Asymptotic Consensus Without Self-Confidence

Thomas Nowak 1
1 DYOGENE - Dynamics of Geometric Networks
CNRS - Centre National de la Recherche Scientifique : UMR8548, Inria Paris-Rocquencourt, DI-ENS - Département d'informatique de l'École normale supérieure
Abstract : This paper studies asymptotic consensus in systems in which agents do not necessarily have self-confidence, i.e., may disregard their own value during execution of the update rule. We show that the prevalent hypothesis of self-confidence in many convergence results can be replaced by the existence of aperiodic cores. These are stable aperiodic subgraphs, which allow to virtually store information about an agent's value distributedly in the network. Our results are applicable to systems with message delays and memory loss.
Type de document :
Communication dans un congrès
54th IEEE Conference on Decision and Control (CDC 2015), Dec 2015, Osaka, Japan. 54th IEEE Conference on Decision and Control (CDC 2015), 〈http://www.cdc2015.ctrl.titech.ac.jp/〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01231503
Contributeur : Thomas Nowak <>
Soumis le : vendredi 20 novembre 2015 - 14:07:42
Dernière modification le : vendredi 25 mai 2018 - 12:02:07
Document(s) archivé(s) le : vendredi 28 avril 2017 - 17:23:38

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01231503, version 1
  • ARXIV : 1301.3784

Collections

Citation

Thomas Nowak. Asymptotic Consensus Without Self-Confidence. 54th IEEE Conference on Decision and Control (CDC 2015), Dec 2015, Osaka, Japan. 54th IEEE Conference on Decision and Control (CDC 2015), 〈http://www.cdc2015.ctrl.titech.ac.jp/〉. 〈hal-01231503〉

Partager

Métriques

Consultations de la notice

303

Téléchargements de fichiers

80