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Abstract The Next-Generation Airborne Collision Avoid- 1 Introduction

ance SystenfACAS X) is intended to be installed on all

large aircraft to give advice to pilots and prevent mid-airWith growing air traf c, the airspace becomes more crowded,
collisions with other aircraft. It is currently being developedand the risk of airborne collisions between aircraft increases.
by the Federal Aviation Administration (FAA). In this pa- Inthe 1970s, after a series of mid-air collisions, the Federal
per we determine the geometric con gurations under whichAviation Administration (FAA) decided to develop an on-
the advice given by ACAS X is safe under a precise set oboard collision avoidance system: the Traf ¢ Alert and Col-
assumptions and formally verify these con gurations usinglision Avoidance System (TCAS). This program had great
hybrid systems theorem proving techniques. We considesuccess, and prevented many mid-air collisions over the years.
subsequent advisories and show how to adapt our form&@ome accidents still happened; for example, a collision over
veri cation to take them into account. We examine the cur-Uberlingen in 2002 occurred due to con icting advice be-
rent version of the real ACAS X system and discuss soméveen TCAS and air traf ¢ control. Airspace management
cases where our safety theorem con icts with the actual adwill evolve signi cantly over the next decade with the intro-
visory given by that version, demonstrating how formal, hy-duction of the next-generation air traf c management sys-
brid systems proving approaches are helping ensure the satety; this will create new requirements for collision avoid-
of ACAS X. Our approach is general and could also be usednce. To meet these new requirements, the FAA has decided
to identify unsafe advice issued by other collision avoidanceo develop a new system: the Next-Generation Airborne Col-
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lision Avoidance System, known as ACAS X[[4)11]15].

Like TCAS, ACAS X avoids collisions by giving ver-
tical guidance to an aircraft's pilot. A typical scenario in-
volves two aircraft: thewnshipwhere ACAS X is installed,
and another aircraft called thetruder that is at risk of col-
liding with the ownship. ACAS X is designed to avditbar
Mid-Air Collisions (NMAC9, situations where two aircraft
come withinr, = 500 ft horizontally andh, = 100 ft ver-
tically [15] of each other. The NMAC de nition describes a
volume centered around the ownship, shaped like a hockey
puckof radiusr, and half-heighty,.

In order to be accepted by pilots, and thus operationally
suitable, ACAS X needs to strike a balance between giving
advice that helps pilots avoid collisions but also minimizing
interruptions. These goals drive the design in opposite di-
rections each other, and cannot both be perfectly met in the
presence of unknown pilot behavior. As part of the ACAS X
development process, this work focuses on precisely charac-
terizing the circumstances in which ACAS X gives safe ad-
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Table 1 ACAS X advisories and their modeling variables

ACAS X Speci cation [13 Our model

Vertical Rate Range Strength | Delay | Sign | Advisory
Advisory Description Min (ft/min) | Max (ft/min) ajp (s) w Vi (ft/min)
DNC2000 | Do Not Climb at more than 2,000 ft/min 1 +2000 g=4 5 1 +2000
DND2000 | Do Not Descend at more than 2,000 ft/m|n 2000 +1 g4 5 +1 2000
DNC1000 | Do Not Climb at more than 1,000 ft/min | 1 +1000 g=4 5 1 +1000
DND1000 | Do Not Descend at more than 1,000 ft/m|n 1000 +1 g=4 5 +1 1000
DNC500 Do Not Climb at more than 500 ft/min 1 +500 g=4 5 1 +500
DND500 Do Not Descend at more than 500 ft/min 500 +1 g=4 5 +1 500
DNC Do Not Climb 1 0 g=4 5 1 0
DND Do Not Descend 0 +1 g=4 5 +1 0
MDES Maintain at least current Descent rate 1 current g=4 5 1 current
MCL Maintain at least current Climb rate current +1 g=4 5 +1 current
DES1500 | Descend at at least 1,500 ft/min 1 1500 g=4 5 1 1500
CL1500 Climb at at least 1,500 ft/min +1500 +1 g=4 5 +1 +1500
SDES1500| Strengthen Descent to at least 1,500 ft/mjin 1 1500 g=3 3 1 1500
SCL1500 | Strengthen Climb to at least 1,500 ft/min| +1500 +1 g=3 3 +1 +1500
SDES2500| Strengthen Descent to at least 2,500 ft/nfin 1 2500 g=3 3 1 2500
SCL2500 | Strengthen Climb to at least 2,500 ft/min +2500 +1 g=3 3 +1 +2500
CcoC Clear of Con ict 1 +1 Not applicable
MTLO Multi-Threat Level-Off Not applicable

vice, and where safety is traded off for operational suitabiltable is obtained from a Markov Decision Process (MDP)
ity, helping to identify modi cations that improve its safety approximating the dynamics of the system in a discretiza-
and performance. tion of the state-space, and optimized using dynamic pro-
gramming to maximize the expected value of events over
all future paths for each action [13]. Near Mid-Air Colli-
sion events, for example, are associated with large negative

In order to prevent an NMAC with other aircraft, ACAS X value§ and issuing an ‘?‘d"!sory is associated Wlth a small
negative value. The policy is to choose the action with the

uses various sensors to determine the position of the own- - ; :
. i . highest expected value from a multilinear interpolation of
ship, as well as the positions of any intruders [5]. It com-

. . . . . . grid points in this table. ACAS X uses this table, along with
putes its estimate of the best pilot action by linearly interpo- I . .
lating a precomputethble of scores for actions, and, if ap- some heuristics, to d(letermm_e. the .beSt gctpn to t"?"‘e for the
propriate, issuing aadvisoryto avoid potential collisions [6] geometry and dynamic conditions in which it nds itself.
through a visual display and a voice message.
An advisory is a request to the pilot of the ownship to al-1.2 Identifying Formally Veri ed Safe Regions
ter or maintain her vertical speed. ACAS X advisories are
strictly vertical, and never request any horizontal maneuSince ACAS X involves bothliscreteadvisories to the pi-
vering. Tabl¢ll shows the advisories ACAS X can issuelot andcontinuousdynamics of aircratft, it is natural to for-
For example, Do-Not-Climb (DNC) requests that the pilotmally verify it using hybrid systems. However the complex-
not climb, and Climb-1500 (CL1500) requests that the pidity of ACAS X, which uses at its core a large lookup table—
lot climb at more than 1500 ft/min. The current version ofde ning 29,212,664 interpolation regions within a 5-dimensional
ACAS X can issue a total of 16 different advisories plusstate-space—makes the direct use of hybrid systems veri -
Clear-of-Con ict (COC), which indicates that no action is cation techniques intractable. Our approach is different. It
necessary, and Multi-Threat-Level-Off (MTLO), which is identi es safe regionsn the state space of the system where
used in the case of multiple intruders. To comply with an adwe prove formally that the current positions and velocities
visory, the pilot must adjust her vertical rate to fall within the of the aircraft ensure that a particular advisory, if followed,
advised vertical rate range. Based on previous resdarch [13jrevents all possible NMACs. Then gomparesthese re-
the pilot is assumed to do so using a vertical acceleration ajions to the con gurations where the ACAS X table returns
strength at leasty, starting after a delay of at mostafter  this same advisory. Moreover our safe regionssyrabolic
the advisory has been announced by ACAS X. in their parameters, and can thus be easily adapted to new
At the heart of ACAS X is a table whose domain de- parameters or new versions of ACAS X.
scribes the instantaneous state of an encounter, and whose Going beyond the results df [12], this paper devises and
range is a set of scores for each possible action [13, 16]. THermally proves safety regions for advisories that can be cor-

1.1 Airborne Collision Avoidance System ACAS X
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rected later on. In that context, an advisory need not be safe
on its own to be considered acceptable, but the system needs
to be able to correct it with aubsequenadvisory. This is
particularly useful to assess the safety of preventative ad-
visories, and leads to the discovery of very relevant unex-
pected behaviors of the system.

Our results provide independent characterizations of the
ACAS X behavior to provide a clear and complete picture
of its performance. Our method can be used by the ACAS X
development team in two ways. It provides a mathemati-
cal proof—with respect to a hybrid systems model—that
ACAS X is absolutely safe for some con gurations of the
aircraft. Additionally, when ACAS X is not safe, it is able to
identify unsafe or unexpected behaviors and suggests wayg; > an encounter between ownshipand intruder , with NMAC
of correcting them. puck in gray of horizontal radius, and vertical radiusp

Our approach of formally deriving safe regions then com-
paring them to the behavior gf an.md.ustnal system 'S, 85 fa[:r)osition of the ownship. The ownship, surrounded by the
as we are aware, the rst of its kind in the formal veri ca-

tion of hybrid systems. The approach may be valuable foPUCk’ starts at positiof and traces out a traject'ory fO"(.)W
e : ; .. Ingthered curve. It rst accelerates vertically wig=4 until

verifying or assessing properties of other systems with sim- . . X . .

. " . .. reaching the desired vertical velocity-1500 ft/min at po-

ilar complexities, or also using large lookup tables, which is . . . .

. X . . sition 3. It then climbs at1500 ft/min, respecting the spec-

a common challenge in practice. Finally, the constraints wé

identi ed for safety are fairly general and could be used to ciatlon. of Table[]. The green safe-regmn_lndlcate.s startmg
- . points in the state space for which the aircraft will remain
analyze other collision avoidance systems.

) . . safe for the duration of the encounter when following the
The paper is organized as follows. After an overview of

the method in Sedt] 2, we start with a simple two-dimensionaq L.1500 adylsory. Note that. no safe region exists apove the
trajectory since the ownship could accelerate vertically at

model assuming immediate reaction of the pilot in $éct. 3, _ : S
We extend the model to account for the reaction time of thgreater thag=4 or climb more thar+ 1500 ft/min, in accor-

pilot in Sect[4, consider more liberal safe regions to toler-Olance with Tablgl1.
ate advisories that are only safe if followed up by suitable

subsequent advisories in S¢¢t. 5, and extend the results $01 pModel of Dynamics

a three-dimensional model in S€dt. 6. Relationships and ex-

tensions are discussed in Sgtt. 7. In $eéct. 8, we compare thet us consider an encounter between two planes—owighip
advisory recommended by a core component of ACAS Xand intrudell , as portrayed in Fif]2. Following the notation
with our safe regions, identifying the circumstances wheref the ACAS X community[[I3], let = krk be the hori-
safety of those ACAS X advisories is guaranteed within oufzontal distance between the aircraft (called range)rati
model. height of the intruder relative to the ownship. We assume
that the relative horizontal velocity, of the intruder with
respect to the ownship is constant throughout the encounter.
l.e., from a top view, the planes follow straight-line trajec-
To construct a safe region of an advisory for an aircraft{ori€s: Let v be the non-directed angle betwegnand the
imagine following all allowable trajectories of the ownship IN€ segment. In the vertical dimension, we assume that
relative to the intruder, accounting for every possible posif€ ownship's vertical velocity can vary at any moment,
tion of the ownship and its surrounding puck at every futuréVhile the intruder's vertical velocity, is xed throughout
moment in time. The union of all such positions of the puckt€ encounter. Moreover, we assume that the magnitude of

describes a potentially unsafe region: for each point therf€ vertical acceleration of the ownship cannot exafeit

exists a trajectory that results in an NMAC. Dually, if the @bsolute value. . .

intruder is outside this set, i.e., in the safe region, an NMAC ~ Our analysis considers all these as symbolic parame-

cannot occur in the model. ters and is, thus, valid for any value they might have. For
Fig.[] depicts an example of a head-on encounter and i typical errcounterr, vares betweei®nmi and 7 nmiff] h

associated safe region for the advisory CL1500, projected iR€tween 4;000ft and4,0001t, ry = kryk betweenOkts

a vertical plane with both aircraft. It is plotted incaordi- 1 We use units most common in the aerospace community, even

nate system xed to the intrudemd centered at the initial though they are not part of the international system, including nauti-

(a) Top view of the encounter

(b) Side view of the encounter

2 Overview of the ACAS X Modelling Approach
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0 1000 2000 3000 4000 r(f)

Fig. 1 Nominal trajectory of the ownship (red) and safe region for the intruder (green), immediate response

and 1;000 kts, andv andv, between 5;000ft=min and 3.1 Model

+5:;000 ft=min. The acceleratiom® is usuallyg=2, where

g is Earth's gravitational acceleration. The NMASlickof  In this section, we assume that the ownship and intruder are
ACAS X has radius, = 500 ft and half-height, = 100 ft. ying head-on (, = 180 ). We also assume that the pi-
lot reacts immediately to any advisory € 0 s), and that

the advisory COC is not allowed. These assumptions will be
relaxed in Secf]4 and Sect. 6. The model in this section per-
mits updates to the resolution advisory but, unlike in $éct. 5,

o ~_eachadvisory issued has to be safe, i.e., it has to prevent any
Recall that ACAS X prevents NMACs by giving advisories N\aC at any future time, even if followed forever. We as-

to the ownship's pilot. Every advisory, except Clear-of-Con igl,me that is a scalar: it~ 0 then the ownship is ying

(COC), has a vertical rate range of the fo(rh Vo] OF  towards the intruder, otherwise itis ying away from it. Both
[Vio; + 1) for some vertical rate, (Table[1), which we call  ¢ases could require an advisory. Since the ownship and in-
the target vertical velocity We model any advisory by its yder are ying head-on with straight line trajectories, there
corresponding target vertical velociy, and a binary vari- - eyists a vertical plane containing both their trajectories. In
ablew for its orientation, whose value is1 if the verti- i plane, the puck becomes a rectangle centered around
cal rate range of the advisory (sl ;Vi)] and+1 ifitiS  the ownship, of widter, and height2h,, and there is an

[Vio; +1 ). This symbolic encoding can represent many adnwac if and only if the intruder is in this rectangle (in gray
visories and is robust to changes in the ACAS X advisoryy, Fig[1).

set. As a matter of fact, the only advisory that this symbolic

encoding cannot handle is the recently-added Multi-Threat

Level-Off (MTLO) advisory, only relevant in the presence 3 5 pitferential Dynamic Logic and KeYmaera X
of multiple intruders.

Following the ACAS X design [13], we assume that thewe model our system using Differential Dynamic Loglc fi9,
ownship pilot complies with each advisory withirseconds, [20/21[22], a logic for reasoning about hybrid programs, a
and that she accelerates with acceleration at &asti reach  programming language for hybrid systems. The lodic d
the target vertical velocity. allows discrete assignments, control structures, and execu-
tion of differential equations. It is implemented in the theo-
rem prover KeYmaera X[8], that we use to verify our safe
regions with respect to our models. All the KeYmaera X
models and proofs of this paper can be founchtap:

We present in this section a simpli ed version of the d nam_//www.Is.cs.cmu.edu/pub/Acasx-Iong.zip '
P P y The d_ formula for the model that we use in this section

ics from Sec{. Z]1. We give a hybrid model for this simpli ed is given in Eq/[1). We use the nOtatiChnmh for the safe

system and prove its safety. The new assumptions will be re= = .
y P v P region: the lettet. stands fodower bound (forw = 1; it

laxed in later sections to achieve the safety veri cation of the ) :
full model of SecZ1L Is an upper bound fow = 1); the subscripimpl stands

' for implicit safe region, as described in Sgct] 3.3; and the su-
cal miles nmi ;852 metres), knots kts (nautical miles per hour), feet P€rscript 1indicates that the region is safe for unbounded

ft (0:3048meter) and minutes mir6Q seconds). time; the rationale behind its use will become more clear in

2.2 Model of Advisories

3 Safe Region for an Immediate Pilot Response
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Sect[5.2. scenario to consider. The pilot reacts immediately, and the
ownship starts accelerating vertically with acceleratign

ifp 0" hy>0%r, 0"a,>0" until reaching the target vertical velocity,—describing a

— — 1 sy g,
e(w=1_w=1)" Ly (rhiviw;vi) ! parabola—then climbs at vertical velocity along a straight
s [( (?true [ line. Horizontally, the relative velocity, remains constant.
4 (w T Il w:=1) Vi := 3 Integrating the differential equations in Eg. (1) Line 7, the
s 2L impi (1 D5V W Vi), advisory:= (W; Vi) ); ownship positior(r, ; hy) at timet alongN is given by:
6 a.=
7 fro%= ry,;h%= v;v9=a&wv wv,_ wa aog g Ft: 02\t f0 t< VoV @
s ) 1(rj>rp_jhj>hp) Ty = ' ap
) (Tnifn) = tvgt Mo VP Ve Vo
AR} o] 2ar a|0
This formula of the fornp ! [ ]g says all executions of 2

hybrid program starting in a state satisfying logical for-
mulap end up in a state satisfyirg It is akin to the Hoare
triplef pg f ggwith preconditiorp and postcondition. The
precondition in Eq[{1) imposes constraints on several co
stants, as well as the formulqmlr)l(r;h;v;w;v.o) (which > - ] X o
we identify below) that forces the intruder to be in a Safeaboygthe_ red nomln_al trajectory. .An intruder is safe if its
region for an initial advisoryw: vi,). We cannot guaran- position is alway_s e_|ther to _the side of or under any puck
tee safety if the intruder starts initially in an unsafe region.Centeer onapointiN, that is:

The postcondition encodes absence of NMAC. Lines 3-5, . _ ) . .

express the action of the ACAS X system. The nondetegt'sr”'Sh”' (fnihn) 2N 1j 1 raj>1p_h ha < hp
ministic choice operatdr in Line 3 expresses that the sys- 3

tem can either continue with the same advisory by dOIrlgiNe call this formulation thémplicit formulation of the safe

nOthm%_IJUSt t?tmg thlgdtrlr\]/le}l contgjltloﬁtrutta—t?lst erll- ot region It does not give explicit equations for the safe region
sures it always has a valid cholce and cannot get stuck. rB'order, but expresses them instead implicitly by quanti ers

erwise it can choose a.n.eavdl/ isory(w Vio) |n'L|n(.e 4 that with respect to the nominal trajectory from Hg. (2).
passes the safety conditian,., (r; h; v;w; vio) in Line 5—

advisoryrepresents the next message to the pilot. Line 6 ©XGeneralization. The reasoning above is generalized to the

presses the action of the ownship pilot, who can nondeterc-ase where the target vertical velocity is exceeded €

v) —which happens after the parabola part of the nominal

own§h|p_ anq intruder a|rcraft.then follow th_e continuous dy'trajectory— and symmetrically to the case of descend-type
namics in Line 7. The evolution of the variablesh andv advisoriesW = 1)

is expressed by a differential _equation, and requi.res (using Eq. (1) gives the pilot ample exibility in how to respond
the operato&) that the ownship evolves towards its target, ) - resolution advisory and gives ACAS X full exibil-

ve:tlcal'}[/te]Iocml/vb i[ accelﬁ r%t'oa';’, (c;)ndlltlo.nwa d.atl'O), ity to choose any advisories respectlni%,(r; h: Vi W; Vo).
unless it has already reached vertical veloujgy(condition In particular, we cannot assume the pilot would follow the

WV Wio). Finally, the star on Line 8 |nd_|cates that.the nominal trajectoryN . We prove that, nevertheless, the safe

program can be repeated any nur_nbe_r of times, allowing thF"egions identi ed like this respect safety property Eq. (1).

system to go through several advisories. The implicit formulation of the safe region Iis,mtl(r; h; v;w; Vi)
in Fig.[3, and veri ed to be safe in KeYmaera X:

Recall that in the ACAS X speci cation, the ownship
moves vertically with acceleration af leastay,, then con-
Ainues with vertical velocity ofat leastv,. Therefore all
possible future positions of the ownship will turn out to be

ministically choose an arbitrary acceleratian:€ ). The

3.3 Implicit Formulation of the Safe Region Theorem 1 (Correctness of implicit safe regions¥he d_

formula given in Eq(T) is valid. That is as long as the advi-

Sories followed obey formulaimtl there will be no NMAC.

In this section, we identify what formula can be used as saf
region L, (r; h; v;w; vio) to prove Eq[(L). As in Segt|2,
we use a coordinate system xed to the intruder and with its

origin at the initial position of the ownship (see Hig. 1). 3.4 Explicit Formulation of the Safe Region

First case: ifw = +1 andv,, V. Fig[] shows, inred, a The implicit formulation of the safe region gives an intuitive
possible trajectory of an ownship following exactly the re-understanding of where it is safe for the intruder to be. How-
quirements of ACAS X. Thimominaltrajectory of the own-  ever, because it still contains quanti ers, its use comes at the
ship is denoted byN and merely represents one possibleextra cost of eliminating the quanti ers, which is inef cient
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Implicit formulation

0;
At hn;v,w;vi) 0 t< max(©@:wvie V) » hn = Walio 2 1t
djo |
. . 2
~ ¢ max(0;w(vi V) , hn = Vit wmax(0;w(v, V)
ajo 2ay
Lim,1,|(fih3V;W;V|o) 8 t:8rn:8hn: rn = ryt™ A(thn;viw;vie) ! (jJr rnj>rp_w(h hp)< hp)
Explicit formulation
in(0: in(0: in(o:
casg 1 (rv;w;V o) rp < Ip Ty min(0; wv) case 1 (1 v;w;V ) rp rv min0; wv) roorp rv min(0; wv)
djo Qo ajo
in(0 : 2
bounds (r;h;v;w;V 5)  wry2h< %(r +rp)2+ wryv(r + rp)  ry2hp boundy (r; h; V;w;V ;)  wh < w hp
lo
cas%l(r;v;w;vm) - ry min(0 ; wv) <r o4 ry max(O;w(vip V))
Qo Qo
0;
case, H(rviwivig) rp+ WMXOMle V)
Qo
bounds (r;h;v;w;Vv ;) wry2h< %(r rp)2 + wryv(r rp)  ry2hp
0; 2
bounds (r; h; v;w;v ;o)  (ry =0) Wrh <wy o(r  rp) rv max( 2VaV(V|0 v)) fhp
lo
0; 0;
casg T (r;V;W;V o) frp r< rp+ rv max(0;w(vie  v)) casg T (r;V;W;V o) rp+ rv max(0; w(vio ) r
ajo Qo
bounds (r;h; v;w;V ;)  wry2h< %(r +rp)2+ wryv(r + rp)  ry2hp
0: 2
bounds (r; h; v;w; v o)  (rv =0 A r>r ) wryh<wv o(r + rp) rv max( 'ZV;I(V'O V) rvhp
lo
~®
Lexil(r;h;v;w;v 10) wv, 0! (casg 1(r;v;w;v|0) I bound; (r; h; v;w; Vv |p))
i=1
6
N owv < 0! (case Lrv;w;vie) ! bound; (r;h; viw; v o))
i=5
Fig. 3 Implicit and explicit formulations of the safe region for an immediate response (lower bounss=fdr, upper bound fow = 1)

and impractical to repeatedly compute during the compar-1.

ison part of our analysis. An ef cient comparison with the
ACAS X table, as described in S€dt. 8, can only be achieved
with a quanti er-free,explicit formulation that we present

in this section. We show that both formulations are equiva-2,

lent. As for the implicit formulation, we derive the equations
for one representative case before generalizing them.

Firstcase:ifw =+1 ,ry, > 0,v < 0Oandy,
the case shown in Fig] 1 and described in detail in §egt. 3.3.
The nominal trajectori is given by Eq.[(R). The boundary

of the (green) safe region in F[d.1 is drawn by either the

bottom left hand corner, the bottom side or the bottom right

hand corner of the puck. For this case, this boundary cary

be characterized by a set of equations (where cases 1 to 4
follow cases 1 to 4 of Fig]3):

0. positions left of the puck's initial positiom €
in the safe region;

rp) are

0. Wearein 3,

then the boundary follows the bottom left hand corner of
the puck as it is going down the parabola of E§. (2)(a);
therefore for r, r< iti

is safeifand only ih < 52 (r+rp)+ X (r+rp) hp;
following this, the boundary is along the bottom side
of the puck as it is at the bottom of the parabola of
Eq. [2)(a); therefore for r, T r rp 'a"

the position(r; h) is in the safe region if and only if
h< % hp;

then the boundary follows the bottom right hand corner

of the puck as it is going up the parabola of Eg. (2)(a);

I

therefore for, ¥ <r o+ % the position
(r;h) is safe if and only ih < 2?':’2 (r rp)?+ r"v (r
ro) hp;

nally the boundary follows the bottom right-hand cor-
ner of the puck as it is going up the straight line of
Eq. (2)(b); therefore for, + ™ (V“’ Y) < r, the po-
sition (r;h) is in the safe reg|on if and only ih <

V\o(r rp) (Vga,\l) hp.
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Generalization.The general case is given in the formula new advisory—and shortest COC. Hence the period of non-
Lextl(r; h;v;w;v),) of Fig.|3. The cases 1-4 and their asso-compliance is' +

ciated bounds are for the case, 0, whereas cases 5

and 6 and associated bounds arevio, < O; both cases 5 _afp 07hy> 071, 0%ag>0rad 07 0
and 6 follow the bottom left-hand corner of the puck asitis A"» 54 w= 1 _w=1)~D
going along the nominal trajectory. We use KeYmaera X to [( 2Arue| B iml
formally prove that this explicit safe region formulation is Wi [ wi=1)ve= |

equivalent to its implicit counterpart: (d: D4 (mhiviwi v );advi= (W) [
. [ |mp| 1 1 1 1 1 . ’

(rhyviw;v o) !

4

— ", d A TYE . — .
Lemma 1 (Equivalence of explicit safe regions)f w = ° d T + 7D imr()jl(_r' h_’V’YV'V o); adv = COC)
1,r, 0,h,>0,r, Oanda, > O,thenthe conditons ¢ 2&-= »?(wa af); t:=0;
1 1 ; fro= r,;h%= wv;v0=a,d°= 1;t°=1 &
Limp (1 N ViW; Vio) @ndL o (1 h; v Wi vio) are equivalent. 7 v ' ' ’
8 (t ")y~r(d 0! wv wvy_wa ap)g
Since the assumptions of Lemftja 1 are invariants of the ) 1(irj >rp _jhj>hy)
model in Eq.[(1), the explicit safe regions give a model that 4)

?nherits safety from Theo_re[ﬁ]l_l, which we formally PrOVe  \ne modify the model of Eqf{1) to capture these new
in Keraera Xbya com_bl_natlon of cpntextual equwalenceldeas’ and obtain the model of Eg. (4), highlighting the dif-
reasoning and .monotonlcny reasoning _[22] to embed th?’erences inbold. The structure, precondition (lines 1 and
conditional equivalence from Leminp1 into the context ofz) and postcondition (line 9) are similar. The clodk if

Theoreni.lL. positive, represents the amount of time until the ownship
pilot must respond to the current advisory to remain safe.
Lines 3 to 5 represent the actions of the ACAS X system.
occurrences Or‘im})l with Lex})l' That is as long as the advi- As before, the .sysjtem can continue W.ith the same advisory
sories followed obey formulaexlpI there will be no NMAC. (?tru_e). Otherwise it can select_a saevisory(w; V'O.) to_ be
applied after at most delay; or it can safely remain silent,
displayingCOQC if it knows an advisoryw; v,) that is safe
if it is followed after a combined pilot and system and pi-
lot delay of + ". In line 6, the pilot non-deterministically

Since the pilot will need some time to react to an advisor)f:hooses an acceleratioa (= ), within some limit (va

issued by ACAS X, we generalize the model of Sct. 3 to a’). The set of differential equations in line 7 describes
account for a non-deterministic, non-zero pilot delay, andhe system's dynamics, and the conditions in line 8 use the

for periods of time where the system does not issue an adv?—IOth to ensure that continuous time does not evolve longer

sory (i.e., COC). In Fig.]4, for example, the pilot reacts to athan system delay without a system response (- ).

CL1500 advisory only after a certain reaction delay duringThose conditions also ensure that whén 0 the pilot

which she was still in the process of initiating a descent. starts complying with the advisory. The model is structured
so that the pilot can safely delay responding to an advisory

for up to , and the system can additionally delay issuing
an advisory associated witBOC for up to". Because of

the loop in our model (line 9), the safety guarantees of this
egheorem apply to encounters whose advisories change as the
encounter evolves, encounters with periods of no advisory,

are ying head-on (, = 180 ). We use the same conven- Tk he
tions as in Sedf]3 far andr, . The model includes an initial and encounters where the ownship pilot exhibits some non-
deterministic behavior in the vertical dimension.

period where there is no compliance with any advisory— h fth ; h h
the ownship accelerates non-deterministically (within lim-, Int e.rest of the s_ect|on yve l.JS.e the same approach as
its) in the vertical direction. As before, we derive the safell Sect[ B: we rst derive an implicit formulation, then an

regions by considering all possible positions of the OWn_equwalent explicit formulation of the safe region, and prove

ship's puck in all possible trajectories that might evolve inthat the safe region guarantees that the intruder cannot cause
the encounter. To represent pilot delay for an advisory, th&" NMAC.

model assumes an immediate advisory, and period of non-

compliance , representing the time it takes the pilot to re- 4.2 Implicit Formulation of the Safe Region

spond. To represent COC, the model looks for a safe advi-

sory it can issué in the future if necessary, wheteis the  As in Sect{ 3.3, let us place ourselves in the coordinate sys-
system delay—i.e., the time before the system can issuetam centered on the current position of the ownship and

Corollary 1 (Correctness of explicit safe regions)he d
formula given in Eq(T) remains valid when replacing all

4 Safe Region for a Delayed Pilot Response

4.1 Model

In this section, we still assume that the ownship and intrud
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Fig. 4 Nominal trajectory of the ownship (red) and safe region for the intruder (grdelgyedresponse

where the intruder is xed, and let us rst assume that theLemma 2 (Equivalence of delayed explicit safe regions)
ownship receives an advisofw; vj,) such thatw = +1 , fw= 1,r, 0hy>0,r, 08>0, a0, 0
andthat 0. Letus focus on the period of time before theand” 0 then the two condition® ﬁnp,(r; h;v;w;v)s) and
pilot reacts, which we henceforth call delay. During the deD gxpl(r; h;v;w; v|,) are equivalent.
lay, the ownship can take any vertical acceleration less than
a¥ in absolute value, therefore its most restrictive nominal
trajectoryN ¢ is to accelerate the opposite way of the advi- _ o
sory, at acceleration a¥. Horizontally, its speed is constant > Safe Region for Subsequent Advisories
atry. It thus describes delay parabolain red on Fig[%, _ .
and its position(ry;hn) along the nominal trajectory for The safety analysis from Sefc}. 3 requires the system to only
0 t< isgivenby(rn:hn)= ryt %dtz vt issue adwsolrn'eg that will never lead toacqlhsmn. After pre-
. . . . senting our initial results to ACAS X designers and engi-
After the delay, i.e., after time, the nominal trajectory . . .
d; _ _ neers, we received feedback that the safety advice for single
N ¢ is the same as a nominal trajectddy from Sec@, L . . .
. . S . | advisories was too restrictive for their operational purposes.
translated by time and by its position at time given by . . i
d d : . . Early in an encounter, there is often enough separation be-
r¢ = ro( ) andh® = h,( ), and starting with vertical ve-

locity v = v a? . Asin Sec 38, we can now express thetween aircraft and time in the encounter so that an initial
. y N L — P advisory, which would not be safe on its own, can still be
implicit formulation of the safe region:

changed or corrected to keep the aircraft safe. The rationale
8t:8rn:8hy:(rn;hn) 2N 91j r rpj>r p_h hy< hp is that while ACAS X is designed to avoid collisions, it is
also designed to avoid bothering pilots as much as possible.
Symmetrically, the reasoning of this section extends to the palance these concerns, if an encounter is not immedi-
case wherev = 1. Moreover, we can handle cases whereately threatening, ACAS X will typically rst issue COC, or
d < 0, i.e., after the pilot has reacted, by replacth®y 3 preventive advisory like DNC or DND, before issuing a
max(0; d). The generalized implicit formulation of the safe more disruptive advisory to the pilot. In those cases, the rst
region is given a®f,, in Fig,§. Note that it involves the aqyisory is often not safe in the sense of Sgct. 3 : it will tend
expressio\(t - max(0;d);hn  h%; v w;vi) from Figl3 o keep the planes from ying directly towards each other
capturing the implicit safe region of Se[ct. 3.3 translated bymmediately and will only ensure safetyr a few seconds
time max(0; d), vertical heighth?, and starting at vertical put notfor the rest of the encounter
speed/". Itis proved correct in KeYmaera. As a consequence, running the safety analysis on the

Theorem 2 (Correctness of delayed safe regionghe d_ immediate advisory leads to counterexamples considered as
formula given in Eq@) is valid. That is as long as the advi- false alarms by the ACAS X designers. Anything is safe if

sories obey formulﬁ)ﬁnm there will be no NMAC. you are far enough away; many of'the example§ of ungafe
behavior we found were uninteresting because if the pilots
chose a course that brought them closer, the system would
4.3 Explicit Formulation of the Safe Region issue a more disruptive, but safer follow-on advisory. This
section builds on the previous work to develop a more so-
Similarly as in Secf.]4, we determine an explicit formulationphisticated safety analysis that evaluates the safety of the
of the safe region, called gxp, in Fig.ﬁ based on Fiﬂ 3, and presentadvisory, and whether it is safeould still be made
prove it correct in KeYmaera. safe in the future, if necessaryia subsequent advisories.
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Implicit formulation

wad
Bd(thn:;v) 0 t< max(0:d)” hy = Tt2+ vt
wad
const hi= - max(0;d)? + vmax(0;d) » v¢ v=wa®max(0;d)

Dt (M Viw; v i) 8 t:8rn:8hn:8h%:8v: ry = ryt~ (BY(tha;v) _const® A(t  max(0;d);hn  h%viw;vyp))
L o(jr raj>rp_w(h hn) < hp)

Explicit formulation
d

rd = r, max(0;d) vd=v wa?max(0;d) hd = % max(0;d)? + vmax(0;d)
case/ (r) ro r rp bound7(r;h) wh< hp casg(r) rp<r r9+r, case(r) rp r<r9 rp
boundg(r;h) wry2h< a?d(r ro)2 + wryv(r rp) ry2hy boundg(r;h) wry2h< a?d(r +rp)2 + wryv(r + rp)  ry2hp
0 !
D Sepi(1: i v Wi v 1) (casg(r)! bound;(r;h)) A Lexil(r r&h  h% v wvg)

i=7

Fig. 5 Implicit and explicit formulations of the safe region for a delayed response

We use the neologismafeableto describe this superset of w = 1. To simplify the explanation, let us rst consider
the safe region. the case of an initial upsense advisory, i.e., witlr 1; the
This section builds up safeable in three steps. We rstcase of the initial downsense advisory is symmett@mwver
present two-sided safe regions, providing both an upper anlsdoundandupper boundwill refer to the casev = 1; lower
a lower bound to the trajectory. We then present boundednd upper bound are switched in the case 1.
safe regions, which only ensure absence of collision for a
limited amount of tim€'; bounded safe regions pro\/ide no 5.1.1 Model Letus considera pilOt receiving an initial ad-
guarantee after timg, and the corresponding model has noVisory (w; vie) with w = 1, for example CL1500 or DND.
liveness. Based on these important building blocks, we -In Sect[8 we argued that following the advisdw; vio)
nally present safeable regions, which model subsequent afreant that either the vertical speed of the ownship should be
visories, and have a corresponding model providing livegreater tham, or its acceleration should be greater tiagn
ness. This section is new, and was not presented in the col@ading to the differential equation's domaiv — wvj, _
ference version of this papér [12)]. wa  ao. Similarly, we x upper bounds,, anday, on the
Throughout the section, we sill assume that the ownvertical velocity and acceleration of the ownship while fol-
ship and intruder are ying head-on = 180 ), and we lowing advisory(w; Vvi,). They are again symbolic parame-
use the same conventions as in 9gct. 3 fandr,. We say  ters, with typical valuesy, = g=2andvy, = 10;000ft/min.
that a subsequent advisory iseversalif and only if itis ~ We modify the model of Eq[ (1) to capture these new ideas,
a downsense advisory\/( = ]_) while the rst ad\/isory and obtain the model of E®(5), hlghllghtlng the differences
was upsensen = 1)—or vice-versa. In the opposite case in bold.

we usually call the subsequent advisorsteengtheningr a ity 0Mhy>0Ar, O0Map>0A ay A

weakening 2N (W= 1_w=1) A Cod (0 Vi Wi Vio; Vip) !
s [( (?true[
5.1 Two-Sided Safe Region with Inmediate Pilot Response (w:= 1[ w:=1); V= ;Vyp =

s 2Cm(BNIV W Vio; Vyp); advisory:= (W Vi; Vup) );
A rst step towards the treatment of subsequent advisoriesis  a:=
to provide both a lower and an upper bound to the trajectory fr0= r,;h%= v;v9= a

of the ownship while it follows an initial advisory. Indeed, &(WV Wy, _wa ap)

if the initial advisory is upsense with a reversal as a subse- A(wy  wvg M wa ay) _wa  0)g
quent advisory, then itis crucial to also haveugperbound ) ] (jrj>r p_jihj>hyp)

on the height and vertical velocity of the aircraft when the (5)

pilot starts following the subsequent advisory. Safe regions _ _
described in Sedf]3 are not suf cient, as they only provide ~Beyond replacing theower safe regiorL ;. by a two-

a lower bound wherw = 1, and an upper bound when sided safe regioﬁ:im,ljl, we imposea,, &y to ensure that



10 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

0 1000 2000 3000 4000 "™

Fig. 6 Nominal trajectory of the ownship (red) angpersafe region for the intruder (green), immediate response

r(ft)

0 1000 2000 3000 4000

Fig. 7 Nominal trajectories of the ownship (red) atveb-sidedsafe region for the intruder (green), immediate response

the pilot can always nd a suitable acceleration betwagn initial value ofv; in full generality the upper target vertical
anda,p (line 1), and we addy, in the new choice of advi- velocity becomes thenodi ed upper target vertical veloc-
sory by the system (lines 4 and 5). ity w max(wvyp; wv). Throughout the implicit and explicit

More interestingly, we update the evolution domain offormulat|ons of the safe region, this modi ed target vertical

the differential equation (lines 8 and 9). To understand Wha\{elocny will _play the_ rple simply played by, in Sect]$;
. . we usually highlight it inbold.

it means for the ownship to respect the new upper bounds
Vup andayp, let us rst consider an advisory for whicl =

1, and let us distinguish two cases. If initially ~ v,p,  5.1.2 Implicit formulation of the safe region The safe re-
then both upper bounds on vertical velocity and acceleragion Cim|lnl for two-sided safety consists bfim})I from Figﬁ
tion need to be respected simultaneously, leading to conding an additional upper bound, .. The implicit formula-
tionv vyp™a  ap Otherwisey > vyp and the ini- o1 of the upper bound, ., is similar to the implicit for-
tial vertical speed of the aircrattis initially already strictly mulation of the lower bound described in SECi 3.3. As in

greater thanv,,. Given that the pilot receives ampsense  gec373 we use a coordinate system xed to the intruder
advisory, it would be unrealistic to assume that the alrcrafttand with its origin at the initial position of the ownship.
would typically follow a negative acceleration to get its ver-

tical speed to go back ta,,. Instead, we assume that the

pilot does not accelerate up further, leading to the condi-. L . .
. . i _ First case: ifw = +1 andv,, V. We again consider a
tion a 0. Incorporating the symmetric case = 1

_ _ i inal trai :
leads to the general evolution domain for the upper boun&dl grent) upper nomina t.rajectorfyup, represente.d n red_

on Fig[®. This nominal trajectory accelerates vertically with
(Wvip  wvg*wa ag)_wa O

acceleratiorap until reaching the modi ed target vertical
This analysis leads to an important realization for thevelocity (which, here, isy,, = max(wvyp; wv)), describing
upper safe region: in the case where the initial vertical vea parabola; it then continues at the vertical velogigyalong
locity overcompliegi.e., whenwv  wv,p), the upper tar- a straight line. As before, the horizontal velocity remains
get vertical velocity is noty, anymore, but rather it is the constant at,. The ownship positiofr,; h,) at timet along
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Implicit formulation

Aup(tihn;v;w;vyp) a
up

tn

Aup

Uimél(r;h;v;w;v wp) 8 thi8rp8hn: rn = rytn M Ayp(tihn;viw;

Compi (15 D VW3V 105 Vup)

Explicit formulation

< max(0; w(vup

max(0; w(vup

D n oy = Wy 2y,
!
V) ap = WMaX(wvpiwy) - wmax(0;w(vep v))?
n — n
Aup 2aUP
vap) ! (ir raj>rp_w(h hp)>hyp)

Lt (VI WSV 10) _ U2 (113 vy Wi v up)

casgq” (; V; W; V up) ro r rp boundyo (r;h;v;w;v yp) wh>hy
max(0; max(0;
casg,' (FV;W;vup) rp<r rp+ rvmax(0; wlvip V) case,! (1 v; w; v up) rp < rp+ rvmax(0;w(vup _v))
Aup Aup
boundy (r; h; v;w;v up)  wry2h> %(r rp)2 + wryv(r rp)+ ryZhp
a
boundz (r;h; v;w; v yp)  wry2h > %(r +rp)2 + wryv(r + rp) + ry2hp
max(0; max(0;
casgg” (1 V; WiV up) ot Owlvp V), case,t(nV:wivup)  rp+ L Owlve V) _,
Aup Aup
2
max(0;
boundys (r;h;v;w; v gp) (v =0 A r>r p)_ wryh > max(wvyp; wv)(r + rp) fvma (O,2v;(vup V) + rvhp
up
max(0; 2
bOUnd14(I';h;V;W;V up) (rv = O)_ wryh > maX(WVup;WV)(I’ rp) Iy ( vZV;(VUp V)) + rvhp
up
A3
Uexgl(r;h;v;w;v up) max(wvyp; wv) > 0! (casg *(r;v;w;v ) ! boundi (r;h;v))
i=10
A
A max(wvgp;wyv) 0! (case L v;wivgp) ! bound (r;h; v )
i2f 10;11;14¢g
Coxpl(HMVIWIVi0;Vup) L (i Viws Vv i0) _ Ug (1 hi viw; v gp)
Fig. 8 Implicit and explicit formulations of the safe region for an immediate response (upper bounds:fr, lower bound fow = 1)

this nominal trajectory is, thus, given by:
8

% r\,t;a—;pt2+vt ifo t< M(a)
p
2
V \)
(rn;hn) = rvt; vypt (ugaupj y
if >~ t (b

aup

(6)

Recall that our speci cation is that the ownship moves

Generalization.The reasoning above is generalized to the
casew 1, leading to fully general equations for the
implicit formulation of the upper safe region presented in
Fig 8.

Finally, the condition for the two-sided advisda(m[l), is
built as a disjunction of the lower safety advischrynt| and
upper safety advisorwim;,. Although we cannot assume
that the ownship will follow either nominal trajectory, we
show that an ownship following the model of Hq. (5), thus

ver+especting the two-sided conditiﬁri}mlj,, stays between both

tically with acceleration ofit mosta,p, then continues with  nominal trajectories, keeping it safe. The proof of safety is

vertical velocity ofat mostmax(vyp; v). Therefore all possi-

veri ed in KeYmaera X:

ble future positions of the ownship will turn out to below

the red upper nominal trajectory. Therefore, an intrud
now safe if its positior(r; h) is always either to the side
or aboveany puck centered on a point My, that is:

8t:8rn:8hn:(rn;hn) 2 Nyp @)
jr

mj>rpo_h hy>h,

er istheorem 3 (Correctness of two-sided safe regiongjhe
of dL formula given in Eq(B) is valid. That is as long as the

advisories obey formulé)imlljI there will be no NMAC.

5.1.3 Explicit formulation of the safe region Construct-
ing the explicit safety condition for the upper bongxél

We call this formulation the implicit formulation of the up- follows similar motivation and methods as in SEcf] 3.4, but,

per safe region.

instead of distinguishing cases upon the target vertical ve-
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locity vio, it distinguishes them upon the modi ed upper tar-  The assumptions of Lemrph 3 are invariants of the model
get vertical velocityw max(wvyp; wv). in Eq.(8) . As a consequence, a model of explicit safe re-
gions inherits safety from Theorgrm 3, which we formally
First case: ifw = +1,ry, > 0O, Vv Oandvy > 0. In prove in KeYmaera X (again by conditional congruence rea-
particularvy, > v, therefore the modi ed upper target verti- soning).
cal velocity ismax(vyp; V) = Vyp. This is the case described , .
in Fig 8, and the nominal trajectol, is given by Eq /(7). C_oroIIary 2 (Correctnes; of_two—S|ded ex.pllcn gafe re-
The boundary of the (green) safe region in Flg. 6 is drawn b;Q'O”S),The d. formula given in Fq@ remains valid When
either the top side, the top left hand corner or the top righfeP!acing all occurrences o€y, (r; 1 v; w; Vio; Vup) with
hand corner of the puck. This explicit formulation is a little Cex%;l(r; h; Vi w; Vio; Vup). That is, as long as the advisories
bit less intuitive than the formulation for the lower safe re-followed obey formul&,(r: h; v; w; Vio; Vip) there will be
gion of Sec 34 because the different cases overlap. It cat® NMAC.
nonetheless be described by a set of equations (where cases

10 to 13 are similar to cases 10 to 13 of [Fig. 8): ] )
5.2 Bounded-Time Safe Regions
0. positions left of the puck's initial positiom& 1) are
in the safe region; We build on the two-sided safe region to build a model and
10. up tor = ry, the boundary is horizontal along the top safe regions for bounded-time safety, i.e., regions only guar-
side of the puck at its initial position; therefore for anteeing safety of the ownship up to some titnérlying
r rp,the positior(r; h) isin the safe region ifand only aircraft in ways that are merely safe for a bounded time
if h>hp; is inherently unsafe. It is, nevertheless, a critical building
11. then the boundary can follow the top right-hand corneblock toward constructing safeable regions, since those fea-
of the puck as it is going down the parabola of 4. (6)(a)ure advisories that are acceptable for some tinagd can
therefore forr, <r  rp+ % the position(r;h)  be followed up with safe subsequent advisories. This sec-

issafeifandonlyih > =% (r rp)2+ X (r rp)+hy;  tion studies only the former aspect of safety for bounded

12. the boundary can also follow the top left-hand cornetime. An intuitive understanding of bounded-time safe re-
of the puck as it is going up the parabola of Eg. (6)(a);gions can be gathered from Hig. 9: the nominal trajectories
therefore for r, r< rp+ “(“fﬂ# the position  stop at time", beyond which the safe region provides no

(r:h) is safe if and only it > z?uvpz (r+rp)?+ (r+ guarantee. The corresponding safe regions are truncated ver-

rp) + hp; note that this case can overlap with case 10; tically atr = ry" + rp. _ o .
13. nally the boundary follows the top left-hand corner of ~ We call the corresponding conditiotsy,, and L,
the puck as it is going up the straight line of EQ. (6)(a);for lower bounded-time safety);,,; and U, for upper

therefore for r, + (% V) | the position(r;h) ~ bounded-time safety, ar@[,,, andC,,, for two-sided bounded-
* time safety. By convention, a negatiVe 0 signi es an un-
bounded region, which ts to the notatiohs, . andL 2,

Upnp @ndUg 51, Cipy @NdC,, gy Used in Seck3 arjd 8.1.

impl expl’ ~impl

is in the safe region if and only #i > Y2(r  rp)

fy
(Vup V)2
2ayp + hP'

GeneralizationThe general case is given intheformulg(rl,I 5.2.1 Model We modify the model of Eq[(5) to re ect
of Fig[8. The cases 10-13, described above in a speci the ideas of safety for up to time and obtain the model
case, are for the casmax(wv,p; wv) > 0, whereas cases of Eq.[8):
10, 11 and 14 are used for the camax(wvyp;wv) 0,
case 14 follows the top left-hand corner of the puck.

Finally, the explicit condition for the two-sided advisory * Tp 0" hp> 071y 0% ap> 0" ayp &
Cexp IS built as a disjunction of the lower and upper safety 2 fw=1_w=1) 7 Gy (KR W Vio) Vi) !
advisories, as shown in F[g. 8. A graphic representation of [(((W:= 1[ wi=1)ivio:= jvip:= |
Cexﬁ,, (in green) along with its associated nominal trajecto-+  ?Cimpi (I D5 Vi W; Vio; Vip); @dvisory:= (W Vio; Vup) );
ries is shown in Fig.]7. We again use KeYmaera X to for-s t:=0;
mally prove that this explicit two-sided safe region formula- s (a:= ;

tion is equivalent to its implicit counterpart: 7 fro= ry;h%= viVv0= aitf=1
8 & (t n _ n < 0)
Lemma 3 (Equivalence of two-sided explicit safe regions) AWV WV wa  ap)
fw= 1,r, Ohy>0r, 0a,>0ap acthen 4 A((wv o wvg, A wa ay) _ wa 0)

the two condition€, &, (r; h; v; w; vio) andC, (1 hi viw; vie) w @)
are equivalent. 2 ) 1(rj>rp_jhj>hy)
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Fig. 9 Nominal trajectories of the ownship (red) abdunded-time safeegion for the intruder (green), immediate response

4000

As usual, the proof of safety is veri ed in KeYmaera X:

Theorem 4 (Correctness of bounded-time implicit safe
hrggions) The d_ formula given in Eq§) is valid. That is

4, the most notable difference is the disappearance of t L v .
2rue case in the system decision (line 3 of Eg. (5)): since®> long as the advisories obey formii,, there will be no
NMAC for time up td' if * 0, and forever if* < 0. There

an advisory can only be followed during at most tithave o
disallow the model to loop and continue following the same?'® o guarantees beyond titéf 0.

advisory. However, we need to still allow the pilotto use sev-  The loop invariant used to prove Efg] (5) has a subtle dif-
eral accelerations while she is following a given advisory; toference compared to the previous theorems. Unlike in all
model this we add a loop [ around the pilot decisions on previous theorems{:i';npl is not an invariant of the corre-
lines 6 to 11; in Eq[(5) this second loop was not necessargponding model Eq.[5) (but almost). To turn the implicit
thanks to the?true case. Finally, we add an explicit clock conditions of Figl ID into an invariant, we capture tiee
variablet to model time since the last advisory was issuedmaining timethat we must follow an advisory by simply
The variabld is initialized to0 at each initial advisory (line turning" into (" t) (i.e., when already having followed an
5), evolves with derivativd and enforces that the differen- advisory for duratiort we have to follow it for the remain-
tial equation does not execute for longer than time boundhg duration" t). The condition' < 0 encodes advisories
"(t "inline 7) unless time is unbounded (encoded bythat must be followed forever, and remains unchanged in the
" < 0). Note thatt is only reset on line 5 before the pi- invariant. S8'< 0_t, "turnsinto"< O_t, " t
lot's loop lines 6-10, so beyond tinte= ", only repetitions  in bothL ., andU;. to obtain the invariant.

of the outer loop lines 3-11 in E¢](8) make any progress,

which will rstissue an updated ACAS X advisory in lines 9-2-3 Explicit formulation of the bounded-time safe re-
3—4 for the pilot to comply with from then on. gion The explicit formulation of the bounded-time safe

region also builds on its unbounded-time counterpart from
5.2.2 Implicit formulation of the bounded-time safe re-  S€CtS.L. In casebto 6 and10to 14, and whenevet 0,

gion Theimplicitand explicit formulations of the bounded- ©Nly the following cases need to be modi ed:
time safe regions modify the different cases presented in— for acasethat follows the bottom or tofeft-hand corner

(8)
Beyond replacing the conditia®, ., by C,, at lines 2 and

Sect[5.1 to take into account the time boundrhe gen-
eral philosophy is to have the bounded-time equations be an
extension of the equations presented in $edt. 5.1: to achieve
that all supplemental restrictions are of the foffnr< 0_
restriction), which trivially evaluates tdrue when consid-
ering an unbounded time condition (represented by 0).
Full equations are presented in Kig] 10.

The implicit formulationsL ., andU,,, are very sim-
ilar to the one presented in S¢ct]5.1: when considering a
bounded nominal lower or upper trajectory, we only add a
conditionty " whenever' 0, to truncate the nominal
trajectory at timet, = ". As usual, the two-sided implicit

formulationC;,., is the disjunction of;,, andU

impl

of the puck, the corresponding boundary of the safe re-
gion should now stop when the puck reaches timee.,
when the corner reachesr, + r,". Therefore we add
the conditionr rp + ry". This is the case ofasg,
casg, casg, casg, andcasg,;

for a casethat follows the bottom or todght-hand cor-
ner of the puck, the corresponding boundary of the safe
region should now stop when the puck reaches time
i.e., when the corner reachgs+ r,". Therefore we add
the conditionr ro + ry". This is the case ofase,
casg, casg,, andcasg,;

casg, models the boundary above the puck at tithe
and is unaffected by bounded time;
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Implicit formulation
Limpt(iViw;vio) 8 th8rni8ha: ("< 0_tn ") rn = rytn * Ap(thn;viwivig) ! (r raj>rp_w(h ha)<hyp)

Ui','“m(r;h;v;w;v wp) 8 thi8rn8Bhn: ("< O0_tn )" rn =rvtn M Awp(thn;viwivep) ! (r raj>rp_w(h hp)>hyp)
Cimpt (FNViWV 10:Vip)  Lion (1R VW5V 16) _ U (R Vi WG v up)
Explicit formulation
caseg (1, V;W;V ) casql(r;v;w;v|o)A ("< O0_r rp+ rv")

case (I, V;W; V ) casezl(r;v;w;vb)’\ "< 0 min(© swv )

Qlo
case (I; V; W; V o) cas%l(r;v;w;vb)" ("< 0_r rp+try")
caseg, (I, V;W; V ) casql(r;v;w;vm)’\ ("< 0_r rp+try")
case (I, V;W; V ) casesl(r;v;w;vm)’\ ("< O0_r rp+ rv")
case; (I, V;W; V ) caseﬁl(r;v;w;vm)’\ ("< O0_r rp+ rv")

casey (1, Vi W;Vup)  casgy (V;W;V up)

casgy (;viw;vp)  case, (Gviwsvep) A ("< 0_ 1 rp+ry")
case, (1 V;w;vup)  case,’ (V;w;vup) A ("< 0 _r fp+ Iv")
casels (I viwivup)  cases! (KViwivup) » ("< O _r o+ ry")

casém(r;v;w;vup) casel41(r;v;w;vup) AN"< 0_r rp+ ry")

o
L expi(1: 3 Vi W3 v o) wvp 0! (casg (rviw;Vie) ! bound;(r;h;v;w;V o))
i=1 |
% !
Nowvp < 0! (casg (r;v;w; v yp) ! bound; (r; h; v;w; v yp))
i=5
A3
Uéxm(r; h; v w; v yp) max(wvyp; wv) > 0! (case (r;v;w; v yp) ! bound: (r; h; v; w; v yp))
i=10
I/\
N max(wvgp;wyv) 0! (case (r;v;w; v yp) ! bound; (r; h; v; wW; v up))
i2f 10;11;14¢g

Conpl(TMVIWV 103 Vip) LT VWSV 1) _ Ugyey (1 Vi W3 v up)
Special cases of the bounded-time explicit formulation

caséts(r;v;w;vb) caséG(r;v;w;vm) 0N rp+ oy r rptory”

max(0;w(vi V) |

boundys (r; h; v; w; v o) wh < %"2 +wv" hp

Qo
A s max(0;w(vie V) wh < wy* max(0;w(vi V)2 h
ajp 2a), P
boundyg (r; h; v; w; v up) —maX(O;V;(V”p Dy whs %"2 + Wy + hp
up
. ) 2
A s max(0;w(vyp V) | wh> max(wvap: wv)” max(0;w(vyp V) + hp

Aup 2aUp
C;xm(r; h; v, w; v o) L;Xm(r; h; v;w; v o) » (wvig < 0! casq'f5 (r;v;w;ve) ! boundss (r;h; v w; v )
Oéxm(r; h; v w; v yp) U;Xm(r; h; v;w; v gp) & (Mmax(wvyp;wv) 01 casgg (I, v;W; Vv up) ! boundss (r; h; v;w; v yp))
¢

expl (1 D ViW; v 10:vip)  Cayn(1 i viws v 1) _ Ogy(1 13 Vi Wi v up)

Fig. 10 Implicit and explicit formulations of the safe region for bounded time



A Formally Veri ed Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 15

— casg should only appear if the puck ever reaches theprovides liveness of the model: it ensures that the ownship
bottom of the parabola E](6)(a), that is, only in the caseloes not get stuck at tine
where w ", which is exactly the condition The safeable formulation is presented in Fig. 12, and a
we added. graphic representation in F[g.]11. Throughout this section
we suppose thdt 0, i.e., all the safe regions not explicitly
labelled as non-bounded-time (with superscrid) have a
gite time bound.

The formulas foll ., , Ug,,, andCy,,, are constructed from
these cases as before.

However, those changes alone are not enough. In th
expression OL e and whenwvie 0, there 1S @ MISS™ 5 31 Model The model is presented in Ef] (9), and builds
ing explicit boundary along the bottom side of the puck aton the bounded-time model E] (8), with very few changes
time "; we add it explicitly ascases ! bound;s to form H ' ’
(o Similarly, in the expression dd,, , and when we have
max(Wvyp; wv) 0, there is a missing explicit boundary 1 rp 0" hp>07r, 0% ae>0" ayp ao

along the top side of the puck at timigwe add it explicitty """ 0" (w= 1_w=1)

ascasgs ! bounds to form O, We still de ne €, as s A CR) (1 by v wi vio; VES Vip: VEX) !

the disjunctiorl’,,_ O, These extracases 15and 16 are« [(((W:= 1[ Wi=1); Vo= [vyp:= ;

inconsequential for the safeable result and are, thus, kept in ?Cfrj;‘fab'e(") (13 13 V3 W3 Vio; VES, Vg VEX):;

the separate expressiéjxpl. 6 advisory:= (W; Vie; Vyp) ); ©
t:=0;

Lemma 4 (Equivalence of bounded-time explicit safe re- .

. 8 ( a.=
gions)Ifw = 1,1 0,hy, > 0,1y 0, a0 > 0O, f0= . +h0=
= ry;h=

ayp  ap then the two conditioné‘,i"mp,(r; h; Vi W; Vio; Vyp)

v,v0= a;t®=1&t "
) : 10 AMwy o Wy _wa @)
and €, (1 h; v; W; Vio; Vyp) are equivalent. s AW Wvp A wa agp) _wa  0)

To prove this lemma we rst prove that, . (r;h;v;w;vie) )] (gr)' st ihi>hy)
andﬁgxpl(r; h;v;w;v),) are equivalent, then that conditions " 1" p_1T P

Uit (13 i v W ) andOg, (s h; v w; vyp) are equivalent. In fact, we are only changing the conditionsﬁlﬁ?{fahw)
The safety of explicit safe regions follows from Theo- on lines 2 and 4. But that makes a big difference: informally,

rem4 and Lemmfg4 by conditional congruence reasoning. instead of having a model that gets stuck at timee now
have a model that can always nd a safeable advisory (al-

Corollary 3 (Correctness of bounded-time explicit safe though we don't formally prove that last fact yet).

regions) The d_ formula in Eq(8) remains valid when re-

placing all occurrences iy, (1; i Vi Wi Vio; Vup) With the 5 3 5 1mjicit and explicit formulations of the safeable

formulaCy, (1 h; v; W; Vio; Vi) That is, as long as the ad- regions  The formulations presented in Fig]12 use the for-
visories followed obey formu@éxm(r; h; v; w; vio; Vyp) there  mulations of the bounded-time safe regions as building blocks.

will be no NMAC. The implicit and explicit formulations are built in very sim-
ilar ways.
_ As shown in Fig. Til, the nominal lower bound trajectory
5.3 Safeable region consists of a bounded-time lower bound trajectory starting

at timeO, followed by an unbounded-time lower bound tra-

Putting together the building blocks we have presented, WFectory starting at timé&; this nominal trajectory is at height

. . . _~safeabld") . . .
nally present"safeable regions, implial - and ex-  hex and vertical velocityw® at time". Therefore the safe-
plicit ij;‘fab'd ). The intuition behind safeable is captured able lower bound consists of one bounded-time lower bound

in Fig.[11: we consider all the positions and speeds at whichp to time", followed by an unbounded-time lower bound
the ownship can end up at tifieand in particular the lowest starting at time', heighth™ and vertical velocitw™.

such position and speed (position lower 1), and the highest The nominal upper bound trajectory consists, however,
such position and speed (position upper 1). At the lowest posf a bounded-time upper bound trajectory starting at ine
sition, we look at the most extreme strengthening availablefollowed by an unbounded time reversed (i.e., taking)

and at the highest position, we look at the most extreméower bound trajectory starting at tifiethis nominal trajec-
reversal available. The disjunction of the two safe regiongory is at heighh®* and vertical velocity®* at time". There-

of this strengthening and of this reversal corresponds to infore the safeable upper bound consists of one bounded-time
truder positions that can be avoided by an appropriate actidower bound up to timé, followed by an unbounded-time
at time": this is the safeable region. Another way of seeinglower bound starting at timg heighthf and vertical veloc-
safeable is that it is a subset of bounded-time safe that alsty v
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lower 1 reversal
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Fig. 11 Nominal trajectories of the ownship (red) asafeableregion for the intruder (green), immediate response

As usual, the proof of safety is veri ed in KeYmaera X:
Theorem 5 (Correctness of implicit safeable regionsyhe
dL formula given in Eq(9) is valid. That is as long as the
advisories followed obey formulayey, ™™ there will be
no NMAC.

Before proving the equivalence 6f7 "¢ andCn ",
we rst prove a lemma allowing us to simplify cases 15 and
16 presented in Seft. .2. Fig. 13 Top view of the two reference frames
Lemma5 (Simpli cation of cases 15 and 16)f w = 1,
ro 0,hy>0,r, 0a>0ayp aand" O horizontal encounter in the reference fraf@;i;j) (hori-

- sheranda e neinthe e fon L 1) £ e v vrca rconter 0
in Fig.[14, then:L L (r ry";h  h&ve%w;ve) | A : e ) -
9 e"p'( % o) zontal encounter from2dimensional motion to &-dimensional

casés (T, V;W; Vi) | bounds(r; h;v;w;Vio); ) e
~ givegnshex an dvexoas de ne d(ij:15the de nitionoo ysafeabiqry  motion, thereby simplifying the problem conceptually and
U U

h 1 . o, ox EXF:X computationally by reducing its number of variables.
In F'.g" thenl op(r rv"h - h¥EVES wivih ! Fig.[I3 depicts a top view of a generic encounter. We
casg(r Viw; Vyp) ! boundig(r; h; viw; vp). denote by the position, and, the velocity, of the intruder

Lemma 6 (Equivalence of explicit safeable regiondjw = ~ relative to the ownship, and by, 0 the norm ofr .
L,r, 0h,>0r, 0a >0ap aoand First suppose, > 0. The idea is to choose a refer-

safeabld”) 4 ~safeabld”) ence framgP; k; ") in which one axik is aligned withr,,

impl expl such that no relative motion happens in the other direction
", Its xed centerP is de ned as the orthogonal projection
of point O on the direction of,. The unit vectok is de-

6 Reduction from 3D Dynamics to 2D Dynamics ned as t+, and" is a unit such tha(P;k; ") is positively

oriented.

In this section, we show that, with respect to our assump- Letv;o (resp.vjp) denote the coordinates of a vector

tions, any3-dimensional encounter (S€ct. 2) can be reduced relative to the reference fram(®;i;j) (resp.(P;k;")).

to a2-dimensional encounter (Se[ct. 3) without loss of generThen, the coordinates forandr, are:rjg = (X;y), Mvo =

ality. This could be done using a change of reference framéry;ry),rjp = (s;n) andry,, =( ry;0). The scalar prod-

0, then the two condition€
are equivalent.

and a dimension reduction. uctr ry and the cross product r, are independent of the
For the sake of clarity, let us put ourselves in a refer-horizontal reference frame, therefore:
ence framgO;i;j;k) xed to the ownship Q). In thisref- x4+ yry = sfy Xry Yry = nry (10)

erence frame, the position of an intrudeis represented by

the tuple(x; y; h), and the differential equation system that Givenry andry, Eqns.[(ID) imply that the coordinates y)
governs its motion is given by° = r,,y°= ry, (h%9%= a,  are uniquely determined by the choice(sfn), as long as
wherery, ry anda remain constant as time evolves. The mo-r, 6 0 (usingr,? = r2 + r§). For any2-dimensional con-
tion of the encounter can be decoupled in®@dimensional  guration, the encounter can thus be considered a head-on
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Implicit formulation

Lisn{iﬁabldn) (KR VWV 10 Vi) Limpi(1ihiviwsv o)
8he%8ves 0 < max(0;w(vi V) hex = wayo , »
Alo
max(0;w(v v
3 ( ( lo )) A hEx: Vio"
Qo
! Limtl(r rv';h  hE5 v w; v
Ufma;fab"{") (Vi v upi V) Ui (1 hiviwi v gp) 2

8hi8vy: 0 a
up

max(0;w(vyp V))

wmax(0;w(v, V)2

+ V" MV = wa" v

< max(0;w(vup V) . hex = qup..z + Vgp"

A hE = wmax(wvyp; wv)"

A V= Vi
2ay0 t

NV = wagy" + v

v)?

wmax(0;w(v
( ( up N Vax = WmaX(WVup;WV)

- aup 2aup
1 " ex. ,ex. “yeX
! Limpl(r rv';h hgsvgs w,vup)
safeabld " e e ne . . . safeabld " e n . . safeabld " AT, .
Coat®) (1 v Wi v 1o VS Vupi VES) L) (i viwi v 10 V) | Ut ™) (1 hi v wi v g vES

Explicit formulation

safeabld " g g . " T 1 " . .
L expl ) (s v ws v 0:Vie)  Lexpi(fihiviw;vio) A Lot Tv'5h hEX vES wy v
wa . max(0;w(v, \
2 heX = 2'° "2 4 " and Ve = way" + v ifo "< max(0:w(vio v))
where ox — . wmax(0;w(v, V))? ox _ max(O;w(v.oalo v))
he* = vio % and VEX = o if _—_—
lo djo
safeablg") /. 1. .00 . \/€X " e 1 " ex. ,,ex. .\ ex
Uexpl (I’, h8'V'W'V upqup) Uexpl(rr h;v;w;v UP) N I—e)<p|(r rv';h hu Vg WiVgp
wa . max(0;w(v \
3 hge= WAw2 and v = way," + v fo < MXOwlvip V)
aup
where 2
wmax(0;w(v \ . max(0;w(v v
2 h& = wmax(wvyp; wv)" ( (Vup ) and vi* = wmax(wvyp;wv) if " M
2aup aup
safeabld™) ¢ ... 0. . EXe . ex safeabld™) ¢ ... 0. - safeabl€") /. oo )u 0 Ly,ex
Cexpl (RS VIWSV 105 VIZS Vup; VR L expl (rh;v;w;v g vE) _ Uyl (rh; v Wi v op; vER

Fig. 12 Implicit and explicit formulations of the safeable region

encounter whers plays the role of and where a new puck

radius, denotedy, plays the role of .
Let us now determine the radisg of the dimension-

the differential equations® =

As the encounter evolves (i©;i;]) alongx®= ry;y°=
ry, its dimension-reduced version evolveghik; *) along
ry;n® = 0, obtained by

reduced encounter, and prove that the absence of NMAC idifferentiating Eqns.[(J0) and canceling. The following
(O;i;j)—characterized by? > r l%—is equivalent to the proposition, proved in KeYmaera, combines both dynamics

absence of NMAC ir(P; k; " )—characterized bg? > s7.
Using [10):

nore = r2(x®+ y?) = (xry + yry)2 +(xry
ry?(s*+ n) :

yrx)2

Sincer, 6 0, this impliesr? = s?+ n2. Thereforer? > r 5
if and only if s + n? > r 7 or equivalentlys® > r 7
n? If r3  n? < 0, the direction of the vectar, does not
intersect the puck, the inequalisf > r 3 n? s trivially
true, and the encounter is safer jf n?

0, we choose the

and shows that the absence of an NMAC of radipisn
(0O;1i;]) is equivalent to the absence of an NMAC of radius
Spin (P;k; 7).

Proposition 1 (Horizontal Reduction) The following d.
formula is valid

Xry + Yry = sty M Xry  yry = nry?
2 2 - n2 2 2 - 2 2
Xty =nT+ s =ty

I X%= re;y%=ry;8%=  ry;n°=0]

X*+y?>r2% s?>r2 n?  (11)

new Ryck radius, for the dimension-reduced encounter asObserve that the horizontal NMAC condition {?;k; ")

Sp = rp? n? 0, and the safety condition ifP;k; ")
becomes® s3. When , =180 ,onehas=r,n=0
ands, = rp as in Secf.[344.

only depends on the change of one variable rather than two.
The proposition also applies to the special case 0. In
this case the origif® is no longer de ned, and Eqnsg. (10)
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are trivially true. The variables andn are constantssf = ness, is that it implicitly assumes that the subsequent advi-
0;n%=0), their initial values are only restricted by the con- sory is xed, or determined at the time of the rst advisory.
dition n? + s? = x? + y2? in the assumption of the propo- I.e., it asks if there existene subsequent advisoryow (at
sition, but they are not unique. When the relative positiorleast either the most extreme upward or downward advisory)
between the two aircraft does not evolve over time, if the inthat can guarantee safety in the future. In reality, ACAS X
truder is at a safe distance initially, the encounter is still safehooses the subsequent advisory later in time, with some
for all time. knowledge of the initial portion of the trajectory. In some
cases, it is advantageous, for example, to choose the most
extreme downward advisory for lower initial trajectories and
7 Tightness of Conditions to choose the most extreme upward advisory for upper ini-
tial trajectories. The result of this overapproximation is that
The conditionsi_im}), andL . in Fig.@, Dy @andDgin - ACAS X could always choose a safe subsequent advisory
Fig. _andcsaeabld”) g g safeabld”) i Fig. specify con- for some geometries that cannot be concluded safeable by

o impl : expl - Csafeable(") /Csafeable(" )
ditions we have derived for safety under varying assump*impl expl .

tions. While we have formally proved that each of these
conditions is suf cient to guarantee safety within the rele-
vant models (Theorefj 1, Corollgry 1, Theofgm 2, Lerfpna 2,
Theorenfib, and Lemnia 6), we have not proved that thesd Comparison of Safety Theorems to ACAS X
conditions are necessary for safety or tight. l.e., if an advi-
sory and aircraft geometry meet the safety conditions, themhe preceding theorems about safety are independent of the
the aircraft are guaranteed to be safe under the relevant dested system. To characterize the safety of ACAS X itself,
sumptions. However, we have not proved that advisories arge check whether advisories indicated by the core com-
not safe when that advisory and the associated geometry g@nent of ACAS X, consisting of the timing and logic ta-
not meet the conditions. bles, meet the conditions of the theorems. The timing and
In some cases, our conditions are overapproximationdogic tables of ACAS X contain scores for each advisory
For the conditions that do not account for subsequent ador a set of discrete sample states. Each score quanti es
visories safeconditions)vLimh/'- ex}ﬂ andDgnplngxpl, con- the desirability of issuing the corresponding advisory when
sider the following physically unreliable geometry. The air-in the corresponding state and is the result of optimizing a
craft are diverging horizontally (e.g., = 0 andr, > 0), Markov decision process (MDP). In practice, ACAS X mul-
the intruder is suf ciently above the ownship in altitude, i.e., tilinearly interpolates advisory scores from the values stored
more tharh, above the ownshigh(> h ), and the aircraft in the tables, given estimates of aircraft states. Although
are horizontally separated by exactly the radius of the puckhese estimates model uncertainty in practice, we check be-
i.e.,r = rp. Intuitively, the intruder is directly above the left havior for the sample points themselves, assuming perfect
edge of the gray box in Fifj] 4. If considering an up-sens&nowledge of state, to compare system behavior under best-
advisory, this geometry does not pda%;tl orD gxpl because case circumstances. Taple 2 shows the range of sample state
the conditions have no exception for intruders over the exadtoints, callectut-points for each of the 7 dimensions of the
edge of the puck. However, NMAC would require the own-logic tables. These non-uniformly sampled cut-points were
ship to accelerate upward at an in nite rate, so NMAC is notchosen by the ACAS X designers to maximize system per-
possible. formance for realistic encounters while keeping the size of
There are cases where advisories fail to meet the corihe tables modest. The previous advisory state includes the
ditions for subsequent advisoriesafeableconditions), but ~ Previously-issued advisory and information about whether
are safe under the relevant assumptions as well. Conditiorige pilot was acting to comply with the advisory at the previ-
C;’:‘L‘Tab'e(")/cgigfab'd") are built from a lower-bound trajec- ©US time step. This information is used in the MDP state for
tory and an upper-bound trajectory where, e.g., the lowerth€ multi-step optimization. Together these samples make
bound trajectory ends with an unbounded-time trajectory!P Over 648 billion state combinations for which scores are
corresponding to the strongest possible upward subseque®tPlicitly stored in the ACAS X logic tables.
advisory (vertical velocityw®). Such construction forms a  Corollary{1 and Lemn{g 6 along with TheorEn 5 reduce
reasonable overapproximation under the intuition that if théhe safety of all future trajectories to a static condition on
strongest upward subsequent advisory makes the lower-botime current statel. extl or Csigfab'q"), respectively. We ex-
initial-trajectory safe, that subsequent advisory would als@mine the advisory speci ed by the logic tables at each of
make any other initial-trajectory safe. Analogous reasonthe 648 billion state combinations for which scores are ex-
ing supports the construction of the upper-bound trajectoryplicitly stored and check the advisory against the respective
The limitation of this approach, with respect to complete-safeor safeablecondition for that advisory.
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parameter | samples | range of values

relative alt.h (ft) 45 [-8000, -4000, -3600, -3200, -2800, -2400, -2000, ..., -100, -50, 0, 50, ..., 4000, 8000]
ownship alt. rater (ft/s) 25 [-166.7,-83.3, -75.0, -66.7, -58.3, -50, ..., -16.7,-8.3,-4.2,0,4.2, ..., 83.3, 166.7]
intruder alt. ratey, (ft/s) 25 [-166.7,-83.3, -75.0, -66.7, -58.3, -50, ..., -16.7,-8.3,-4.2,0,4.2, ..., 83.3, 166.7]
previous advisory 33 f NonE-NonEg, DNC2000-NoNg, DNC2000-DNC2000,. . ., SCL2500-NoNE, SCL2500-SCL2500g
ranger (ft) 101 [0, 50, 100, 150, 200, 250, 300, ..., 1000, 1500, 2000, ..., 39500, 40000, 100000, 200000]
relative velocityry (ft/s) 187 [0, 10, 20, 30, 40, 50, 60, 70, 80,90 ..., 1700, 1750, 1800, ..., 2350, 2400, 2450, 2500]
velocity angle , (deg) 37 [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, ..., 145, 150, 155, 160, 165, 170, 175, 180]

Table 2 Discrete parameter ranges and number of cut-points speci ed by ACAS X run 13 and checked during comparison

(seconds) " (seconds) \ ad a = ap ap Safe Counterexamples
0 1 9=10° 0 (in billions) delay( ;") in seconds
= >
1 > g=6 g=12 acceleratior{a®; a ) 0,1) (1,20 (3,5 ((,7)
3 5 g=3 g=6 (g=108;0) 15.38 15.05 14.85 14.79
5 7 g=2 g=4 (9=6;g=12) 1540 15.03 14.87 14.88
) ) _ (9=3:g=6) 1543 1502 14.95 15.14
Table 3.Delay and Ac_celeratlon quameters Swept. During Loglc (9=2: g=4) 1545 1501 15.18 15.33
Comparison. Delay pairs (left) are tied together, while acceleration
pairs (right) are tied. The 16 combinations of these pairs are tested. Unresolvable States
(in billions) delay( ;") in seconds
acceleratior{a®; a ) (0,1) (1,20 (.5 (6.7)
Approach. To perform the comparison we use a 10-node (g=10%;0) 1042 10.64 10.84 10.96
cluster, each with 48 cores and 128 GB RAM. Checks for (9=6;9=12) 1042 1075 1116 1151
i ; ; 2l (9=3;g=6) 1042 10.88 1159 12.36
the relevant conditions are implemented in Jfjiand run (9=2 9-4) 1042 1104 1213 1346

on the 648 billion cut-point combinations in parallel, taking

approximately 8 days. We rst de ne what we mean by a Table 4 Number ofSafecounterexamples (top) and number of unre-
counterexample solvable states (bottom) for each delay and acceleration parameter set

De nition 1 (Counterexample) We say that a state isaun-

terexamplédfor the safe (resp. safeable) conditions if the adparameter,a , the overcompliance acceleration, is the dif-
visory given by the ACAS X logic tables for that state vio- ference between the upper limit of acceleration under the
latesL .5, given in Fig| 3 (respCoiy ") given in Fig) advisory,ap, and the lower compliance limigo. It is tied

and for which there exists an alternative advisory that doe each case to one half of the free acceleratitiriThe de-
satisfy the respective safety conditions. lay parameter pairs are also tied together during each query,

- i P _ meaning that during the rst querf/;") = (0;1) and for
We say a state inon-safe or non-safeablsf it is a coun the second query:" ) = (0 : 2), and so on. All 16 combina-

terexampldor the safe or safeable conditions respectively. .. . . . :
. tions of delay pairs and acceleration pairs are tested against
We selected a set of parameters for acceleration and de- . : L : )
: ._ the total 648 billion cut-point combinations summarized in
lay ranges, shown in Taljl¢ 3. The delays are parameteriz Lblg2
by two values and". The rst, , is the delay from time '
0 to the time at which the pilot begins adjusting vertical ac-

celeration to follow the rst advisory. The second delay pa_CounterexampIesTabIesBl and(]5 summarize the number

rameter,’, is the delay from tim® to the time at which the of counterexamples (D¢f} 1) we found. The lower portions

. . . f the tables show the number of initial states tested that
second issued advisory begins to be followed. Thus the rs X .
. . . . were not resolvable with any of the available safe or safe-
advisory is followed for seconds and we require that

. . able actions. That is, for those unresolvable states, there are
"> . The selections of delay parameters in Table 3 Have

values that are at least 1 second greater t llow a pe- no available advisories that pass the conditions we formally

riod of 1 second or more of compliance with a rst advisory. proved. For thesafecomparison, the checks we perform are

The right side of Table|3 gives the parameters governing thlémlted o states in the ACAS X tables where COC is the

limits of ownship acceleration. The free acceleratiah,as previous advisory (about96billion states). In addition, the

. . . . arameters and a are not used in the safe conditioris:
previously de ned, is the maximum absolute acceleration oP . . .
the pilot during delay or COC: it is swept between almostls xedto 1 as we assume that the pilot will follow the is-

X sued advisory forevera is not used as we assume that the
zero acceleration angE2. (We usedg=10° for almost zero Y A

S . o vertical acceleration has only to respect a minimal r
to avoid divisions by zero in our conditions.) The second X . y P d ag (
to satisfy the advisory. Thus, onlyanda® vary. One can

ttp://julialang.org I notice that taking into account the pilot delay in the formal
2 Inttp:/fjulial tice that taking int t the pilot delay in the f I
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Safeable actly 0. We believe this exception is caused by the fact that
gounfﬁreX?mples delay(:) i § many states are resolvable when there is no pilot response
In milions elay( ;") in seconds H H H H [P
acceleratior(a®: a ) 0.1 (L2 (35 6.7 delay, e, when the pilot responds |mmed|ately.to the is

_ sued advice. Once a moderate response delay is assumed,
(9=10°;0) 2663 99.7  39.2 316 there are many fewer resolvable initial states, resulting in
(9=6;9=12) 310.0 1172 1014 164.9 o .
(9=3: g=6) 3532 138.6 277.7 5447 fewer total counterexamples, albeit still a few hundred mil-
(9=2; g=4) 3989 1636 668.8 898.7 lion. Thesesafeablecounterexamples are also being used to

generate stressing short-time encounters that may be used

Unresolvable States for robustness testing.

(in billions) delay( ;") in seconds

acceleratior{ad; a ) 0,1) (1,2 3,5 6,7

(9=10°; 0) 11.03 1127 1151 11.64 Safety AnalysisThe comparison of the systemdafecon-
(9=6;9=12) 11.03 11.40 11.85 12.23 dition Dex})l (valid by TheoremP) gave insight into possible
(9=3;9-6) 11.03 1154 12.30 13.09 improvements for ACAS X. Our analysis led to the identi -
(9=2;9=4) 11.03 11.71 12.86 14.23

cation of unexpected behavior in the ACAS X run 13 (i.e.,
Table 5 Number ofSafeablecounterexamples (top) and unresolvable version 13) lookup tables. In some cases, the ACAS X advi-
states (bottom) for each delay and acceleration parameter set sory seems tinducean NMAC, i.e., if the initial advisory is
followed and not strengthened or reverted later, an NMAC
will occur when it would not have occurred if the aircraft
model reduces the number of counterexamples. This magontinued ying straight. A typical example, found during
seem at rst counterintuitive as one expects less unsafe adhecking against Corollafy kéferegions) with = 0 and
visories if the pilot responds immediately. However, givena® = g=2, is shown in Fid. 14. The ownship is ying from
that the previous advisory is a COC, the ACAS X tables arehe left and the intruder from the right. The tinBecorre-
designed to not necessarily issue a disruptive advisory rigl#ponds to the time of closest horizontal approach. As time
away and will rather either issue a preventive advisory (sucprogresses, the intruder ies towards the ownship and an
as DNC or DND) or simply a MAINTAIN before actually NMAC happens near the tinte= 0. The original path of the
strengthening those advisories in the future if needed. Thosawvnship does not lead to an NMAC. However, ACAS X is-
rst advisories may indeed violate the safe conditions al-sues a Do-Not-Climb advisory. If the pilot follows this advi-
though the system is able to resolve the potential encountersory immediately and stops climbing, and if the initial advi-
We also observe, on the contrary, that increasing the fresory is not subsequently strengthened or reversed, an NMAC
acceleratiora® results in more counterexamples and morewill occur.
unresolvable encounters. This is a straightforward effect of In other cases of counterexamples to Corollargafe
our worst case analysis: if we alloge2, say, as worst case regions), the advisory does not seem to have any bene t.
vertical acceleration, then we have to consider that the piloih those cases, ying at the vertical rates disallowed by the
will actually accelerate aj=2 during the delay, which may advisory would actually avoid NMAC, while not all allowed
be unrealistic. vertical rates of the advisory are safe.

Overall, as shown in Tabé 4, we found billions of coun- ~ Some safe counterexamples are tolerated, as ACAS X
terexamples to Corollafy Iséferegions). Many were used tries to minimize alerting the pilot unless it has to do so;
to create test encounters and tested in the full system asfer these cases, ACAS X will issue or strengthen an advi-
means of targeted stress testing. As alluded to earlier, trgory later to avoid issuing a disruptive alert immediately.
ACAS X system was able to resolve many of those by isAdditionally, the assumption of straight vertical ight is not
suing subsequent advisories, which actually motivated thalways valid. E.g., aircraft may actually be more likely to
safeable extension we developed in this paper. Indssfd;  level-off than continue at high vertical rates in some cases.
ablecounterexamples represent states where the advice givEfe particular unexpected behavior shown in [Fig. 14 was in-
by ACAS X may not be correctable by subsequent advidependently identi ed by the ACAS X team using simulation-
sories, although an alternative guaranteed safe sequence brsed testing, and is being addressed in a subsequent revi-
ists for our assumptions according to Lenjrha 6. sion of the system.

We can see from Tal¢ 5 that there are considerably fewer
safeable counterexamples than safe ones, hundreds of mBafeable Analysisin Fig[15, we see an automatically dis-
lions instead of tens of billions. Theoréindafeableegions) coveredsafeablecounterexample. The pilot is assumed to
is designed to detect points of no return. As with safe restart complying with the initially issued advisory at 5 sec-
gions, we see that the number of counterexamples tend tnds and will only begin complying with a potential subse-
have an inverse relationship with pilot response delay alguent advisory after 7 seconds from the initial time (the rst
though an exception to this trend occurs when delay is exadvisory will thus be followed for 2 seconds). For this state,
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11400 - |[—ownship (coming from left, within RA limits)
11200 - |—intruder (coming from right) IPPEE
11000 |~ = original ownship path PPl

- - NMAC box around ownship .=

10800

10600

10400 -

altitude (ft)

10200 -2

10000

9800 -

9600 1 1 1 1 I 1
-20 -15 -10 -5 0 5 10 5 20

time for ownship / -time for intruder (s)

Fig. 14 SafeCounterexample. Original ownship path (cyan) and intruder path (red) vs. ownship responding to a do-not-climb (DNC) advisory
issued by the ACAS X tables in starting states 4 ;000ft, ry = 200 ft/s, v =180 ,h =600 ft,v =1;980ft/min,v;, = 1;500ft/min.Time is

shown counting from -20 s to time 0; the time of closest horizontal approach. The 2D projection of the NMAC cylinder is shown centered around
the ownship as a dashed rectangle; the intruder intersecting with the NMAC region is shown by a red circle.

Counterexample: Action Issued = Maintain
Followed by Most Extreme Up/Down-sense Advisory Available

10400
10200 -
D
10000 |- =
g \ I e
g 9800 RN
3 1
= 1
® 9600 T I I SR T T T s
9400 ——ownship (coming from left)
I T > ——intruder (coming from right)
e delay 1
- delay 2
9200 |- - --NMAC box around ownship
] 1 1 1 1 1 ] ]
-20 -15 -10 -5 0 5 10 15 20

time for ownship / -time for intruder (s)

(a) lllustration of a Safeable Counterexample

(b) The Counterexample Under a Safeable First Advisory

Fig. 15 Safeablecounterexample, where “delay ) = 5 s, “delay 2"(") = 7 s,a9 = g=10%, anda = 0. Action issued is “maintain” for

the initial stater = 1;500ft, ry = 90 ft/s, v = 2:88rad,h = 300 ft,v = 33:33ft/s,vy = 50 ft/s, previous advisory = None. Plots

show absolute altitude of ownship vs. time and intruder vs. negative time; ownship travels left to right and the intruder right to left. Time is shown
counting from -16 s to time 0; the time of closest horizontal approach. The delay times are shown in vertical dashed lines. The 2D projection of
the NMAC cylinder is shown centered around the ownship as a dashed rectangle. When the intruder intersects with the NMAC region, it is shown
by a red circle, and when the intruder misses the NMAC region it is shown as a red dot.
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the ACAS X tables issue the advisory MDES, maintain dethey only cover a nite set of the continuous state space with
scent. The upper panel shows the most extreme upper and formal guarantees.

lower paths that a subsequent advisory can restrict the own- Von Essen and Giannakopouléui [3] use probabilistic model-
ship's motion to. Neither of these can avoid NMAC with checking to analyze an MDP based bn|[13]. They investigate
the intruder. This is a relatively close range, slow closingthe probability of several undesirable events occurring. Be-
encounter, as the initial horizontal separation is 1,500 featause they ostensibly analyze an MDP, their work inherits
and horizontal relative closing speed is only 90 feet/secondnany of the assumptions of ACAS X, including errors due
Both aircraft begin descending at moderate rates, offset veto discretized dynamics. Their analysis depends heavily on
tically by 300 feet. The problem occurs because the moshe MDP considered and thus needs to be redone on every
extreme descend advisory available has a rate of only 250&rsion of ACAS X.

feet/minute and with the OWnShip already descending at 2000 Lygeros and Lynch [18] use hybnd techniques to for-

feet/minute the increase in descent rate cannot avoid the ifnally verify the TCAS con ict resolution algorithms. They

truder. In this slow closing geometry, the two aircraft will be gssume—rather than prove—that TCAS ends up in a state

in horizontal con ict range for an extended period, which atyhere one aircraft has a climbing advisory and the other

this geometry lasts for 7 seconds startingat 3:5tot = 3 descending advisory. They then prove (by hand) a lower

3:5 seconds. In this case, Lem[1ja 6 tells us Bzdeableac-  pound on the vertical separation of both aircraft at the point

tions include Do-Not-Descend and Climb-1500. The |0W€r0f closest approach_ In contrast, we do prove as Opposed to

pan6| of Flg@ shows that if the OWnShip were, instead, tOlﬁssume that and when advisories are safe.

to climb at the maximum rates allowed by a sequence of Up-  Tom|in et al.[24], Platzer and Clarké[23], Loa al.[17]

sense advisories, this situation would have been resolvednq Ghorbalkt al. [10] use hybrid systems approaches to

and so is indeed a counterexample. design safe horizontal maneuvers for collision avoidance.
The smaller number cfafeablecounterexamples are of powek et al. [2] and Galdinoet al. [9] describe and ver-

special interest to system veri cation, as they are situationgy in the PV'S theorem prover a collision avoidance system

that cannot even be corrected by subsequent advisories. §their design called KB3D.

aid in robustness testing and tuning of the actual system, Overall, our approach is different from previous comple-

we have created a set of short-time encounters based on tnf’entary work in that:

counterexamples found using thafeableanalysis and are

sharing these encounters with the ACAS X designers. — unlike [3/13], we rely on an independent model from the
Overall, we have begun analyzing ACAS X using our ~ ©ONn€ used to design ACAS X; _ _

theorem and are identifying numerous valuable outcomes.~ Uniike [2/9110. 1%.23.24] we analyze an independent in-

These results either help us characterize tradeoffs being made dustrial system and not a safe-by-design system;

or help us identify undesirable behaviors in the system. As— Unlike [213/9] our analysis uses realistic, continuous dy-

one of our next steps, we aim to prove that ACAS X gives "amics, _ _ _

safe advice for continuous regions of the state space. Wherr Unlike [18/24] we provide universal safe regions that can

comparisons are extended to check contiguous regions of Pe reused for new versions of ACAS X or new systems;

the state space, our approach will have the potential for a— Unlike [1/11.14.18.24], we provide mechanized rigor-

complete analysis of the system over all potential encounter ©US Proofs of correctness of our model.

con gurations, thereby reducing vulnerability to the sam-

pling of encounter scenarios.

10 Conclusion and Future Work

9 Related Work We developed a general strategy for analyzing the safety
of complicated, real-world aircraft collision avoidance sys-
Kochenderfer and Chryssanthacopoulos [13] describe the dems, and applied it to ACAS X. Our strategy identi es safe
sign of the ACAS X lookup-tables. Their principled approachregions where an advisory is proved to always keep the air-
based on optimizing an MDP, guarantees the selection of oraft clear of NMAC, under some assumptions. We identi-
timal advisories according to a cost model. The state spaced states where ACAS X is provably safe, and delivered
and dynamics are discretized. Their notion of optimality de-others showing unexpected behaviors back to the ACAS X
pends on costs assigned to various events. development team. The identi ed safe regions are indepen-
Holland et al. [11] and Chludzinskil[l] simulate large dent from the version of ACAS X and can thus be reused for
numbers of encounters, including tracks from recorded ightfuture versions. In future work, we plan to extend our hybrid
data, to evaluate the performance of ACAS X. These simumodel to account for curved trajectories of both aircraft as
lations account for high- delity details of an encounter, butwell as vertical acceleration of the intruder.
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