Nonlinear damping models for linear conservative mechanical systems with preserved eigenspaces: a port-Hamiltonian formulation

Thomas Hélie 1, 2 Denis Matignon 3
1 Analyse et synthèse sonores [Paris]
STMS - Sciences et Technologies de la Musique et du Son
2 Equipe-Projet S3 (Systèmes et Signaux Sonores)
STMS - Sciences et Technologies de la Musique et du Son
3 Univ. Toulouse, ISAE-Supaéro
ISAE - Institut Supérieur de l'Aéronautique et de l'Espace
Abstract : This paper addresses the derivation of a class of phenomenological but physically-grounded linear and nonlinear damping models, which preserve the eigenspaces of conservative linear mechanical problems. After some recalls on the finite dimensional case and on the class of linear damping of Caughey type, an extension of this class to nonlinear models is introduced. These passive systems are recast in the port-Hamiltonian framework and generalized to the case of infinite dimensional systems. These results are applied to an Euler-Bernoulli beam, excited by a distributed force. Simulations are presented for nonlinear damping configurations. They can be used to provide sounds of wooden or metallic type (such as xylophone or glockenspiel) and some interpolated versions.
Type de document :
Communication dans un congrès
Lagrangian and Hamiltonian Methods for Non Linear Control, Jul 2015, Lyon, France. 2015
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01231810
Contributeur : Thomas Hélie <>
Soumis le : vendredi 20 novembre 2015 - 17:05:29
Dernière modification le : mercredi 29 novembre 2017 - 16:28:17

Identifiants

  • HAL Id : hal-01231810, version 1

Collections

Citation

Thomas Hélie, Denis Matignon. Nonlinear damping models for linear conservative mechanical systems with preserved eigenspaces: a port-Hamiltonian formulation. Lagrangian and Hamiltonian Methods for Non Linear Control, Jul 2015, Lyon, France. 2015. 〈hal-01231810〉

Partager

Métriques

Consultations de la notice

93