applications [3, 11, 26, 32, 33]. Synthesis techniques of hematite nanoparticles offer a wide range
of dispersion [19] and particle shapes [12, 13]. The spatial dispersion of particles, for which models
have been proposed [7], is most often of a multiscale nature.
Both experimental and modeling techniques are useful to assess the effect of the shapes and spatial

dispersion of the particles on the macroscopic properties. Energy loss techniques, carried out on
thin films, allows one to estimate the complex permittivity of small regions in materials [24, 27]. The
deconvolution of the signal is however challenging in the visible spectrum and optical properties
remain difficult to measure at a small scale.
On the modeling side, numerical solutions of Mie’s problem include Yee-cell techniques [6], which

use finite differences in the time domain. In the quasi-static approximation of Maxwell’s equations,
effective medium theories such as Maxwell-Garnett’s [18, 21], have been used to quantify the effect
of nanoparticles on a material’s optical properties [8, 28]. More involved homogenization procedures
that rely on Helmholtz’s equation have also been proposed [14, 15], or specific methods that apply
to 3D periodic arrays [23]. Nevertheless, homogenization theories do not in general take into account
the role of the multiscale distribution of nanoparticles in the material. In a recent numerical work,
spectral approaches have been proposed in the quasi-static limit [1]. Although these methods allow
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Figure 1. SEM images of the hematite-epoxy coating. White: hematite nanocubes; black: epoxy
phase (image: M. Ben Achour, from [7]).

one to estimate the full-field properties of large random microstructures [29], they have not been
confronted to optical measurements.
The object of interest of this work is a hematite-epoxy coating. The material contains pseudo-

cubic hematite nanoparticles with a peculiar spatial dispersion (Fig. 1a) modeled numerically
in a previous work [7]. As shown in scanning electron microscope images the particles typical
size is about 250 − 300nm (Fig. 1b). We refer to [25] for a detailed study of the structure of
the cubic pigments. In the present work, a combined numerical and experimental approach is
undertaken to study the optical properties of the hematite coating. It is organized as follows:
ellipsometry measurements are described in Sec. (2) and FFT computations in Sec. (3). We compare
measurements and modeling of the optical properties in Sec. (4). We conclude in Sec. (5).

2. Ellipsometry measurements

Spectroscopic ellipsometry measurement rely on the polarization of reflected light to compute the
optical and the absorption indices. The general problem could be condensed in a short formulation:
“inverting the Fresnel formulas”. As the spectral reflectance of a sample of a smooth plane surface
depends on the two spectral functions that are the real and the imaginary part of the complex
index of refraction, we need an accurate measurement of these functions. This is possible using
macroscopic samples as this optical characteristic is an intrinsic property. The general notion of
index of refraction is only meaningful for homogeneous non-scattering materials. The measurement
principle is briefly described hereafter.
A beam of light with known polarization is reflected on a smooth surface. The simultaneous

measurement of the reflected intensity of a parallel beam of light and the change in polarization
is recorded for a given angle of incidence and a given wavelength. As we have two spectral terms
(n, k) to be derived from these measurements we have to prepare the setup for accounting with
the Fresnel conditions (perfectly smooth state of surface, sample planarity, parallel beam of light,
accurate measurment of the angle of incidence, etc.). We refer to [10] for a general presentation of
the spectroscopic ellipsometry technique.
All over the visible spectrum the magnetic permeability µ is always equal to unity so that

we can write without any error in isotropic media, the relationship n =
√
εµ linking the complex

permittivity to the complex refactive index of the material, measured by spectroscopic ellipsometry.
For anisotropic media, the second-order symmetric tensor εij (i, j = 1..3) is linked to the refactive
indices as follow:

∣∣n2δij − ninj − εij
∣∣ = 0,
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where |·| represents the determinant [17].
The measurements related to hematite are carried out on a sample from the museum of mineral-

ogy at Mines ParisTech (Fig. 2). Refractive indices are measured along two of its faces, orthogonal
to each other, so as to take into account the crystal’s anisotropy. The real and imaginary parts of
the complex permittivity are represented in Fig. (3). By convention, we refer to the two observed
directions as transversal and longitudinal. It was not possible to carry out the same measurement
along a direction normal to the two considered here, without destroying the crystal. As shown in
Fig. (3), the hematite cristal is anisotropic, nevertheless the difference between the two directions
does not exceed 13% for the real part and 8% for the imaginary part. The average over both
directions is shown as dotted lines.

Figure 2. Rose-shaped hematite crystal with reflecting metallic gray aspect on the largest platelets and red appearance along
the thickness. The latter is close to the deeply red streak of this material.

Refractive indices for the bulk epoxy phase are measured on a cylindrical sample of a few cen-
timeters. Results are given in Fig. (4). The latter are an average over four measurements carried for
different orientation of the sample. Very small variations are observed: the standard fluctuations
are about 6 10−3 S/m for all frequencies (not shown). The sample has been meticulously polished
in order to minimize the influence of the surface roughness on the data. Nevertheless, character-
istic oscillations of such surface effects are conspicuous for the imaginary part of the permittiviy,
especially at small wavelengths, more sensitive to roughness. As expected, the real and imaginary
parts of the complex permittivity of epoxy is much lower than that of hematite. The contrast
of properties is about 100, for most frequencies, for the imaginary part. Indeed, epoxy is nearly
transparent whereas the hematite crystal is metallic grey.
The permittivity of the hematite-epoxy coating is also measured using ellipsometry (Fig. 5).

Error bars are provided by the standard fluctuations over four measurements, taken at different
places on the sample. The measurements fall in-between that of its constituants. As expected, the
real part of the complex permittivity of the coating is of the same order as that of epoxy, whereas
the imaginary part is in-between that of the two phases. Furthermore, the characteristic points in
the curves of the permittivity of hematite and of the coating match very well. For hematite, local
maxima appear at λ ≈ 650 nm for the real part and at λ ≈ 480 nm for the imaginary part (Fig. 3).
These maxima are observed at slightly different frequencies for the hematite coating (Fig. 5). A
similar phenomenon holds for the slope changes of the permittivity of hematite, observed at λ ≈ 500
nm for the real part and at λ ≈ 650 nm for the imaginary part (Fig. 3), also visible in Fig. (5).

3. Fourier-based method in the quasi-static approximation

We consider the following quasi-static approximation of the Maxwell equations:

∇ ·D(x) = 0, ∇×E(x) = 0, (1)
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Figure 3. Ellipsometry measurements of the complex permittivity of a hematite crystal, along two orthogonal directions, in
red (real part) and green (imaginary part), as a function of the light wavelength. Solid lines are guide to the eyes, the average
over both direction is represented by dotted lines.
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Figure 4. Ellipsometry measurements of the epoxy: real (red) and imaginary parts (green) of the complex permittivity.

where D(x) is the local electric displacement at point x, E(x) is the local electric field, ∇· is the
divergence operator and ∇× the curl operator. Eq. (1) is valid whenever the light wavelength λ
is much larger than the typical size ξ of the heterogeneities in the material: λ/ξ ≫ 1 [2]. In the
two-scales microstructure considered in this work, hematite particles form necklaces around zones
of diameters about 1.9 µm [7]. Scale separation does not hold for ξ = 1.9 µm, However, the size
of hematite particles a = 250 nm is significantly smaller than the wavelength, with a/λ comprised
between 0.3 and 0.6. Electrostatic is used in this work as a simple, low-cost approximation. In
theory, electrodynamic effects apply in this domain for materials with isolated inclusions (see
e.g. [4]). In any case, this approximation should be more accurate for large wavelengths (red) than
for the smaller ones (blue, violet) and so we expect better results when λ is large.
Neglecting polarization, the linear relation between electric and displacement fields is:

Di(x) = εij(x)Ej(x), (2)

where εij(x) is the complex permittivity of the phase located at point x. By convention, we denote
by “phase 1” the hematite particles and by “phase 2” the embedding epoxy medium. The local
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Figure 5. Real (red) and imaginary parts (green) of the complex permittivity of the hematite coating, measured by ellipsometry,
as a function of the wavelength of light.

permittivity therefore reads:

εij(x) =

{
ε
(1)
ij if x lies in phase 1,

ε
(2)
ij otherwise.

(3)

In hematite particles, the permittivity tensor ε(1) is anisotropic whereas, in the epoxy, ε(2) is
isotropic:

ε
(2)
ij =

tr
(
ε(2)

)

3
δij .

Eqs. (1) and (2) are solved in a cubic domain Ω of size L with periodic boundary conditions:

D(x) · n−#, E(x)#, x ∈ ∂Ω, (4)

where n is the local normal on the boundary ∂Ω of the domain, pointing outward, # denotes
periodicity and −# anti-periodicity. The size L is chosen so that L ≫ ξ and Ω is a representative
volume element. Furthermore, the material is subjected to an applied (i.e. macroscopic) electric
field E:

〈E〉Ω = E, (5)

where 〈·〉Ω is the mean over Ω. Using linearity, the mean electric displacement reads:

〈D〉Ω = ε̃ ·E, (6)

which defines the apparent complex permittivity ε̃ of the volume element Ω [14]. The latter is also
an estimate of the effective permittivity of the hematite coating.
The Fourier “accelerated scheme” [9] is used to solve Eqs. (1), (2) and (4). The latter consists in

the following iterations, at step k:

Ek+1 = Ek + 2
(
ε+ ε(0)

)−1
· ε(0) ·

[
E−Ek −G

(0) ∗
(
ε ·Ek − ε(0) · Ek

)]
, (7)
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where ε(0) is an arbitrary “reference” permittivity, G(0) the associated Green operator and ∗ denotes
a convolution product, computed in the Fourier domain. At each iteration we treat the Fourier mode

q = 0 separately and enforce E(q = 0) = E. For simplicity, we assume that ε
(0)
ij = ε(0)δij is isotropic

and identify it with a scalar. We set ε(0) = −0.6 for the reference permittivity, at all frequencies.
We use the modified Green operator from [31], introduced in the context of conductivity:

G
(0)
ij (k) =

kik
∗
j

ε(0)kik
∗
i

, ki = i
(
1− eiqi

)
, (8)

where qi = 0, 2π/L, ..., 2π(L−1)/L is the Fourier wave vector and ∗ denotes the complex conjugate
and i =

√
−1. Use of k above amounts to discretize (1) by finite differences. Improved convergence

properties as well as more accurate local fields have been observed with this method [31]. In optics,
the FFT scheme (7) is similar to that in conductivity, except that the electric and displacement
fields E and D, and the permittivity ε, are complex quantities [1]. Discrete Fourier transforms are
used to switch between the real space and Fourier domain.
For both methods, iterations are stopped when the following convergence criterion is met:

√
〈|k(q) ·D(q)|2〉q

D(q = 0)
< η, (9)

where 〈·〉q is a mean over q in the Fourier domain, D(q = 0) = 〈D(x)〉Ω is the mean electric
displacement and η = 10−10 is the required precision. The above enforces conservation of the
displacement field.
In the numerical computations carried out hereafter, we first assume that the crystal orientations

of each nanocube are distributed uniformly on the sphere and uncorrelated:

ε
(1)
ij = RikRjlε

(r)
kl
, (10)

where the tensors R are 3D rotation matrix that are unique to each nanoparticle and the compo-
nents of ε(r) are to be determined from measurements. Making use of the two previously obtained
“transverse” and “longitudinal” components, we assume the following transversely-isotropic form
for ε(r):

ε
(r)
kl

=



ε|| 0 0
0 ε⊥ 0
0 0 ε⊥


 , (11)

where ε|| and ε⊥ depend on the frequency, and are given in Fig. (3).
For λ = 661 nm, using ε|| = 8.51 + 1.61i, ε⊥ = 9.40 + 1.56i and FFT computations on a domain

Ω discretized on a grid of 1283 voxels, the macroscopic permittivity tensor ε̃′ reads, in matrix form:

ε̃′ =




2.92 −1.86 10−2 −1.64 10−2

−1.86 10−2 2.91 −1.40 10−2

−1.64 10−2 −1.40 10−2 2.92


+




9.7 −0.47 −0.42
−0.47 9.6 −0.32
−0.42 −0.31 9.7


 10−2i

≈ (2.92 + 0.097i)δij . (12)

The effective response computed above is close to an isotropic law, because the crystal orientations
are uniform on the sphere. We compare the above results with a simplified isotropic law where we
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approximate:

ε
(r)
kl ≈ ε(r)δkl =

1

2

(
ε|| + ε⊥

)
. (13)

Taking again λ = 661 nm, we have now ε
(r)
kl

= 8.96+1.58i and FFT results provide ε̃ = 2.91+0.098i,
close to the effective permittivity computed in the anisotropic case (12). Accordingly, we use the
approximation (13) in all computations carried out hereafter.
For comparisons, we also use the following estimates:

εHS = ε(2) +
3pε(2)(ε(1) − ε(2))

3ε(2) + (1− p)(ε(1) − ε(2))
, p

ε(1) − εSC

ε(1) + 2εSC
+ (1− p)

ε(2) − εSC

ε(2) + 2εSC
= 0, (14)

where p ≈ 10% is the volume fraction of hematite in the coating. In Eq. (14) above, εHS is the exact
result for the Hashin coating assemblage where phase 1 (the particles) is embedded into phase 2
(the epoxy). This estimate is located on the frontier of the complex domain that delimits the Hashin
and Shtrikman bounds [22]. Furthermore, εSC refers to the self-consistent approximation, based on
the requirement that the perturbations of the fields due to the inclusions vanish, on average [5].

4. FFT results vs. ellipsometry data

In the following, a sample of the 3D random model containing 99886 nanoparticles is discretized on
a grid of 5003 voxels at resolution 31 nm/voxel, so that each nanoparticles is discretized as a cube
of about 53 voxels. A 2D section of the material is represented in Fig. (6). The visible spectrum is
discretized along 24 equispaced values for the wavelength λ = 381,..,781 nm. FFT field maps of the
electric displacement component D1 are represented in Fig. (7) for the three frequencies λ = 401,
600, and 801 nm. We apply a macroscopic electric field with components E1 = 1, E2 = E3 = 0
so that the field D1 is “parallel” to the applied field. The 1-axis is oriented top to bottom on
the maps. To highlight the fields’s patterns, 0.1% of the highest values of the dielectric field are
thresholded. The lowest values are shown in blue, and the highest in red, with green and yellow
in-between. Additionally, each map includes a 2D section (top-right quadrant) of a microstructure
with high resolution 31 nm/voxel, discretized on a grid of 5123 voxels. As expected, the real and
imaginary parts of the dielectric component D1 are higher in hematite particles than in the epoxy
phase. As shown in the high-resolution maps, the dielectric field inside the nanoparticles is quite
heterogenous. In some of the particles, the dielectric field is more important along a band joining
two corners or opposite faces, as already observed in previous studies ([1, 30]). The lowest values
appear in dark blue in the epoxy close. The latter are in regions close to particles located outside
of the 2D section.
In order to give an interval of confidence of the effective permittivity estimated by FFT, we used

the approach based on the RVE (representative volume element [16]), for the three wavelengths
λ = 441, 621, 801nm. The latter is based on the asymptotic expansion [20]:

D2
ε(V )

D2
ε

∼ A3

V
, (15)

where D2
ε(V ) is the variance of the apparent permittivity ε estimated on a volume V , D2

ε is the
point variance and A3 is the integral range. The relative error on the estimate for the effective
permittivity ε̃ reads:

erel =

√
4D2

εA3

V ε̃(λ)
. (16)

7



Figure 6. 2D section of the 3D microstructure model showing hematite (white) embedded in the epoxy matrix (black).

The variance D2
ε(V ) is estimated by averaging on the FFT fields over subvolumes of varying sizes.

The expansion (15) is recovered when the subvolume V contains more than 2003 voxels and the
integral range is determined from numerical fits on FFT data. For the real and imaginary parts of
the permittivity:

ARe
3 =






253 voxels (0.7753µm3) if λ = 441nm,
243 voxels (0.7443µm3) if λ = 621nm,
223 voxels (0.6823µm3) if λ = 800nm,

(17)

AIm
3 =





213 voxels (0.6513µm3) if λ = 441nm,
73 voxels (0.2173µm3) if λ = 621nm,
63 voxels (0.1863µm3) if λ = 800nm,

(18)

so that the relative errors on the FFT estimate are:

eRe
rel =






1.29% if λ = 441nm,
1.27% if λ = 621nm,
0.92% if λ = 800nm

eImrel =






2.51% if λ = 441nm,
0.21% if λ = 621nm,
0.36% if λ = 800nm

(19)

Conversely, when λ = 441nm, a volume size V = 42853 voxels or 132.8µm3 is necessary to achieve a
precision of 0.1% for the imaginary part of the effective permittivity. The largest RVEs are observed
for the lowest wavelengths (ex: λ = 441nm).
FFT results for the effective permittivity ε̃ are represented in Figs. (8) and (9) for the real and

imaginary parts, respectively, and compared to ellipsometry data. Error bars for the FFT results,
computed as above, are shown in black. FFT results are close to the Hashin and Shtrikman and
self-consistent analytical estimates, shown in green and orange in the figures. This validates our use
of the quasistatic approximation, as made for the estimates. For the real part, the FFT results are
also slightly lower than measurements for the coating, however the difference between the two is not
more than 3.1%, of the same order as the standard deviations for the ellipsometry measurements.
Similar observations hold for the imaginary part of the complex permittivity (Fig. 9). FFT

results are close to the Hashin and Shtrikman estimates. Also, the relative difference between FFT
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(a) Re(D1), λ = 401nm (b) Im(D1), λ = 401nm

(c) Re(D1), λ = 600nm (d) Im(D1), λ = 600nm

(e) Re(D1), λ = 801nm (f) Im(D1), λ = 801nm

Figure 7. 2D sections of the real and imaginary parts of the component D1 of the electric displace-
ment field, parallel to the applied loading E1 = 1 at three frequencies λ = 401, 600 and 801 nm.
Microstructure resolution: 31 nm/voxel discretized on a grid of 5003 voxels. Inset: higher resolution
6.2 nm/voxel, discretized on a grid of 5123 voxels.
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data and ellipsometry is about 18% for small wavelengths, and increases up to 40% at the highest
wavelengths. Nevertheless, FFT results are within the error estimates of the ellipsometry data.
In the numerical FFT computations, ellipsometry measurements carried out on a hematite crystal

have been used for the local complex permittivity of the nanoparticles. However, we emphasize that
the two complex permittivities are presumably different.
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Figure 8. Real part of the complex permittivity ε̃ of the hematite coating: Hashin and Shtrikman estimate (green), self consis-
tent estimate (orange), ellipsometry measurements (red) and numerical FFT predictions (black symbols). Blue, for comparison:
ellipsometry measurements of the real part of the complex permittivity of the epoxy.
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Figure 9. Continuation of Fig. (8): imaginary part of the complex permittivity ε̃ of the hematite coating.

5. Conclusion

This work focuses on a hematite coating made of hematite nanoparticles embedded in a epoxy
phase, with 10% volume fraction for the hematite particles. We measured the complex permit-
tivity of the coating, epoxy phase, and hematite crystal using ellipsometry. Experimental results
indicate an anisotropic complex permittivity for the hematite crystal. The latter two are used in
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numerical Fourier-based computations to predict the optical properties of the coating. In these
FFT calculations, we used the quasi-static approximation of the Maxwell equations. To take into
account the multiscale dispersion of hematite in the coating, a 3D model morphological model
previously developed was used in the FFT computations. Although anisotropic properties were
observed for the hematite crystal, numerical computations indicate that the anisotropy has little
effects on the macroscopic properties of the coating. Overall, the FFT predictions are found to
be close to the ellipsometry measurements. The highest differences are observed for the imaginary
part of the complex permittivity at the lowest wavelength. This result is consistent with the quasi-
static assumption, valid at low wavelengths. However, the highest relative differences are observed
at high wavelengths, suggesting that a difference exists between the optical response of hematite
nanoparticles and that of the macroscopic crystal. Nevertheless, the present work shows that FFT
computations are an efficient tool for predicting the optical properties of nanocomposites.
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