Mulitgraded Dyson-Schwinger systems
Loïc Foissy

To cite this version:
Loïc Foissy. Mulitgraded Dyson-Schwinger systems. 2015. hal-01231362

HAL Id: hal-01231362
https://hal.archives-ouvertes.fr/hal-01231362
Submitted on 20 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mulitgraded Dyson-Schwinger systems

Loïc Foissy

Fédération de Recherche Mathématique du Nord Pas de Calais FR 2956
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville
Université du Littoral Côte d’Opale-Centre Universitaire de la Mi-Voix
50, rue Ferdinand Buisson, CS 80699, 62228 Calais Cedex, France

Email: foissy@lmpa.univ-littoral.fr

Abstract

We study systems of combinatorial Dyson-Schwinger equations with an arbitrary number N of coupling constants. The considered Hopf algebra of Feynman graphs is \mathbb{N}^N-graded, and we wonder if the graded subalgebra generated by the solution is Hopf or not.

We first introduce a family of pre-Lie algebras which we classify, dually providing systems generating a Hopf subalgebra; we also describe the associated groups, as extensions of groups of formal diffeomorphisms on several variables.

We then consider systems coming from Feynman graphs of a Quantum Field Theory. We show that if the number N of independent coupling constants is the number of interactions of the considered QFT, then the generated subalgebra is Hopf. For QED, φ^3 and QCD, we also prove that this is the minimal value of N.

All these examples are generalizations of the first family of Dyson-Schwinger systems in the one coupling constant case, called fundamental. We also give a generalization of the second family, called cyclic.

Keywords. Dyson-Schwinger systems; Feynman graphs; pre-Lie algebras; combinatorial Hopf algebras.

AMS classification. 16T05, 81T18, 05C05.

Contents

1 Hopf algebras of decorated trees 3
 1.1 Definition and universal property 3
 1.2 Graduation and duality 5
 1.3 Completion .. 6

2 Multigraded SDSE 6
 2.1 Definition .. 6
 2.2 Simplification of the hypotheses 8
 2.3 Operations on SDSE .. 9
 2.4 Changes of graduation ... 11

3 A family of pre-Lie algebras 12
 3.1 Definition and examples ... 12
 3.2 Classification of deg1 pre-Lie algebras 14
 3.3 SDSE associated to a deg1 pre-Lie algebra 16
Introduction

In a Quantum Field Theory (shortly, QFT), the Green functions are developed as a series in the coupling constant, indexed by the set of Feynman graphs. These series can be seen at the level of Feynman graphs. They satisfy a certain system (S) of combinatorial Dyson-Schwinger equation (briefly, SDSE), which uses combinatorial operators of insertion, and allows to inductively compute the homogeneous components of the Green functions, according to their loop number [1, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 28]. Feynman graphs are organized as a Hopf algebra \mathcal{H}_{FG}, graded by the loop number, and we consider the subalgebra $\mathcal{H}_{(S)}$ of \mathcal{H}_{FG} generated by the components of the unique solution of (S). A natural question is to know if the graded subalgebra generated by the Green functions is Hopf or not. This problem, and related questions about the nature of the obtained Hopf subalgebras, are the main object of study in [6, 7, 8, 9]. It turns out that in the case of QED or φ^3, which are QFT with only one interaction, this subalgebra is indeed Hopf; this is not the case for QCD, with its four interactions. A possibility in this last case is to refine the graduation, or equivalently to introduce more coupling constants, which makes the subalgebra $\mathcal{H}_{(S)}$ generated by the components of the solution bigger; we shall prove here that there exists a \mathbb{N}^4-gradation of the Hopf algebra of QCD Feynman graphs, such that $\mathcal{H}_{(S)}$ is a Hopf subalgebra.

The aim of this text is to study SDSE giving a Hopf subalgebra when the Hopf algebra of Feynman graphs is given a \mathbb{N}^N-gradation, generalizing the results of [7] for the loop number graduation. Recall that if we consider only one coupling constant, the Hopf algebra of graphs we consider is \mathbb{N}-graded, and we obtained two families of SDSE, called fundamental and cyclic, and four operations on SDSE, allowing to obtain all SDSE giving a Hopf subalgebra. The graded dual of this Hopf subalgebra is the enveloping algebra of a pre-Lie algebra, described in [9]. In the fundamental case, the constant structures of this pre-Lie algebra are polynomial of degree ≤ 1. We generalize this definition to the \mathbb{N}^N-graded case (definition 8); these objects are called deg1 pre-Lie algebras. Their classification is done in theorem 24. As enveloping algebras of free pre-Lie algebras are Grossman-Larson Hopf algebras [10, 11], dually the enveloping algebra of a deg1 pre-Lie algebra can be embedded in a Connes-Kreimer Hopf algebra of decorated rooted trees [4, 5], giving in this way a family of SDSE such the associated subalgebra is Hopf (theorem 27). We also describe the group associated to such pre-Lie algebras; they all contain a group of formal diffeomorphisms.

We then proceed to SDSE coming from a QFT. We first study all the possible graduations of \mathcal{H}_{FG} which are defined from combinatorial datas associated to Feynman graphs, such as the number of vertices, of internal or external half-edges or edges, or the external structure: we prove that such a \mathbb{N}^N-gradation is associated to a matrix $C \in M_{N,|\mathcal{V}|}(\mathbb{Q})$, where \mathcal{V} is the set of possible vertices in the Feynman graphs of the theory (proposition 38); the rank of C is of special importance here. We show how to lift these systems at the level of decorated rooted trees,
using a universal property, and we recover in this way SDSE associated to deg1 pre-Lie algebras previously described, if the rank of C is the cardinality of V. We may ask the question of the minimal rank of C required to obtain a Hopf subalgebra; it is smaller than $|V|$. In QED or φ^n, as this cardinality is 1, the answer is obviously 1; for QCD, we prove in proposition 44 that it is also $|V| = 4$. The main idea is to produce primitive Feynman graphs with an arbitrarily large number of vertices of any kind, and we conjecture that for any QFT with enough primitive Feynman graphs, the minimal rank of the graduation is the number of interactions of the theory. We shall conclude with a generalization of the second family of SDSE in the \mathbb{N}-graded case, namely cyclic SDSE.

This article is organized as follows. The first section contains reminders on Connes-Kreimer Hopf algebras of decorated rooted trees, their universal properties, their graduations and their graded duals. In the second section, we introduce the notion of combinatorial SDSE in Connes-Kreimer Hopf algebras; we give three operations on SDSE, and also study the effect of changing the graduation of the subalgebra $\mathcal{H}(S)$ generated by the unique solution of such a SDSE. We then introduce and classify deg1 pre-Lie algebras in the next section, which dually give us a first family of \mathbb{N}^N-graded SDSE. The group associated to these pre-Lie algebras are described in the fourth section. Feynman graphs of a given QFT, their Hopf-algebraic structure and their SDSE are introduced and studied in the next section. The last, independent, section deals with a generalization of cyclic SDSE.

Acknowledgment. The research leading these results was partially supported by the French National Research Agency under the reference ANR-12-BS01-0017.

Notations.

1. Let M and N be nonnegative integers. We denote by $[M]$ the set of integers $\{1, \ldots, M\}$ and by \mathbb{N}^N the set of nonzero elements of \mathbb{N}^N.

2. The canonical basis of \mathbb{K}^N (and of \mathbb{Z}^N) is denoted by $(\epsilon_1, \ldots, \epsilon_N)$.

3. Let $a, b \in \mathbb{K}$. We denote by $F_{a,b}(X)$ the formal series:

$$F_{a,b}(X) = \sum_{k=0}^{\infty} \frac{a(a-b) \ldots (a-b(k-1))}{k!} X^k = \begin{cases} (1 + bX)^{\frac{a}{b}} & \text{if } b \neq 0, \\ e^{ax} & \text{if } b = 0. \end{cases}$$

Note that for all $a, a', b \in \mathbb{K}$, $F_{a+a', b}(X) = F_{a, b}(X) F_{a', b}(X)$.

1 **Hopf algebras of decorated trees**

Let us start with a few reminders on the Connes-Kreimer Hopf algebras of decorated trees [4, 5] and related algebraic structures. We consider a nonempty set D, which we call the set of decorations.

1.1 **Definition and universal property**

Definition 1

1. A tree is a finite graph, connected, with no loop; a rooted tree is a tree with a pointed vertex, called the root; a rooted tree decorated by D is a pair (T, d), where T is a rooted tree and d is a map from the set $V(T)$ of vertices of T to D; for all $v \in V(T)$, $d(v)$ is called the decoration of v. The set of isoclasses of rooted trees decorated by D is denoted by \mathbb{T}^D.

2. The algebra \mathcal{H}^D of rooted trees decorated by D is the free commutative associative algebra generated by \mathbb{T}^D. By definition, the set \mathbb{P}^D of rooted forests decorated by D, that is to
say monomials in \mathbb{T}^D, or finite disjoint unions of elements of \mathbb{T}^D, is a basis of \mathcal{H}^D. The product of \mathcal{H}^D is the disjoint union of decorated rooted forests.

Examples. We draw rooted trees with their root at the bottom.

1. The rooted trees decorated by D with $n \leq 4$ vertices are:

$$\ast_a, a \in D; \quad 1_a, (a, b) \in D^2; \quad \ast^c b = \ast^c b, (a, b, c) \in D^3;$$

$$B^d a = B^d a = \ldots = a B^d b, \quad a B^d b = B^d b, \quad B^d b = a B^d b, \quad 1^d b, (a, b, c, d) \in D^4.$$

2. The rooted forests decorated by D with $n \leq 3$ vertices are:

$$1; \quad \ast_a, a \in D; \quad 1_b, \ast_b = \ast_b, (a, b) \in D^2;$$

$$\ast^c b, 1^c b = \ast_c 1^c b, \ast_b \ast_c = \ast \ast_b \ast_c = \ldots = \ast \ast \ast, (a, b, c) \in D^3.$$

The algebra \mathcal{H}^D can also be defined by a universal property [4, 27]:

Proposition 2 Let $d \in D$. The linear endomorphism B_d of \mathcal{H}^D sends any rooted forest $F \in \mathbb{T}^D$ to $B_d(F) \in \mathbb{T}^D$ obtained in grafting the different trees of F on a common root decorated by d. This family of endomorphisms satisfy the following universal property: if A is a commutative algebra, and for all $d \in D$, $L_d : A \rightarrow A$ is a linear endomorphism, there exists a unique algebra morphism $\phi : \mathcal{H}^D \rightarrow A$ such that for all $d \in D$, $\phi \circ B_d = L_d \circ \phi$.

Example. If $a, b, c, d \in D$, $B_d(\ast_b 1^d) = \ast^c b^d a$.

This universal property can be used to define the Connes-Kreimer coproduct of \mathcal{H}^D:

Proposition 3 1. There exists a unique coproduct on \mathcal{H}^D such that for all $d \in D$, for all $x \in \mathcal{H}^D$:

$$\Delta \circ B_d(x) = B_d(x) \otimes 1 + (Id \otimes B_d) \circ \Delta(x).$$

With this coproduct, \mathcal{H}^D becomes a Hopf algebra. Its counit is the map:

$$\varepsilon : \left\{ \begin{array}{l}
\mathcal{H}^D \rightarrow \mathbb{K} \\
F \in \mathbb{T}^D \rightarrow \delta_{F,1}.
\end{array} \right.$$

2. Let A be a commutative Hopf algebra, and for all $d \in D$, let $L_d : A \rightarrow A$ a linear endomorphism such that for all $x \in A$:

$$\Delta \circ L_d(x) = L_d(x) \otimes 1 + (Id \otimes L_d) \circ \Delta(x).$$

The unique algebra morphism $\phi : \mathcal{H}^D \rightarrow A$ such that for all $d \in D$, $\phi \circ B_d = L_d \circ \phi$ is a Hopf algebra morphism.

This coproduct admits a combinatorial description in terms of admissible cuts. For example, if $a, b, c, d \in D$:

$$\Delta \ast^c b = \ast^c b \otimes 1 + 1 \otimes \ast^c b + 1^c \otimes 1^c + \ast_a \otimes \ast^c b + \ast_b \otimes 1^c + 1^c \ast_c \otimes \ast_d + \ast_{a b c} \otimes 1^c.$$

Here is another application of the universal property:
Proposition 4 Let \(a = (a_d)_{d \in D} \) be a family of elements of \(\mathbb{K} \). We denote by \(\phi_a \) the unique Hopf algebra endomorphism of \(\mathcal{H}^D \) such that for all \(d \in D \), \(\phi \circ B_d = a_d B_d \circ \phi \). For any forest \(F \in \mathbb{P}^D \), denoting by \(V(F) \) the set of vertices of \(F \):

\[
\phi_a(F) = \left(\prod_{v \in V(F)} a_{d(v)} \right) F.
\]

Consequently, if for all \(d \in D \), \(a_d \neq 0 \), \(\phi_a \) is an automorphism.

Proof. We consider the endomorphism \(\varphi \) defined by:

\[
\forall F \in \mathbb{P}^D, \varphi(F) = \left(\prod_{v \in V(F)} a_{d(v)} \right) F.
\]

Let \(F, F_1, F_2 \in \mathbb{P}^D \). As \(V(F_1 F_2) = V(F_1) \sqcup V(F_2) \), \(\varphi(F_1 F_2) = \varphi(F_1) \varphi(F_2) \), \(\varphi \) is an algebra endomorphism. As \(V(B_d(F)) = V(F) \sqcup \{ \text{root}(F) \} \), \(\varphi(B_d(F)) = a_d B_d(\varphi(F)) \). Consequently, \(\varphi \circ B_d = a_d B_d \circ \varphi \). By unicity in the universal property, \(\varphi = \phi_a \).

\[
\square
\]

1.2 Graduation and duality

Definition 5 1. A \(\mathbb{N}^N \)-graded set is a pair \((D, \deg)\), where \(D \) is a set and \(\deg : D \to \mathbb{N}^N \) is a map. For all \(\alpha \in \mathbb{N}^N \), we put \(D_\alpha = \deg^{-1}(\alpha) \). We shall say that the \(\mathbb{N}^N \)-graded \(D \) is connected if \(D_0 = \emptyset \) and if for all \(\alpha \in \mathbb{N}^N \), \(\deg^{-1}(\alpha) \) is finite.

2. Let \(D \) be a \(\mathbb{N}^N \)-graded connected set. For all forest \(F \in \mathbb{P}^D \), we put:

\[
\deg(F) = \sum_{v \in V(F)} \deg(d(v)).
\]

This induces a connected \(\mathbb{N}^N \)-graduation of the Hopf algebra \(\mathcal{H}^D \), with:

\[
\forall \alpha \in \mathbb{N}^N, (\mathcal{H}^D)_\alpha = \text{Vect}(F \in \mathbb{P}^D \mid \deg(F) = \alpha).
\]

Moreover, for this graduation, \(B_d \) is homogeneous of degree \(\deg(d) \) for all \(d \in D \).

If \(D \) is a \(\mathbb{N}^N \)-graded connected set, then, as \(\mathcal{H}^D \) is a graded connected Hopf algebra, its graded dual \((\mathcal{H}^D)^* \) is also a Hopf algebra [13, 23]. As a vector space, it can be identified with \(\mathcal{H}^D \), by the help of the symmetric pairing defined by:

\[
\forall F, G \in \mathbb{P}^D, \langle F, G \rangle = s_F \delta_{F,G},
\]

where \(s_F \) is the number of symmetries of \(F \). The coproduct \(\Delta' \) of \((\mathcal{H}^D)^* \) is given by:

\[
\forall T_1, \ldots, T_k \in \mathbb{P}^D, \Delta'(T_1 \ldots T_k) = \sum_{I \subseteq [k]} \left(\prod_{i \in I} T_i \right) \otimes \left(\prod_{i \not\in I} T_i \right).
\]

Its product \(\ast \) is given by graftings: this is the Grossman-Larson product [10, 11, 12]. For example:

\[
1^x_1 \ast 1^x_2 = 1^x_1 1^x_2 + 4^x_1 2^x_2 + 1^x_2.
\]

Note that this graded dual does not depend of the choice of the connected graduation of \(D \).
By the Cartier-Quillen-Milnor-Moore’s theorem, \((\mathcal{H}^D)^*\) is the enveloping algebra of a Lie algebra \(g^D\). By construction of the coproduct \(\Delta\), the set \(T^D\) is a basis of \(g^D\); by definition of the Grossman-Larson product, for all \(T, T' \in T^D\):

\[
[T, T'] = \sum_{v' \in V(T')} \text{grafting of } T \text{ on } v' - \sum_{v \in V(T)} \text{grafting of } T' \text{ on } v.
\]

We define a product \(*\) on \(g^D\) by:

\[
T * T' = \sum_{v' \in V(T')} \text{grafting of } T \text{ on } v'.
\]

For any \(x, y \in g^D\), \([x, y] = x * y - y * x\). For example:

\[
\cdot_e * \mathbf{1}_a^b = \mathbf{V}_a^b + \mathbf{1}_a^b, \quad \mathbf{1}_a^b * \cdot_e = \mathbf{1}_a^b.
\]

This product is not associative, but is pre-Lie:

Definition 6 A (left) pre-Lie algebra is a pair \((V, *)\), where \(V\) is a vector space and \(*\) is a bilinear product on \(V\), such that for all \(x, y, z \in V\):

\[
(x * y) * z - x * (y * z) = (y * x) * z - y * (x * z).
\]

If \((V, *)\) is pre-Lie, the bracket defined by \([x, y] = x * y - y * x\) is a Lie bracket.

Moreover, Chapoton and Livernet proved, using the theory of operads, that \(g^D\) is a free pre-Lie algebra \([2, 3]\):

Theorem 7 Let \(A\) be a pre-Lie algebra and let \(a_d \in A\) for all \(d \in D\). There exists a unique pre-Lie algebra morphism \(\phi : g^D \to A\) such that \(\phi(\cdot_d) = a_d\) for all \(d \in D\). In other words, \(g^D\) is, as a pre-Lie algebra, freely generated by the elements \(\cdot_d, d \in D\).

1.3 Completion

We graduate \(\mathcal{H}^D\) by the number of vertices of forests, that is to say we consider the graduation induced by the map \(\text{deg} : D \to \mathbb{N}\), sending every element of \(D\) to 1. This graduation induces a distance \(d\) on \(\mathcal{H}^D\), defined by:

\[
d(f, g) = 2^{-\text{val}(f-g)}.
\]

The metric space \(\mathcal{H}^D\) is not complete: its completion is denoted by \(\mathcal{H}^D\). As a vector space, it is the space of commutative formal series in \(T^D\). The product of \(\mathcal{H}^D\), being homogeneous of degree 0, is continuous, so can be extended to \(\mathcal{H}^D\); this gives the usual product of formal series. Similarly, for any \(d \in D\), \(B_d\), being homogeneous of degree 1, is continuous so can be extended to a map \(B_d : \mathcal{H}^D \to \mathcal{H}^D\).

2 Multigraded SDSE

2.1 Definition

Definition 8 Let \(D = D_1 \sqcup \ldots \sqcup D_M\) be a partitioned set. Let \((f_d)_{d \in D}\) be a family of elements of \(\mathbb{K}\langle\langle x_1, \ldots, x_M\rangle\rangle\). The system of Dyson-Schwinger equations (briefly, SDSE) associated to these elements is:

\[
\forall i \in [M], X_i = \sum_{d \in D_i} B_d(f_d(X_1, \ldots, X_M)),
\]

where \(X = (X_1, \ldots, X_M)\) belongs to \(\mathcal{H}^D_M\).
By convenience, we generally index the family of unknowns by \([M]\), but it is of course possible to index them by any finite set.

Proposition 9 Let \((S)\) be a SDSE. It has a unique solution.

Proof. If \(X = (X_1, \ldots, X_M)\) is a solution of \((S)\), then for all \(i\), \(X_i\) is an infinite span of trees, so belongs to the augmentation ideal \(\mathcal{H}_i^D\). Hence, it is enough to prove that \((S)\) has a unique solution in \(\mathcal{H}_i^D\). Let us consider the following map:

\[
\Theta : \left\{ \begin{array}{c}
\mathcal{H}_i^D \to \mathcal{H}_D^M \\
(X_1, \ldots, X_M) \to \left(\sum_{d \in D_i} B_i(f_d(X_1, \ldots, X_M)) \right)_{i \in [M]}
\end{array} \right.
\]

As \(B_d\) is homogeneous of degree 1 for all \(d\), we obtain that for all \(f, g \in \mathcal{H}_D^M:\)

\[
d(\Theta(f), \Theta(f)) \leq \frac{1}{2} d(f, g).
\]

So \(\Theta\) is a contracting map. As \(\mathcal{H}_D^M\) is complete, \(\Theta\) has a unique fixed point \((X_1, \ldots, X_M)\), which is the unique solution of \((S)\). \(\square\)

Remarks.

1. As the \(D_i\) are disjoint, the nonzero \(X_i\) are sum of trees with roots decorated by elements of \(D_i\), so are algebraically independent.

2. If \(X_i = 0\), we can delete the \(i\)-th equation of \((S)\) and replace \(f_d\) by \((f_d)_{|x_i}=0\) for all \(d \in D\), without changing \(\mathcal{H}_{(S)}\).

We now assume that all the \(X_i\) are nonzero (and, as a consequence, are algebraically independent).

Definition 10 Let \(D\) be a connected \(\mathbb{N}^N\)-graded set, inducing a connected \(\mathbb{N}^N\)-gradation of the Hopf algebra \(\mathcal{H}_D\). Let \((S)\) be a SDSE on \(D\).

1. The unique solution of \((S)\) is denoted by \(X = (X_1, \ldots, X_M)\), and the homogeneous components of \(X_i\) are denoted by \(X_i(\alpha), i \in [M], \alpha \in \mathbb{N}^N\).

2. The subalgebra of \(\mathcal{H}_D\) generated by the \(X_i(\alpha)\)'s is denoted by \(\mathcal{H}_{(S)}\).

3. We shall say that \((S)\) is Hopf if \(\mathcal{H}_{(S)}\) is a Hopf subalgebra of \(\mathcal{H}_D\).

Note that \(\mathcal{H}_{(S)}\) depends on the choice of the graduation.

Example. Here is an example of SDSE. Let us fix \(k \geq 1\) and \(d_0, \ldots, d_k \in \mathbb{N}\). For any \(\alpha = (\alpha_0, \ldots, \alpha_k) \in [N]^{k+1}\), we put:

\[
\text{deg}(\alpha) = d_0\epsilon_{\alpha_0} + \ldots + d_k\epsilon_{\alpha_k} \in \mathbb{Z}^N.
\]

The set of decorations is:

\[
D = \{ \alpha \in [N]^{k+1} \mid \text{deg}(\alpha) \in \mathbb{N}^N \setminus \{0\} \}.
\]
The Hopf algebra \mathcal{H}^D inherits a connected \mathbb{N}^N-gradation. We consider the SDSE:

$$(S)_{fdB} : \forall i \in [N], X_i = \sum_{\alpha \in [N]^k} B_{(i,\alpha)} \left((1 + X_{\alpha_1})^{d_1} \ldots (1 + X_{\alpha_k})^{d_k} (1 + X_i)^{d_{a+1}} \right). \tag{1}$$

In particular, if $(d_0, \ldots, d_k) = (0, 1, \ldots, 1)$, this gives:

$$\forall i \in [N], X_i = \sum_{\alpha \in [N]^k} B_{(i,\alpha)} \left((1 + X_{\alpha_1}) \ldots (1 + X_{\alpha_k}) \right).$$

Taking $k = 2$, the components of X are a commutative version of the elements of Definition 20 in [6], which generate a Hopf algebra isomorphic to the free Faà di Bruno Hopf algebra on N variables. We shall prove that it is indeed a Hopf SDSE, related to the Faà di Bruno Hopf algebra on N variables.

2.2 Simplification of the hypotheses

Lemma 11 Let (S) be a Hopf SDSE, and let $d \in D$. If $f_d(0, \ldots, 0) = 0$, then $f_d = 0$.

Proof. Let $i \in [M]$, such that $d \in D_i$. As $f_d(0, \ldots, 0) = 0$, $\cdot d$ does not appear in X_i, and $\cdot d$ never appears in any element of $\mathcal{H}_{(S)}$. Let us assume that $f_d \neq 0$. As the X_j are algebraically independent, $f_d(X_1, \ldots, X_N) \neq 0$, and there exists a linear form g on \mathcal{H}^D, such that $g(f_d(X_1, \ldots, X_N)) = 1$. Then $(g \otimes Id) \circ \Delta(X_i)$ is an element of $\mathcal{H}_{(S)}$, where the term $g(f_d(X_1, \ldots, X_N) \cdot d = \cdot d$ appears; this is a contradiction. So $f_d = 0$. \hfill \square

Consequently, if $\mathcal{H}_{(S)}$ is Hopf and $f_d(0, \ldots, 0) = 0$ for a certain $d_0 \in D_i$, we can rewrite the i-th equation of (S) in the following way:

$$X_i = \sum_{d \in D_i \setminus \{d_0\}} B_d(f_d(X_1, \ldots, X_M)).$$

We now assume that for all d, $f_d(0, \ldots, 0) \neq 0$.

Lemma 12 We consider the two SDSE:

$$(S) : \forall i \in [M], X_i = \sum_{d \in D_i} B_d(f_d(X_1, \ldots, X_M)), \tag{S}$$

$$(S') : \forall i \in [M], Y_i = \sum_{d \in D_i} B_d \left(\frac{f_d(Y_1, \ldots, Y_M)}{f_d(0, \ldots, 0)} \right). \tag{S'}$$

For all $d \in D$, we put $a_d = f_d(0, \ldots, 0)$. Let ϕ_a be the Hopf algebra isomorphism defined in proposition 4. Then for all $i \in [M]$, $X_i = \phi_a(Y_i)$; $\mathcal{H}_{(S)} = \phi_a(\mathcal{H}_{(S')})$ and (S) is Hopf, if and only if, (S') is Hopf.

Proof. We put:

$$g_d(x_1, \ldots, x_M) = \frac{f_d(x_1, \ldots, x_M)}{f_d(0, \ldots, 0)}.$$

As $\phi_a \circ B_d = f_d(0, \ldots, 0)B_d \circ \phi_a$ for all d, we obtain:

$$\phi_a(Y_i) = \sum_{d \in D_i} \phi_a \circ B_d(g_d(Y_1, \ldots, Y_M))$$

$$= \sum_{d \in D_i} f_d(0, \ldots, 0)B_d \circ \phi_a(g_d(Y_1, \ldots, Y_M))$$

$$= \sum_{d \in D_i} f_d(0, \ldots, 0)B_d(g_d(\phi_a(Y_1), \ldots, \phi_a(Y_M)))$$

$$= \sum_{d \in D_i} B_d(f_d(\phi_a(Y_1), \ldots, \phi_a(Y_M))).$$
So \((\phi_a(Y_1), \ldots, \phi_a(Y_M))\) is the unique solution of \((S)\). \(\square\)

We now assume that \(f_d(0, \ldots, 0) = 1\) for all \(d \in D\).

Lemma 13 Let \((S)\) be a Hopf SDSE, \(d_1, d_2\) be two elements in the same \(D_i\), of the same degree. Then \(f_{d_1} = f_{d_2}\).

Proof. Let us denote by \(\alpha\) the common degree of \(d_1\) and \(d_2\). The homogeneous component of \(X_i\) of degree \(\alpha\) has the form \(-d_1 + \cdot -d_2 + \cdots\); consequently, if we consider the linear forms:

\[
\begin{align*}
 f_1: & \quad F \in \mathbb{F}^D \rightarrow \mathbb{K} \\
 & \quad \delta_{F, \cdot d_1}, \\
 f_2: & \quad F \in \mathbb{F}^D \rightarrow \mathbb{K} \\
 & \quad \delta_{F, \cdot d_i},
\end{align*}
\]

then the restriction of \(f_1\) and \(f_2\) to \(\mathcal{H}(S)\) are equal. As \(\mathcal{H}(S)\) is Hopf:

\[
 f_{d_1}(X_1, \ldots, X_M) = (\text{Id} \otimes f_1) \circ \Delta(X_i) = (\text{Id} \otimes f_2) \circ \Delta(X_i) = f_{d_2}(X_1, \ldots, X_M).
\]

So \(f_{d_1} = f_{d_2}\). \(\square\)

Note that, if the SDSE is Hopf, we can write it under the form:

\[
\forall i \in [M], \ X_i = \sum_{\alpha \in \mathbb{N}^N} \left(\sum_{\substack{d \in D_i, \deg(i) = \alpha \ni B_i} \sum_{B_{i,a}} B_i(X_1, \ldots, X_M) = \sum_{\alpha \in \mathbb{N}^N} B_{i,a}(f_{a}(X_1, \ldots, X_M)).
\]

2.3 Operations on SDSE

Definition 14 Let \(D = D_1 \sqcup \ldots \sqcup D_M\) be a \(\mathbb{N}^N\)-graded connected partitioned set. We consider the SDSE given by:

\[(S) : \forall i \in [M], \ X_i = \sum_{d \in D_i} B_d(f_d(X_1, \ldots, X_M)).\]

1. **Change of variables** Let \(a = (a_1, \ldots, a_M)\) be a family of nonzero scalars. The SDSE obtained from \((S)\) by the change of variables associated to these coefficients is:

\[(S)_a : \forall i \in [M], \ Y_i = \sum_{d \in D_i} B_d(a_1Y_1, \ldots, a_MY_M)).\]

2. **Restriction** Let \(I \subseteq [M]\). The restriction of \((S)\) to \(I\) is the SDSE given by:

\[(S)|_I : \forall i \in I, \ X_i = \sum_{d \in D_i} B_d(g_d(X_j, j \in I)),
\]

where for all \(d \in I, \ g_d = f_d|_{x_j=0}\) for all \(j \notin I \in \mathbb{K}[[X_j, j \in I]].

Proposition 15 1. Let \((S)\) be a SDSE and let \((S)_a\) be another SDSE, obtained from \((S)\) by a change of variables. We define the coefficients \(a_d, d \in D_i\), by:

\[
a_d = a_i \text{ if } d \in D_i.
\]

Let \(\phi_a\) be the Hopf algebra isomorphism defined in proposition 4. The unique solution of \((S)_a\) is:

\[
\left(\frac{1}{a_1} \phi_a(X_1), \ldots, \frac{1}{a_M} \phi_a(X_M) \right).
\]

Hence, \(\mathcal{H}(S)_a = \phi_a(\mathcal{H}(S))\) and \((S)\) is Hopf if, and only if \((S)_a\) is Hopf.

9
2. Let \(I \subseteq M \). We define the coefficients \(a_d, d \in D \), by:

\[
a_d = \begin{cases}
1 & \text{if } d \in \bigcup_{i \in I} D_i, \\
0 & \text{otherwise}.
\end{cases}
\]

Let \(\phi_a \) be the Hopf algebra morphism defined in proposition 4. The unique solution of \((S)_{|I} \) is:

\[
(\phi_a(X_i))_{i \in I}.
\]

Hence, \(\mathcal{H}(S)_{|I} = \phi_a(\mathcal{H}(S)) \) and, if \((S) \) is a Hopf SDSE, then \((S)_{|I} \) is also a Hopf SDSE.

Proof. 1. For all \(i \in [M] \), we put \(Y_i = \frac{1}{a_i} \phi_a(X_i) \). Then:

\[
Y_i = \frac{1}{a_i} \sum_{d \in D_i} \phi_a \circ B_d(f_d(X_1, \ldots, X_M)) \\
= \sum_{d \in D_i} B_d \circ \phi_a(f_d(X_1, \ldots, X_M)) \\
= \sum_{d \in D_i} B_d(f_d(\phi_a(X_1), \ldots, \phi_a(X_M))) \\
= \sum_{d \in D_i} B_d(f_d(a_1 Y_1, \ldots, a_N Y_M)).
\]

So \(Y = (Y_1, \ldots, Y_M) \) is the solution of \((S)_a \).

2. Proved in a similar way, noting that \(\phi_a(X_i) = Y_i \) if \(i \in I \) and 0 otherwise. \(\square \)

Definition 16 (Concatenation) Let \((S) \) and \((S') \) be two SDSE, respectively associated to partitioned \(\mathbb{N}^N \)-graded sets \(D = D_1 \sqcup \ldots \sqcup D_M \) and \(D' = D'_1 \sqcup \ldots \sqcup D'_{M'} \), and to formal series \((f_d)_{d \in [M]} \) and \((f'_{d'})_{d' \in [M']} \). The concatenation of \((S) \) and \((S') \) is the system associated to the \(\mathbb{N}^N \)-graded partitioned set \(D \sqcup D' = D_1 \sqcup \ldots \sqcup D_M \sqcup D'_1 \sqcup \ldots \sqcup D'_{M'} \) given by:

\[
(S) \sqcup (S') : \\
\begin{aligned}
\text{if } 1 \leq i \leq M, & \quad X_i = \sum_{d \in D_i} B_d(f_d(X_1, \ldots, X_M)), \\
\text{if } M + 1 \leq i \leq M + M', & \quad X_i = \sum_{d' \in D'_{i-M}} B_d(f'_{d'}(X_{M+1}, \ldots, X_{M+M'})).
\end{aligned}
\]

Proposition 17 Let \((S) \) and \((S') \) be two SDSE. Then \((S) \sqcup (S') \) is Hopf if, and only if, \((S) \) and \((S') \) are Hopf.

Proof. \(\Rightarrow \). Let us assume that \((S) \sqcup (S') \) is Hopf. Then \((S) \sqcup (S')_{|[M]} = (S) \) and, up to a reindexation, \((S) \sqcup (S')_{|[M+M'] \setminus [M]} = (S') \). By proposition 15, \((S) \) and \((S') \) are Hopf.

\(\Leftarrow \). Let us assume that \((S) \) and \((S') \) are Hopf. Then \(\mathcal{H}(S) \cong \mathcal{H}(S') \subset \mathcal{H}^D \otimes \mathcal{H}^{D'} \subseteq \mathcal{H}^{D \sqcup D'} \). As \(\mathcal{H}(S) \) and \(\mathcal{H}(S') \) are Hopf subalgebras of \(\mathcal{H}^D \) and \(\mathcal{H}^{D'} \), \(\mathcal{H}(S) \otimes \mathcal{H}(S') \) is a Hopf subalgebra of \(\mathcal{H}^{D \sqcup D'} \), so \((S) \sqcup (S') \) is Hopf. \(\square \)

Remark. As in [7], it is possible to define an operation of dilatation for multigraded SDSE. We will not use it here.
2.4 Changes of graduation

Let \(D \) be a \(\mathbb{N}^N \)-graded connected set. Let \(C \in \mathcal{M}_{N^N}(\mathbb{Q}) \). We assume the following hypothesis: if \(\alpha \in \mathbb{N}^N \) satisfies \(D_\alpha \neq (0) \), then \(C\alpha \in \mathbb{N}^N \). We give \(D \) a \(\mathbb{N}^N \)-gradation by:

\[
D'_\beta = \bigcup_{\alpha \in \mathbb{N}^N, \alpha = \beta} D_\alpha.
\]

This defines another connected graduation of \(D \). Consequently, \(\mathcal{H}^D \) inherits a second graduation:

\[
\mathcal{H}^D_{(\beta)} = \bigoplus_{\alpha, \alpha = \beta} \mathcal{H}^D_{(\alpha)}
\]

Let \((S) \) be a SDSE on \(D \). The solution \(X \) of \((S) \) can be decomposed into two ways:

\[
X_i = \sum_{\alpha \in \mathbb{N}^N} X_i(\alpha) = \sum_{\beta \in \mathbb{N}^N'} X'_i(\beta).
\]

Hence, we obtain two subalgebras, denoted by \(\mathcal{H}(S) \) and \(\mathcal{H}'(S) \).

Lemma 18 Under the preceding hypotheses:

1. \(\mathcal{H}'(S) \subseteq \mathcal{H}(S) \); if \(\text{Ker}(C) = (0) \), this is an equality.
2. If \(\mathcal{H}'(S) \) is Hopf, then \(\mathcal{H}(S) \) is Hopf.

Proof. Let \(\beta \in \mathbb{N}^{N'} \). Then:

\[
X'_i(\beta) = \sum_{\alpha = \beta} X_i(\alpha).
\]

Hence, \(\mathcal{H}'(S) \subseteq \mathcal{H}(S) \). Let us assume that \(\text{Ker}(C) = (0) \). Let \(\alpha \in \mathbb{N}^N \). We put \(\beta = C\alpha \). As \(C \) is injective, \(X'_i(\beta) = X_i(\alpha) \), so \(X_i(\alpha) \in \mathcal{H}'(S) \), and finally \(\mathcal{H}(S) = \mathcal{H}'(S) \).

Let us assume that \(\mathcal{H}'(S) \) is Hopf. We denote by \(\pi_\alpha \) the canonical projection on \(\mathcal{H}^D(\alpha) \). For all \(\beta \in \mathbb{N}^{N'} \):

\[
\pi_\alpha(X'_i(\beta)) = \begin{cases} X_i(\alpha) & \text{if } C\beta = \alpha, \\ 0 & \text{otherwise}. \end{cases}
\]

Moreover, for all \(x, y \in \mathcal{H}^D \):

\[
\pi_\alpha(xy) = \sum_{\alpha + \alpha'' = \alpha} \pi_{\alpha'}(x) \pi_{\alpha''}(y).
\]

This implies that for all \(\alpha \in \mathbb{N}^{N^N} \), \(\pi_\alpha \left(\mathcal{H}'(S) \right) \subseteq \mathcal{H}(S) \). For \(\beta = C\alpha \):

\[
\Delta(X_i(\alpha)) = \Delta \circ \pi_\alpha(X'_i(\beta)) = \sum_{\alpha + \alpha'' = \alpha} (\pi_{\alpha'} \otimes \pi_{\alpha''}) \circ \Delta(X_i(\beta))
\]

\[
\in \sum_{\alpha + \alpha'' = \alpha} \pi_{\alpha'} \left(\mathcal{H}'(S) \right) \otimes \pi_{\alpha''} \left(\mathcal{H}'(S) \right)
\]

\[
\in \mathcal{H}(S) \otimes \mathcal{H}(S).
\]

So \(\mathcal{H}(S) \) is a Hopf subalgebra of \(\mathcal{H}^D \).

We shall often restrict ourselves to matrices \(C \) whose rank is \(N' \). One natural question is to find the smallest \(N \) such that there exists a \(\mathbb{N}^N \)-gradation making the studied SDSE Hopf.
3 A family of pre-Lie algebras

If (S) is a Hopf SDSE, as X_i is an infinite span of trees with roots decorated by D_i. Moreover, in $\mathcal{H}_i(S)$, any linear span of rooted trees with roots decorated by D_i is a linear span of $X_i(\alpha)$; hence, we can write the coproduct of X_i under the form:

$$\Delta(X_i) = X_i \otimes 1 + \sum_{\alpha \in N_k^N} P_{\alpha, \alpha}(X_1, \ldots, X_n) \otimes X_i(\alpha).$$

So $\mathcal{H}_i(S)$ is a commutative combinatorial Hopf algebra in the sense of [21]. Hence, its dual is the enveloping of algebra of a pre-Lie algebra $g(S)$. It is generated by the elements $f_i(\alpha)$, dual to the nonzero $X_i(\alpha)$; for all $i, j \in [M]$, for all $\alpha, \beta \in N_k^N$, there exists a scalar $\lambda_{i,j}(\alpha, \beta)$, such that:

$$f_j(\beta) * f_i(\alpha) = \lambda_{i,j}(\alpha, \beta) f_i(\alpha + \beta),$$

where $*$ is the pre-Lie product of $g(S)$. When $N = 1$, if the system is fundamental, we proved in [9] that these coefficients are polynomial of degree ≤ 1. We here generalize this case for any N.

3.1 Definition and examples

Definition 19 Let $(g, *)$ be a pre-Lie algebra. We shall say that it is deg1 if there exists a basis $(f_i(\alpha))_{i \in [M], \alpha \in N_k^N}$ of g, and $A^{(i,j)} \in K^N$, $b^{(i,j)} \in K$, such that for all $i, j \in [M]$, $\alpha, \beta \in N_k^N$:

$$f_j(\beta) * f_i(\alpha) = (A^{(i,j)} \cdot \alpha + b^{(i,j)}) f_i(\alpha + \beta),$$

where we denote by \cdot the usual inner product of K^N. The elements $A^{(i,j)}$ and $b^{(i,j)}$ will be called the structure coefficients of g.

Example. We take $M = N$. The pre-Lie product of the N-dimensional Faà di Bruno Lie algebra is given by:

$$f_j(\beta) * f_i(\alpha) = (\alpha_j + \delta_{i,j}) f_i(\alpha + \beta).$$

Here, $A^{(i,j)} = \epsilon_j$, and $b^{(i,j)} = \delta_{i,j}$.

Let $(g, *)$ be a deg1 pre-Lie algebra of structure coefficients $A^{(i,j)}$ and $b^{(i,j)}$. Let $\lambda_i \in K - \{0\}$ for all $i \in [M]$. We put $g_i(\alpha) = \lambda_i f_i(\alpha)$ for all $i \in [M], \alpha \in N_k^N$. Then:

$$g_j(\beta) * g_i(\alpha) = (\lambda_j A^{(i,j)} \cdot \alpha + \lambda_j b^{(i,j)}) g_i(\alpha + \beta).$$

So the deg1 pre-Lie algebra with structure coefficients $A^{(i,j)}$ and $b^{(i,j)}$ is isomorphic to the deg1 pre-Lie algebra with structure coefficients $\lambda_j A^{(i,j)}$ and $\lambda_j b^{(i,j)}$; we shall say that these two pre-Lie algebras are equivalent. Our aim in this section is to find all deg1 pre-Lie algebras, up to equivalence.

Lemma 20 Let g be a vector space with a basis $(f_i(\alpha))_{i \in [M], \alpha \in N_k^N}$, elements $A^{(i,j)} \in K^N$, $b^{(i,j)} \in K$, for $i, j \in [M]$. We define a product $*$ on g by:

$$f_j(\beta) * f_i(\alpha) = (A^{(i,j)} \cdot \alpha + b^{(i,j)}) f_i(\alpha + \beta).$$

Then $(g, *)$ is a pre-Lie algebra if, and only if, for all $i, j, k \in [M]$:

1. $A^{(i,j)} = 0$ and $b^{(i,j)} = 0$ or $A^{(i,j)} = A^{(i,k)}$, (2)
2. $A^{(i,j)} b^{(j,k)} = A^{(i,k)} b^{(j,k)}$, (3)
3. $b^{(i,j)} b^{(j,k)} = b^{(i,k)} b^{(j,k)}$. (4)
Proof. Let $\alpha, \beta, \gamma \in \mathbb{N}^N$, $i, j, k \in [M]$. Then:

\[
(f_k(\gamma) * f_j(\beta)) * f_i(\alpha) - f_k(\gamma) * (f_j(\beta) * f_i(\alpha))
= (A^{(i,j)} \cdot \alpha + b^{(i,j)})(A^{(j,k)} \cdot \beta + b^{(j,k)})f_i(\alpha + \beta + \gamma)
- (A^{(i,j)} \cdot \alpha + b^{(i,j)})(A^{(i,k)} \cdot (\alpha + \beta) + b^{(i,k)})f_i(\alpha + \beta + \gamma)
= (A^{(i,j)} \cdot \alpha + b^{(i,j)})(\{A^{(j,k)} - A^{(i,k)}\} \cdot \beta - A^{(i,k)} \cdot \alpha + b^{(j,k)} - b^{(i,k)})f_i(\alpha + \beta + \gamma).
\]

Consequently:

\[
(g, *) \text{ is pre-Lie}
\iff \forall i, j, k \in [M], \forall \alpha \in \mathbb{N}^N,
\begin{align*}
(A^{(i,j)} \cdot \alpha + b^{(i,j)})(A^{(j,k)} - A^{(i,k)}) &= 0,
(A^{(i,k)} \cdot \alpha + b^{(i,k)})(A^{(k,j)} - A^{(i,j)}) &= 0,
(A^{(i,j)} \cdot \alpha + b^{(i,j)})(b^{(j,k)} - b^{(i,k)}) &- A^{(i,k)} \cdot \alpha = (A^{(i,k)} \cdot \alpha + b^{(i,k)})(b^{(k,j)} - b^{(i,j)}) - A^{(i,j)} \cdot \alpha),
\end{align*}
\iff \forall i, j, k \in [M],
\begin{align*}
A^{(i,j)} &= 0 \text{ or } A^{(j,k)} = A^{(i,k)},
b^{(i,j)} &= 0 \text{ or } A^{(j,k)} = A^{(i,k)},
A^{(i,j)}(b^{(j,k)} - b^{(i,k)}) &- b^{(i,j)}A^{(i,k)} = A^{(i,k)}(b^{(k,j)} - b^{(i,j)}) - b^{(i,k)}A^{(i,j)},
(b^{(i,j)})(b^{(j,k)} - b^{(i,k)}) &= b^{(i,k)}(b^{(k,j)} - b^{(i,j)}),
\end{align*}
\]

which is equivalent to conditions (2)-(4). \qed

Proposition 21 Let $[M] = I_0 \sqcup \ldots \sqcup I_k$ be a partition of $[M]$, such that $I_1, \ldots, I_k \neq \emptyset$ (note that I_0 may be empty), $A_1, \ldots, A_k \in \mathbb{K}^N$, $b_1, \ldots, b_p \in \mathbb{K}$, and $b^{(i)}_p \in \mathbb{K}$ for all $i \in I_0$ and $p \in [k]$. We define a deg\(_1\) pre-Lie algebra by:

\[
A^{(i,j)} = \begin{cases}
A_q & \text{if } j \in I_q, q \geq 1, \\
0 & \text{if } j \in I_0.
\end{cases}
\]

\[
b^{(i,j)} = \begin{cases}
\delta_{p,q}b_q & \text{if } j \in I_q, q \geq 1, i \in I_p, p \geq 1, \\
0 & \text{if } j \in I_0, \\
b^{(i)}_q & \text{if } j \in I_q, q \geq 1, i \in I_0.
\end{cases}
\]

This pre-Lie algebra will be called the fundamental deg\(_1\) pre-Lie algebra of parameters $I = (I_0, \ldots, I_k)$, $A = (A_1, \ldots, A_k) \in M_{N,k}(\mathbb{K})$, $b = (b_1, \ldots, b_k) \in \mathbb{K}^k$ and $b^{(i)}$.

Proof. Direct verifications prove that these structure coefficients satisfy conditions (2)-(4). \qed

Remarks.

1. For example, the Faà di Bruno pre-Lie algebra of dimension N is fundamental, with $I_j = \{j\}$ for all $j \in [M]$, $I_0 = \emptyset$, $A = I_N$ and $b = (1, \ldots, 1)$.

2. The pre-Lie product of such a pre-Lie algebra is given in the following way: if $i \in I_p$, $j \in I_q$, $\alpha, \beta \in \mathbb{N}^N$,

\[
f_j(\beta) \cdot f_i(\alpha) = \begin{cases}
(A_q \cdot \alpha + \delta_{p,q}b_q)f_i(\alpha + \beta) & \text{if } p, q \neq 0, \\
(A_q \cdot \alpha + b^{(i)}_q)f_i(\alpha + \beta) & \text{if } p = 0, q \neq 0, \\
0 & \text{if } q = 0.
\end{cases}
\]
3.2 Classification of deg1 pre-Lie algebras

Let \(g \) be a deg1 pre-Lie algebra. We attach to it an oriented graph \(G(\mathfrak{g}) \), defined as follows:

- The vertices of \(G(\mathfrak{g}) \) are the elements of \([M]\).
- There exists an oriented edge from \(i \) to \(j \) if, and only if, \(b^{(i,j)} \neq 0 \).

We shall write \(i \rightarrow j \) if there is an oriented edge from \(i \) to \(j \) in \(G(\mathfrak{g}) \).

Lemma 22 Let \(\mathfrak{g} \) be a fundamental deg1 pre-Lie algebra and let \(i \rightarrow j \rightarrow k \) in \(G(\mathfrak{g}) \). Then, in \(G(\mathfrak{g}) \):

\[
\begin{array}{ccc}
 i & \rightarrow & j \\
 & \rightarrow & k \\
 i & \rightarrow & k \\
\end{array}
\]

Proof. By condition (4), if \(i \rightarrow j \rightarrow k \), then \(b^{(i,j)}b^{(j,k)} = b^{(i,k)}b^{(k,j)} \neq 0 \), so \(i \rightarrow k \) and \(k \rightarrow j \). With the same argument, as \(k \rightarrow j \rightarrow k, k \rightarrow k \). As \(j \rightarrow k \rightarrow j, j \rightarrow j \). \(\Box \)

Proposition 23 Let \(\mathfrak{g} \) be a fundamental deg1 pre-Lie algebra. The graph \(G(\mathfrak{g}) \) has the following structure:

1. The set of vertices \([M]\) admits a partition \([M] = I_0 \cup \ldots \cup I_k\).
2. For all \(1 \leq p \leq k \), the complete subgraph of \(G(\mathfrak{g}) \) whose vertices are the elements of \(I_p \) is, either complete, either an isolated vertex.
3. For all \(i \in I_0 \), there exists \(D(i) \subseteq [k] \), such that for all \(j \in [M] \), \(i \rightarrow j \) if, and only if, \(j \in \bigcup_{p \in D(i)} I_p \).
4. If \(i \in I_0 \), there is no vertex \(j \) such that \(j \rightarrow i \).

Proof. First step. Let \(i_0 \in [M] \). For all \(p \geq 1 \), we denote by \(J_p \) the sets of vertices \(j \in [M] \), such that there exists \(i_1, \ldots, i_{p-1} \in [M], i_0 \rightarrow i_1 \rightarrow \ldots \rightarrow i_{p-1} \rightarrow j \). We put \(J = \bigcup_{p \geq 1} J_p \) and we consider a connected component \(K \) of the subgraph of \(G(\mathfrak{g}) \) of vertices \(J \). Let us prove that \(K \) is either complete, or is an isolated vertex. First, observe that if \(j \rightarrow k \) in \(K \), by definition of \(J \), there exists \(J_{p-1} \), such that \(J_{p-1} \rightarrow j \rightarrow k \). By lemma 22, \(\{j,k\} \) is a complete subgraph of \(K \).

If \(K \) has no edge, as it is connected, it is an isolated vertex; let us assume it has at least one edge \(j \rightarrow k \). By the preceding observation, \(\{j,k\} \) is a complete subgraph of \(K \), so \(K \) contains complete subgraphs. Let \(L \) be a maximal complete subgraph of \(K \). If \(L \subseteq K \), as \(K \) is connected, there exists \(k \in K \setminus L, l \in L \), such that \(k \rightarrow l \) or \(l \rightarrow k \). We already observed that \(\{k,l\} \) is complete in both cases. Let \(l' \in L \). As \(L \) is complete, then \(k \rightarrow l \rightarrow l' \) and \(l' \rightarrow l \rightarrow k \): by lemma 22, \(k \rightarrow l \), and \(l' \rightarrow k \): \(L \cup \{k\} \) is complete, which contradicts the maximality of \(L \). So \(K = L \) is complete.

Second step. We denote by \(I_0 \) the set of vertices \(i \) such that there is no \(j \) with \(j \rightarrow i \). Let \(K \) be a connected component of the subgraph of vertices \([M] \setminus I_0 \). If \(k \in K \), then \(k \notin I_0 \), so there exists \(j \in I, \) such that \(j \rightarrow k \). By the first step, \(K \) is an isolated vertex or is complete. We denote by \(I_1 \cup \ldots \cup I_k \) the decomposition of \([M] \setminus I_0 \) in connected components. Let \(i_0 \in I_0 \), and \(j \) such that \(i_0 \rightarrow j \). Then \(j \notin I_0 \), so there exists \(p \geq 1, j \in I_p \). If \(I_p \) is an isolated vertex, then \(i_0 \rightarrow j' \) for any \(j' \in I_p \). If \(I_p \) is complete, for any \(j' \in I_p \), then \(i_0 \rightarrow j \rightarrow j' \), so \(i_0 \rightarrow j' \) by lemma 22. Denoting by \(D(i_0) \) the set of \(p \) such that there exists \(j \in I_p \) with \(i_0 \rightarrow j \), then \(i_0 \rightarrow j \) if, and only if, \(j \in I_p \) for a \(p \in D(i_0) \). \(\Box \)
Theorem 24 Let \(\mathfrak{g} \) be a deg1 pre-Lie algebra. Up to an equivalence, it is the direct sum of fundamental deg1 pre-Lie algebras.

Proof. First case. We assume first that \(G(\mathfrak{g}) \) is complete. Let us choose \(i_0 \in I \). For all \(j \), \(b^{(i_0,j)} \neq 0 \): up to an equivalence, we assume that \(b^{(i_0,j)} = 1 \) for all \(j \). Condition (4), with \(i = i_0 \) becomes: for all \(j, k \), \(b^{(j,k)} = b^{(k,j)} \). Still by condition (4), as \(b^{(j,k)} = b^{(k,j)} \neq 0 \), for all \(i, j, k \), \(b^{(i,j)} = b^{(i,k)} \). Hence, for all \(i, j \):

\[
b^{(i,j)} = b^{(i,i_0)} = b^{(i_0,i)} = 1.
\]

Condition (2) becomes: for all \(i, j, k \), \(A^{(j,k)} = A^{(i,k)} \). We denote by \(A^{(k)} \) the unique vector such that \(A^{(i,k)} = A^{(k)} \) for all \(i \). Condition (3) becomes: for all \(j, k \), \(A^{(k)} = A^{(j)} \). So there exists a unique vector \(A \), such that for all \(i, j \), \(A^{(i,j)} = A \). Finally, \(\mathfrak{g} \) is a fundamental deg1 pre-Lie algebra, with \([M] = I_1 \).

Second case. We assume that \(G(\mathfrak{g}) \) is connected. We use the notations of proposition 23. If there is an edge from \(i \) to \(j \), by condition (2), for all \(k \), \(A^{(j,k)} = A^{(i,k)} \). By connectivity, there exists vectors \(A^{(k)} \), such that for all \(i, j, k \), \(A^{(i,k)} = A^{(j,k)} = A^{(k)} \). We consider the pre-Lie subalgebra \(\mathfrak{g}_0 \) of \(\mathfrak{g} \) generated by the elements \(f_i(\alpha) \), \(i \in I_p, \alpha \in N^n \). They are deg1 pre-Lie algebras; if \(p \geq 1 \) and \(I_p \) is not a single element, then the graph associated to \(\mathfrak{g}_0 \) is complete.

By the first step, up to an equivalence, we can assume that \(A^{(k)} \) is constant on \(I_p \): there exists a vector \(A_p \) such that \(A^{(k)} = A_p \) for all \(k \in I_p, p \geq 1 \). Moreover, there exists a scalar \(b_p \), such that \(b^{(i,j)} = b_p \) for all \(i, j \in I_p \), if \(p \geq 1 \).

Let \(j \in I_0 \). By connectivity of \(G(\mathfrak{g}) \), and by definition of \(I_0 \), there exists \(k \) such that \(j \rightarrow k \), so \(b^{(j,k)} \neq 0 \) and \(b^{(k,j)} = 0 \). By condition (3), \(A^{(i,j)} = 0 \) for all \(i \), so \(A^{(j)} = 0 \) if \(j \in I_0 \).

By definition of the graph, if \(i \in I_p, j \in I_q, p, q \geq 1 \) and \(p \neq q \), then \(b^{(i,j)} = 0 \). If \(j \in I_0 \), then \(b^{(i,j)} = 0 \) for all \(i \). Let \(i \in I_0, j, k \in I_p, p \geq 1 \). If \(j = k \), then \(b^{(i,j)} = b^{(i,k)} \). If \(j \neq k \), then \(I_p \) is complete and \(j \rightarrow k \) in \(G(\mathfrak{g}) \): \(b^{(j,k)} = b^{(j,j)} \neq 0 \). By condition (4), \(b^{(i,j)} = b^{(i,k)} \). So there exists \(b^{(i)}_p \), such that \(b^{(i,j)} = b^{(i)}_p \) for all \(j \in I_p \). Finally, the structure coefficients are given in the following arrays:

\[
A^{(i,j)} : \begin{array}{cccc}
 i \backslash j & I_0 & I_1 & \ldots & I_k \\
 I_0 & 0 & A_1 & \ldots & A_k \\
 I_1 & 0 & \vdots & \vdots & \vdots \\
 \vdots & 0 & \vdots & \vdots & \vdots \\
 I_k & 0 & A_1 & \ldots & A_k \\
\end{array}
\]

\[
b^{(i,j)} : \begin{array}{cccc}
 i \backslash j & I_0 & I_1 & \ldots & I_k \\
 I_0 & 0 & b^{(i)}_1 & \ldots & b^{(i)}_k \\
 I_1 & 0 & b^{(i)}_1 & \ldots & 0 \\
 \vdots & 0 & \vdots & \vdots & \vdots \\
 I_k & 0 & 0 & \ldots & b^{(i)}_k \\
\end{array}
\]

So this is a fundamental deg1 pre-Lie algebra.

General case. Let \(G_1, \ldots, G_l \) be the connected components of \(G(\mathfrak{g}) \). By the second step, up to an equivalence of \(\mathfrak{g}_0 \), the pre-Lie subalgebra of \(\mathfrak{g} \) corresponding to these subgraphs are fundamental deg1 pre-Lie algebras.

First subcase. Let us assume that there exists \(i \in G_p, j \in G_q \), with \(p \neq q \), such that \(A^{(i,j)} \neq 0 \). By condition (2), for all \(k \), \(A^{(j,k)} = A^{(i,k)} \). By connectivity of \(G_p \) and \(G_q \), we deduce that for all \(i' \in G_p, j' \in G_q \), for all \(k \), \(A^{(j',k)} = A^{(i',k)} \).

Second subcase. Let us assume that for all \(i \in G_p, j \in G_q \), \(A^{(i,j)} = 0 \). As \(b^{(i,j)} = 0 \), for all \(\alpha, \beta \in N^n \), for all \(i \in G_p, j \in G_q, f_j(\beta) * f_i(\alpha) = 0 \).

We define an equivalence relation \(\sim \) on \([M]\) in the following way: \(i \sim j \) if for all \(k \), \(A^{(i,k)} = A^{(j,k)} \). The first subcase implies that the equivalence classes are disjoint union of \(G_p \); we denote them by \(H_1, \ldots, H_n \). The second step gives that the corresponding subalgebras \(\mathfrak{g}_1, \ldots, \mathfrak{g}_n \) are fundamental deg1 pre-Lie algebras. By the second subcase, \(\mathfrak{g} = \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_n \). □
3.3 SDSE associated to a deg1 pre-Lie algebra

We here describe the dual of the enveloping algebra of a deg1 pre-Lie algebra, as a subalgebra of a Hopf algebra of decorated rooted trees. We use for this the Guin-Oundom extension of the pre-Lie product [22].

Lemma 25 Let \(\mathfrak{g} \) be a fundamental deg1 pre-Lie algebra. For all \(i \in I_p, p \neq 0, \alpha, \beta_1, \ldots, \beta_k \in \mathbb{N}_*^N \):

\[
 f_{j_1}(\beta_1) \cdots f_{j_k}(\beta_k) * f_i(\alpha) = \begin{cases}
 0 & \text{if one of the } j_p \text{ is in } I_0, \\
 \prod_{q=1}^{k} \prod_{r=0}^{\varepsilon_q-1} (A_q \cdot \alpha + b_q(\delta_{p,q} - r))f_i(\alpha + \beta_1 + \ldots + \beta_k) & \text{otherwise},
\end{cases}
\]

where \(\varepsilon_q = \{ p \in [k] \mid j_p \in I_q \} \). If \(i \in I_0 \):

\[
 f_{j_1}(\beta_1) \cdots f_{j_k}(\beta_k) * f_i(\alpha) = \begin{cases}
 0 & \text{if one of the } j_p \text{ is in } I_0, \\
 \prod_{q=1}^{k} \prod_{r=0}^{\varepsilon_q-1} (A_q \cdot \alpha + b_q^{(i)} - rb_q)f_i(\alpha + \beta_1 + \ldots + \beta_k) & \text{otherwise}.
\end{cases}
\]

Proof. We proceed by induction on \(k \). The result is obvious if \(k = 1 \). Let us assume the result at rank \(k \). We assume that \(i \in I_p, p \geq 1 \). We put:

\[
 f_{j_1}(\beta_1) \cdots f_{j_k}(\beta_k) * f_i(\alpha) = P_{(j_1,\ldots,j_k)}(\alpha)f_i(\alpha + \beta_1 + \ldots + \beta_k).
\]

Then:

\[
 f_{j_1}(\beta_1) \cdots f_{j_{k+1}}(\beta_{k+1}) * f_i(\alpha) = f_{j_{k+1}}(\beta_{k+1}) * (f_{j_1}(\beta_1) \cdots f_{j_k}(\beta_k) * f_i(\alpha))
\]

\[- \sum_{p=1}^{k} f_{j_1}(\beta_1) \cdots f_{j_{k+1}}(\beta_{k+1}) * f_{j_p}(\beta_p) \cdots f_{j_k}(\beta_k) * f_i(\alpha). \]

If \(j_{k+1} \in I_0 \), this is zero. Let us assume that \(j_{k+1} \in I_q, q \geq 1 \). For all \(p \), let \(b_l(p) \) be the unique \(r \) such that \(j_p \in I_r \). Then:

\[
 f_{j_1}(\beta_1) \cdots f_{j_{k+1}}(\beta_{k+1}) * f_i(\alpha)
\]

\[= P_{(j_1,\ldots,j_k)}(\alpha)f_{j_{k+1}}(\beta_{k+1}) * f_i(\alpha + \beta_1 + \ldots + \beta_k)
\]

\[- \sum_{p=1}^{k} (A_q \cdot \beta_p + \delta_{b_l(p),q}b_q)f_{j_1}(\beta_1) \cdots f_{j_p}(\beta_p + \beta_{k+1}) \cdots f_{j_k}(\beta_k) * f_i(\alpha)
\]

\[= P_{(j_1,\ldots,j_k)}(\alpha)(A_q \cdot (\alpha + \beta_1 + \ldots + \beta_k) + \delta_{p,q}b_q)f_i(\alpha + \beta_1 + \ldots + \beta_{k+1})
\]

\[- P_{(j_1,\ldots,j_k)}(\alpha)(A_q \cdot (\beta_1 + \ldots + \beta_k) + b_q(\varepsilon_q - 1))f_i(\alpha + \beta_1 + \ldots + \beta_{k+1})
\]

\[= P_{(j_1,\ldots,j_k)}(\alpha)(A_q \cdot (\alpha + b_q(\delta_{p,q} - \varepsilon_q + 1))f_i(\alpha + \beta_1 + \ldots + \beta_{k+1}).
\]

The computation is similar if \(i \in I_0 \). \(\square \)

We shall write shortly:

\[
 f_{j_1}(\beta_1) \cdots f_{j_k}(\beta_k) * f_i(\alpha) = P_{(j_1,\ldots,j_k)}(\alpha)f_i(\alpha + \beta_1 + \ldots + \beta_k).
\]

Let \(D_{M,N} = [M] \times \mathbb{N}_*^N \). Recall that \(\mathfrak{g}^{D_{M,N}} \) is the free pre-Lie algebra generated by the rooted trees \(* \), \(d \in D_{M,N} \). The set \(D_{M,N} \) is \(\mathbb{N}_*^N \)-graded, with \(\text{deg}(i, \alpha) = \alpha \), and this graduation is connected.

If \(\mathfrak{g} \) is a deg1 pre-Lie algebra, one defines a connected \(\mathbb{N}_*^N \)-gradation of the pre-Lie \(\mathfrak{g}_T^{(N)} \) by putting \(f_i(\alpha) \) homogeneous of degree \(\alpha \). We define a pre-Lie algebra morphism:

\[
 \phi : \left\{ \begin{array}{ll}
 \mathfrak{g}_T^{(N)} & \rightarrow \mathfrak{g} \\
 \ast_{(i, \alpha)} & \rightarrow f_i(\alpha).
\end{array} \right.
\]

16
Lemma 26 Let $T \in \mathcal{T}_{D,M,N}$. We denote by $(r(T), d(T))$ the decoration of the root of T. There exists a scalar λ_T, such that:

$$\phi(T) = \lambda_T f_{r(T)}(\text{deg}(T)).$$

These coefficients can be inductively defined by:

$$\lambda_T = \begin{cases}
1 & \text{if } T = \star_{(i, \alpha)}, \\
\lambda_{T_1} \ldots \lambda_{T_k} P_{(r(T_1), \ldots, r(T_k))}(\alpha) & \text{if } t = B_{(i, \alpha)}(T_1 \ldots T_k).
\end{cases}$$

Proof. We proceed by induction on the number n of vertices of T. It is obvious if $n = 1$. Let us assume the result at all rank $< n$, $n \geq 2$. We put $t = B_{(i, \alpha)}(T_1 \ldots T_k)$. Then $T = T_1 \ldots T_k \ast \star_{(i, \alpha)}$, so:

$$\phi(T) = \phi(T_1) \ldots \phi(T_k) f_i(\alpha) = \lambda_{T_1} \ldots \lambda_{T_k} f_{r(T_1)}(|T_1|) \ldots f_{r(T_k)}(|T_k|) * f_i(\alpha) = \lambda_{T_1} \ldots \lambda_{T_k} P_{(r(T_1), \ldots, r(T_k))}(\alpha) f_i(\alpha + \text{deg}(T_1) + \ldots + \text{deg}(T_k)) = \lambda_{T_1} \ldots \lambda_{T_k} P_{(r(T_1), \ldots, r(T_k))}(\alpha) f_i(\text{deg}(t)).$$

Hence, the result holds for all n.

By duality, we obtain a Hopf algebra morphism:

$$\phi^* : \begin{cases} \mathcal{U}(g)^* \rightarrow \mathcal{H}^{D,M,N} \\
\lambda^* \rightarrow \sum_{\text{deg}(T) = \alpha, r(T) = i} \lambda_T S_T^i \end{cases}$$

We put $\mu_T = \frac{\lambda_T}{S_T^i}$ for any rooted tree $T \in \mathcal{T}_{D,M,N}$, and, for any $i \in [M]$:

$$X_i = \sum_{r(T) = i} \mu_T T.$$

If $t = B_{(i, \alpha)}(T_1^{\beta_1} \ldots T_l^{\beta_l})$, where T_1, \ldots, T_k are distinct trees, with $i \in I_p$, $p \geq 1$, denoting by ε_q the number of trees t' in $T_1^{\beta_1} \ldots T_l^{\beta_l}$ such that $r(T_i) \in I_q$:

$$\mu_T = \frac{\lambda_{T_1}^{\beta_1} \ldots \lambda_{T_l}^{\beta_l}}{S_{T_1}^{\beta_1} \ldots S_{T_l}^{\beta_l} \beta_1! \ldots \beta_l!} \prod_{q=1}^{k} \varepsilon_q^{-1} (A_q \cdot \alpha + b_q(\delta_{p,q} - r))$$

$$= \mu_{T_1}^{\beta_1} \ldots \mu_{T_l}^{\beta_l} \varepsilon_1! \ldots \varepsilon_k! \prod_{q=1}^{k} \varepsilon_q^{-1} \prod_{r=0}^{\varepsilon_q} (A_q \cdot \alpha + b_q(\delta_{p,q} - r)).$$

Consequently, if $i \in I_p$, $p \geq 1$:

$$X_i = \sum_{\alpha \in \mathbb{N}^N} B_{(i, \alpha)} \left(\prod_{q=1}^{k} f_{i,q,\alpha} \left(\sum_{j \in I_q} X_j \right) \right),$$

with:

$$f_{i,q,\alpha}(X) = F_{A_q \cdot \alpha + b_q(\delta_{p,q} - r)}(X) = F_{A_q \cdot \alpha} \cdot b_q(1 + b_q X) \delta_{p,q}.$$

A similar computation for $i \in I_0$ gives:

$$X_i = \sum_{\alpha \in \mathbb{N}^N} B_{(i, \alpha)} \left(\prod_{q=1}^{k} F_{A_q \cdot \alpha} \cdot b_q \left(\sum_{j \in I_q} X_j \right) \prod_{q=1}^{k} F_{b_q} \left(\sum_{j \in I_q} X_j \right) \right).$$

We proved:
Theorem 27 Let \([M] = I_0 \sqcup I_1 \sqcup \ldots \sqcup I_k, A_1, \ldots, A_k \in \mathbb{K}^N, b_1, \ldots, b_k \in \mathbb{K}, b^{(i)}_1, \ldots, b^{(i)}_k \in \mathbb{K}\) for all \(i \in I_0\). We consider the following SDSE:

\[
\forall i \in I_p, p \geq 1, X_i = \sum_{\alpha \in \mathbb{N}^N} B_{(i,\alpha)} \left(\prod_{q=1}^k F_{\alpha \cdot b_q} \left(\sum_{j \in I_q} X_j \right) \left(\sum_{j \in I_p} X_j \right) \right),
\]

\[
\forall i \in I_0, X_i = \sum_{\alpha \in \mathbb{N}^N} B_{(i,\alpha)} \left(\prod_{q=1}^k F_{\alpha \cdot b_q} \left(\sum_{j \in I_q} X_j \right) \prod_{q \neq p} F_{\alpha \cdot b_q} \left(\sum_{j \in I_q} X_j \right) \right).
\]

The \(\mathbb{N}^N\)-graded subalgebra of \(\mathcal{H}^{D.M,N}\) generated by the unique solution of this SDSE is Hopf. Its dual is the enveloping algebra of the fundamental deg1 pre-Lie algebra associated to \(I, A\) and \(b\).

Example. We choose \(N = M, I = \{1\} \sqcup \ldots \sqcup \{N\}, A = I_N\) and \(b_i = 1\) for all \(i \in [N]\). The associated Hopf SDSE is:

\[
(S) : \forall i \in [N], X_i = \sum_{\alpha \in \mathbb{N}^N} B_{(i,\alpha)} \left(\prod_{q=1}^N (1 + X_q)^{\alpha_q} (1 + X_i) \right).
\]

This is related to the SDSE described in (1). We only conserve as decorations the elements of:

\[D' = \{\text{deg} (\alpha) \mid \alpha \in D\}.\]

For all \(\alpha = (\alpha_0, \ldots, \alpha_k) \in [N]^{k+1}\), we put \(B'_\alpha = B_{(\alpha_0, \text{deg}(\alpha))}\). The SDSE \((S)\) becomes:

\[
(S') : \forall i \in [N], X_i = \sum_{\alpha \in \mathbb{N}^N} B'_{(i,\alpha)} \left(\prod_{q=1}^N (1 + X_q)^{\sum_{p, \alpha_p = q} d_p (1 + X_i)^{d_{p+1}}} \right)
\]

\[\iff \forall i \in [N], X_i = \sum_{\alpha \in \mathbb{N}^N} B'_{(i,\alpha)} \left((1 + X_{\alpha_1})^{d_1} \ldots (1 + X_{\alpha_k})^{d_k} (1 + X_i)^{d_0+1} \right).\]

This is the system of (1), which is consequently a Hopf SDSE.

4 Group associated to a fundamental pre-Lie algebra

4.1 Lie algebra associated to a fundamental pre-Lie algebra

Proposition 28 Let \(\mathfrak{g}\) be a fundamental deg1 pre-Lie algebra, with parameters \(I, A\) and \(b\). We denote by \(r\) the rank of \(A\). Then \(\mathfrak{g}\) is isomorphic, as a Lie algebra, to a fundamental deg1 pre-Lie algebra \(\mathfrak{g}'\) with structure coefficients given by:

\[
A'^{(i,j)} = \begin{cases} 1 & j \leq i \leq r \text{ or } j + r + 1 \ldots M \\ 1 \ldots M & i = j \end{cases},
\]

\[
b'^{(i,j)} = \begin{cases} 1 & j \leq i \leq k \text{ or } j + k + 1 \ldots M \\ 1 \ldots k & j = i \end{cases}
\]

with \(0 \leq r \leq k \leq M\). We shall say that such a fundamental deg1 pre-Lie algebra is reduced.

Proof. First step. For any \(p \geq 1\), let us fix \(i_0 \in I_p\). If \(i \in I_p \setminus \{i_0\}\), we put \(g_i(\alpha) = f_i(\alpha) - f_{i_0}(\alpha)\) for all \(\alpha \in \mathbb{N}^N\). If \(j \in I_q, q \neq 0\):

\[
f_j(\beta) \ast g_i(\alpha) = (A_q \cdot \alpha + b_q \delta_{p,q}) g_i(\alpha + \beta).
\]
Consequently:

\[g_j(\beta) * g_i(\alpha) = 0 \text{ if } j \in I_p \setminus \{i_0\}, \quad f_j(\beta) * g_i(\alpha) = 0 \text{ if } j \in I_0. \]

Replacing the elements \(f_i(\alpha) \) by \(g_i(\alpha) \) for all \(i \in I_p \setminus \{i_0\} \), these computations proves that \(\mathfrak{g} \) is isomorphic to a deg1 pre-Lie algebra \(\mathfrak{g}' \), with \([M] = I'_0 \cup \ldots \cup I'_k\), such that

\[
I'_q = \begin{cases}
\{i_0\} & \text{if } q = p, \\
I_0 \cap I_p \setminus \{i_0\} & \text{if } q = 0, \\
I_q & \text{otherwise.}
\end{cases}
\]

Proceding in this way for all \(p \), and after a reindexation, we obtain that \(\mathfrak{g} \) is isomorphic to a fundamental deg1 pre-Lie algebra with:

\[
\begin{array}{|c|c|c|c|}
\hline
i \setminus j & 1 & \ldots & k & k + 1 \ldots M \\
\hline
1 \ldots M & A_1 & \ldots & A_k & 0 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
i \setminus j & 1 & \ldots & \ldots & k & k + 1 \ldots M \\
\hline
1 & b_1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & 0 & \vdots & \vdots \\
1 & 0 & \ldots & 0 & b_k & \vdots \\
k & \ldots & \ldots & 0 & b_k & \vdots \\
k + 1 \ldots M & b_1^{(i)} & \ldots & \ldots & b_k^{(i)} & 0 \\
\hline
\end{array}
\]

If \(1 \leq i, j \leq k \), in \(\mathfrak{g}' \):

\[
[f_j(\beta), f_i(\alpha)] = (A_j \cdot \alpha + \delta_{i,j} b_1) f_i(\alpha + \beta) - (A_i \cdot \beta + \delta_{i,j} b_j) f_j(\alpha + \beta) = A_j \cdot \alpha f_i(\alpha + \beta) - A_i \cdot \beta f_j(\alpha + \beta).
\]

Hence, the Lie bracket of \(\mathfrak{g} \) does not depend on \(b \).

Second step. Up to a Lie algebra isomorphism, we can now assume that \(b_1 = \ldots = b_k = 0 \). Let \(P \in GL_k(\mathbb{K}) \). For all \(i \in [k] \), we put:

\[
g_i(\alpha) = \sum_j p_{j,i} f_j(\alpha).
\]

Then \((g_i(\alpha))_{i \leq k, \alpha \in \mathbb{N}^N} \sqcup (f_i(\alpha))_{i > k, \alpha \in \mathbb{N}^N}\) is a basis of \(\mathfrak{g} \). Moreover, if \(i, j \in [k] \):

\[
g_j(\beta) * g_i(\alpha) = \sum_{i', j'} p_{j', i} p_{i', j} f_j(\beta) * f_i(\alpha) = \sum_{i', j'} p_{j', i} A_{i'} \cdot \alpha f_i(\alpha + \beta) = \left(\sum_{j'} p_{j', j} A_{j'} \right) \cdot \alpha g_i(\alpha + \beta).
\]

Similar computations give, if \(1 \leq j \leq k < i \leq N \):

\[
g_j(\beta) * f_i(\alpha) = \left(\left(\sum_{j'} p_{j', j} A_{j'} \right) \cdot \alpha + \left(\sum_{j'} p_{j', j} b_j^{(i)} \right) \right) f_i(\alpha + \beta).
\]

19
Moreover, if \(1 \leq i \leq k < j \leq N\):

\[f_j(\beta) * g_i(\alpha) = 0. \]

Hence, \(g\) is isomorphic, as a Lie algebra, to the fundamental deg1 pre-Lie \(g'\), with \(A' = AP\), and \(b^{(i,j)} = 0\) if \(i, j \leq k\). Up to a permutations of the rows and the columns of \(A\), we can assume that:

\[A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}, \]

with \(A_1 \in GL_r(\mathbb{K})\). As \(r = \text{Rank}(A)\), there exists \(Q \in M_{r,k-r}\), such that:

\[\begin{pmatrix} A_2 \\ A_4 \end{pmatrix} = \begin{pmatrix} A_1 & 0 \\ 0 & I_{k-r} \end{pmatrix} Q. \]

We then take:

\[P = \begin{pmatrix} A_1^{-1} & -Q \\ 0 & I_{k-r} \end{pmatrix}, \]

and then:

\[A' = \begin{pmatrix} I_r & 0 \\ * & 0 \end{pmatrix}, \]

which finally gives the announced result.

\[\square \]

4.2 Group associated to a reduced deg1 pre-Lie algebra

Notations. Let \(p \in \mathbb{N}^+\) and \(q \in \mathbb{N}\). We fix a matrix \(B \in M_{q,p}(\mathbb{K})\). For all \(i \in [p]\), we denote:

\[G_i = \{x_i(1 + F) \mid F \in \mathbb{K}[[x_1, \ldots, x_p, y_1, \ldots, y_q]]+\} \subseteq \mathbb{K}[[x_1, \ldots, x_p, y_1, \ldots, y_q]]+. \]

Proposition 29 Let \(G_B = G_1 \times \ldots \times G_p \subseteq \mathbb{K}[[x_1, \ldots, x_p, y_1, \ldots, y_q]]^p\), with the product defined in the following way: if \(F = (F_1, \ldots, F_p)\) and \(G = (G_1, \ldots, G_p) \in G_B\),

\[F \bullet G = G \left(F_1, \ldots, F_p, y_1 \left(\frac{F_1}{x_1} \right)^{B_{1,1}}, \ldots, F_p \left(\frac{F_p}{x_p} \right)^{B_{1,p}}, \ldots, y_q \left(\frac{F_1}{x_1} \right)^{B_{q,1}}, \ldots, F_p \left(\frac{F_p}{x_p} \right)^{B_{q,p}} \right). \]

Then \(G_B\) is isomorphic to the group of characters of a \(\mathbb{N}^{p+q}\)-graded Hopf algebra \(\mathcal{H}_B\). The graded dual of \(\mathcal{H}_B\) is the enveloping algebra of the reduced deg1 pre-Lie algebra \(\mathfrak{g}_B\) associated to the structure coefficients:

\[A^{(i,j)} := \begin{pmatrix} i \setminus j & 1 \ldots p \\ 1 \ldots p & A_j \end{pmatrix}, \quad A = \begin{pmatrix} I_p & B \\ \end{pmatrix}, \quad b^{(i,j)} := \begin{pmatrix} i \setminus j & 1 \ldots p \\ 1 \ldots p & 0 \end{pmatrix}. \]

Proof. We shall write shortly \(F \bullet G = G \left(F, Y \left(\frac{F}{x} \right)^B \right)\). Let us first prove that \(G_B\) is a monoid. Let \(F, G, H \in G_B\).

\[F \bullet (G \bullet H) = G \bullet H \left(F, y \left(\frac{F}{x} \right)^B \right) \]

\[= H \left(G \left(F, y \left(\frac{F}{x} \right)^B \right), y \left(\frac{F}{x} \right)^B \left(G \left(F, y \left(\frac{F}{x} \right)^B \right) \right)^B \right) \]

\[= H \left(G \left(F, y \left(\frac{F}{x} \right)^B \right), y \left(G \left(F, y \left(\frac{F}{x} \right)^B \right) \right)^B \right) \]

\[= H \left(F \bullet G, y \left(\frac{F \bullet G}{x} \right)^B \right) \]

\[= (F \bullet G) \bullet H. \]
The identity of this monoid is the element $I = (x_1, \ldots, x_p)$.

Let $\lambda = (\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_q) \in (K^*)^{p+q}$. We define:

$$
\phi_\lambda : \begin{cases}
G_B & \to G_B \\
F & \to \left(\frac{1}{\lambda} F(\lambda_1 x_1, \ldots, \lambda_p x_p, \mu_1 y_1, \ldots, \mu_q y_q) \right) \end{cases},
$$

Let us prove that this defines an action of the torus $T = (K^*)^{p+q}$ on the monoid G_B by automorphisms. We shall write shortly $\phi_{\lambda, \mu}(F) = \frac{1}{\lambda} F(\lambda x, \mu y)$. Clearly, $\phi_{\lambda, \mu} \circ \phi_{\lambda', \mu'} = \phi_{\lambda \lambda', \mu \mu'}$ and $\phi_{1,1} = 1d_{G_B}$, so this is indeed an action. Let $F, G \in G_B$.

$$
\phi_{(\lambda, \mu)}(F \cdot G) = \frac{1}{\lambda} G \left(F(\lambda x, \mu y), \mu y \left(\frac{F(\lambda x, \mu y)}{\lambda x} \right)^B \right) = \phi_{(\lambda, \mu)}(F) \cdot \phi_{(\lambda, \mu)}(G).
$$

For all $i \in [p]$, $\lambda \in \mathbb{N}^{p+q}$, we put:

$$
X_i(\lambda) : \begin{cases}
G_B & \to \mathbb{K} \\
G & \to \text{coefficient of } x_i \lambda_1^{\alpha_1} \ldots x_p^{\alpha_p} y_1^{\mu_1} \ldots y_q^{\mu_q} \text{ in } G_i.
\end{cases}
$$

We obtain an action on the torus T on these functions by transposition:

$$
\phi_\lambda^*(X_i(\alpha))(G) = X_i(\alpha)(\phi_\lambda(G)) = X_i(\alpha) \left(\frac{1}{\lambda} G(\lambda x, \mu y) \right) = \frac{1}{\lambda_i} \lambda_1^{\alpha_1} \ldots \lambda_p^{\alpha_p} x_1^{\mu_1} \ldots x_p^{\mu_q} X_i(\alpha)(G).
$$

So this action is given by $\phi_\lambda(X_i(\alpha)) = \lambda^\alpha X_i(\alpha)$. Consequently, denoting by H_B the algebra generated by the elements $X_i(\alpha)$, it gives it a \mathbb{N}^{p+q}-gradation, for which $X_i(\alpha)$ is homogeneous of degree α: this graduation is finite-dimensional and connected.

We define a coproduct $\Delta : H_B \to H_B \otimes H_B$ in the following way:

$$
\forall X \in H_B, \forall F, G \in G_B, \Delta(X)(F, G) = X(F \cdot G).
$$

As the torus acts by automorphisms, for all $\lambda \in T$:

$$
\Delta(\phi_\lambda^*(X_i))(F, G) = X(\phi_\lambda(F \cdot G)) = X(\phi_\lambda(F) \cdot \phi_\lambda(G)) = (\phi_\lambda \otimes \phi_\lambda) \circ \Delta(X)(F, G).
$$

Hence, Δ respects the action of T, so respects the graduation implied by this action, and consequently is homogeneous of degree 0. As the graduation is finite-dimensional, $\Delta(H_B) \subseteq H_B \otimes H_B$. As G_B is a monoid, H_B is a bialgebra. As it is connected, it is a Hopf algebra, so G_B is a group. By construction, the group of characters of H_B is G_B.

By Cartier-Quillen-Milnor-Moore’s theorem, the graded dual of H_B is the enveloping algebra of a Lie algebra g, whose basis is given by elements $f_i(\alpha)$ dual to the elements $X_i(\alpha)$. Moreover, as the composition of G_B is linear in the second variable, the Lie bracket of g is induced by a pre-Lie product $*$; by homogeneity, for all $i, j \in [p]$, $\alpha, \beta \in \mathbb{N}^{p+q}$, there exists a scalar $\lambda^{(i,j)}(\alpha, \beta)$ such that:

$$
f_j(\beta) * f_i(\alpha) = \lambda^{(i,j)}(\alpha, \beta) f_i(\alpha + \beta).
$$

Moreover, $\lambda^{(i,j)}(\alpha, \beta)$ is the coefficient of $X_j(\beta) \otimes X_i(\alpha)$ in $\Delta(X_i(\alpha + \beta))$. Direct computations give that:

$$
f_j(\beta) * f_i(\alpha) = \left(\alpha_j + \sum_{j'=1}^{q} A_{j,j'} \alpha_{j'+p} + \delta_{i,j} \right) f_i(\alpha + \beta),
$$

21
so \(\mathfrak{g} \) is isomorphic to \(\mathfrak{g}_B \) as a Lie algebra. \(\square \)

Example. If \(q = 0 \), we obtain a Faà di Bruno group of formal diffeomorphisms, with the composition. This is the case for the \(\text{SDSE} (S)_{F,\mathcal{B}} \) in (1), where \(A = I_N \). The associated group is:

\[
G = \{(x_1(1 + F_1), \ldots, x_N(1 + F_N)) \mid F_1, \ldots, F_N \in \mathbb{K}[x_1, \ldots, x_N], \circ \}.
\]

Proposition 30 Let \(V_0 \) be the group \((\mathbb{K}[x_1, \ldots, x_p, y_1, \ldots, y_q], +)\). The group \(G_B \) acts by automorphisms on \(V_0 \) by:

\[
\forall F \in G_B, \forall P \in V_0, F \mapsto P = P \left(F, y \left(\frac{F \cdot B}{x} \right) \right).
\]

For all \(r \geq 0 \), the group \(V_0^r \times G_B \) is isomorphic to the character group of a \(\mathbb{K}^{p+q} \)-graded Hopf algebra \(H_{B,r} \), whose graded dual is the enveloping algebra of a fundamental deg1 pre-Lie algebra \(g_B \) with structure coefficients:

\[
\begin{array}{c|cc|c}
A(i,j) & 1 \ldots p & p + 1 \ldots p + r & 0 \\
\hline
1 \ldots p + r & A_j & \end{array}
\]

\[
A = \left(\begin{array}{c} I_p \\ B \end{array} \right).
\]

Proof. Let \(F \in G_B, P, Q \in V_0 \). Obviously, \(F \mapsto (P + Q) = F \mapsto P + F \mapsto Q \). Let \(F, G \in G_B, P \in V_0 \). Then:

\[
F \mapsto (G \mapsto P) = P \left(G \left(F, y \left(\frac{F \cdot B}{x} \right) \right), y \left(\frac{F \cdot B}{x} \right) \left(G \left(F, y \left(\frac{F \cdot B}{x} \right) \right) \right) \right) = P \left(G \left(F, y \left(\frac{F \cdot B}{x} \right) \right), y \left(\frac{G \left(F, y \left(\frac{F \cdot B}{x} \right) \right) \cdot B}{F} \right) \right) = G \left(F, y \left(\frac{F \cdot B}{x} \right) \right) \mapsto P = (F \bullet G) \mapsto P.
\]

We define an action of the torus \(T = (\mathbb{K}^*)^{p+q} \) over \(V_0 \) by:

\[
\psi_{\lambda}(P) = P(\lambda_1 x_1, \ldots, \lambda_p x_p, \mu_1 y_1, \ldots, \mu_q y_q).
\]

It is easy to prove that this is an action by automorphisms, and for all \(F \in G_B, P \in V_0 \):

\[
\psi_{\lambda}(F \mapsto P) = \phi_{\lambda}(F) \mapsto \psi_{\lambda}(P).
\]

A system of coordinates of the group \(V_0^r \times G_B \) is given by the elements \(X_i(\alpha) \) defined on \(G_B \) and \(Y_j(\alpha) \) defined on \(V_0^r \) by:

\[
Y_j(\alpha) : \begin{cases}
V_0^r & \longrightarrow \mathbb{K} \\
(P_1, \ldots, P_r) & \longrightarrow \text{coefficient of } x^\alpha \text{ in } P_j.
\end{cases}
\]

These elements generate an algebra \(H_{B,r} \), containing \(H_B \). The action of the torus extends the graduation of \(H_B \) to \(H_{B,r} \), making a graded connected algebra. Consequently, it inherits a coproduct, dual of the composition of the group \(V_0^r \times G_B \), making it a graded connected Hopf algebra. Note that \(H_{B,r} \) contains \(H_B \), and by construction its character group is \(V_0^r \times G_B \).
The composition in $V_{0}^{r} \rtimes \mathbb{G}_{B}$ is given by:

$$(P_{1}, \ldots, P_{r}, F) \circ (Q_{1}, \ldots, Q_{r}, G) = ((P_{1} + F \mapsto Q_{1}, \ldots, P_{r} + F \mapsto Q_{r}, F \circ G).$$

Consequently, it is linear in the second variable; hence, the graded dual of $\mathcal{H}_{B,r}$ is the enveloping algebra of a pre-Lie algebra \mathfrak{g}. This has a basis $(f_{i}(\alpha))_{i \in [p], \alpha \in \mathbb{N}^{r+1}} \sqcup (g_{j}(\beta))_{j \in [r], \beta \in \mathbb{N}_{r+1}}$, dual of the SDSE of coordinates $X_{i}(\alpha)$ and $Y_{j}(\beta)$. The pre-Lie product of $f_{j}(\beta)$ and $f_{i}(\alpha)$ is the same as in \mathfrak{g}_{B}, and direct computations give:

$$f_{j}(\beta) \ast g_{i}(\alpha) = A_{j} \cdot \alpha g_{i}(\alpha + \beta), \quad g_{j}(\beta) \ast f_{i}(\alpha) = 0, \quad g_{j}(\beta) \ast g_{i}(\alpha) = 0.$$

So this is indeed isomorphic to a reduced deg1 pre-Lie algebra, as announced.

This last result is proved similarly:

Proposition 31 Let $a \in \mathbb{K}^{r}$ and $b \in \mathbb{K}^{p}$. Let $V_{a,b}$ be the group $(\mathbb{K}[x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}]/+, +)$. The group $V_{0}^{r} \rtimes \mathbb{G}_{B}$ acts by automorphisms on $V_{a,b}$ by:

$$(P_{1}, \ldots, P_{r}, F) \mapsto Q = Q \left(F, g \left(\frac{F}{x} \right)^{B} \right) e^{a_{1}P_{1} + \ldots + a_{r}P_{r}} \left(\frac{F_{1}}{x_{1}} \right)^{b_{1}} \ldots \left(\frac{F_{p}}{x_{p}} \right)^{b_{p}}.$$

If $a^{(1)}(1), \ldots, a^{(s)}(s) \in \mathbb{K}^{r}$ and $b^{(1)}(1), \ldots, b^{(s)}(s) \in \mathbb{K}^{p}$, the group $(V^{(a^{(1)}(1), b^{(1)}(1)} \oplus \ldots \oplus V^{(a^{(s)}(s), b^{(s)}(s))}) \rtimes (V_{0}^{r} \rtimes \mathbb{G}_{B})$ is isomorphic to the character group of a \mathbb{N}^{p+q}-graded Hopf algebra $\mathcal{H}_{B,r,a,b}$, whose graded dual is the enveloping algebra of a fundamental deg1 pre-Lie algebra \mathfrak{g}_{B} with structure coefficients:

<table>
<thead>
<tr>
<th>$A(i,j)$</th>
<th>$i \setminus j$</th>
<th>$1 \ldots p$</th>
<th>$p + 1 \ldots p + r + s$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1 \ldots p + r$</td>
<td>A_{j}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$b(i,j)$</th>
<th>$i \setminus j$</th>
<th>$1 \ldots p$</th>
<th>$p + 1 \ldots p + r$</th>
<th>$p + r + 1 \ldots p + r + s$</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1 \ldots p + r$</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$p + r + 1 \ldots p + r + s$</td>
<td>$b_{j}(i-p-r)$</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_{j}(i-p-r)$</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 SDSE associated to a family of Feynman graphs

5.1 Feynman graphs

Definition 32 A theory of Feynman graphs T is given by:

- A set \mathcal{HE} of types of half-edges, with an incidence rule, that is to say an involutive map $i : \mathcal{HE} \rightarrow \mathcal{HE}$.
- A set \mathcal{V} of vertex types, that is to say a set of finite multisets (in other words finite unordered sequences) of elements of \mathcal{HE}, of cardinality at least 3.

The edges of T are the multisets $\{t, i(t)\}$, where t is an element of \mathcal{HE}. The set of edges of T is denoted by \mathcal{E}.

Examples.

1. In QED, $\mathcal{HE}_{QED} = \{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{}}} }}, \overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{}} }}, \overrightarrow{\overrightarrow{\overrightarrow{}} }\}$, and the incidence rule is given by:

$\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{}}} }}, \overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{}} }} \leftrightarrow \overrightarrow{\overrightarrow{\overrightarrow{}} }.$

There are two edges, $\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{}}} }}, \overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{}} }}$ and $\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{}} }}, \overrightarrow{\overrightarrow{\overrightarrow{}} }$. There is one vertex type, $\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{}}} }}, \overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{}} }}, \overrightarrow{\overrightarrow{\overrightarrow{}} }$.

23
2. In QCD, $\mathcal{HE}_{QCD} = \{\longrightarrow, \longrightarrow, \rightarrow, \ldots\}$, and:

$$V_{QCD} = \left\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}\right\}.$$

The incidence rule is given by:

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array} \leftrightarrow \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}, \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array} \leftrightarrow \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}, \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array} \leftrightarrow \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}.
\end{array}$$

There are three edges, $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}$ (gluon), $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}$ (fermion) and $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}$ (ghost).

3. Let $N \geq 3$. In φ^N, $\mathcal{E}_{\varphi^N} = \{\longrightarrow\}$. There is only one vertex type, which is the multiset formed by N copies of \longrightarrow. There is only one edge, denoted by \longrightarrow.

Definition 33 Let $\mathcal{T} = (\mathcal{HE}, V, \iota)$ be a theory of Feynman graphs. A 1PI graph G of the theory \mathcal{T} is given by:

- A nonempty, finite set HE of half-edges, with a map type : $HE \rightarrow \mathcal{HE}$.
- A nonempty, finite set V of vertices.
- An incidence map for half-edges, that is to say an involution map $\iota : HE \rightarrow HE$.
- A source map for half-edges, that is to say a map $s : HE \rightarrow V$.

The following conditions must be satisfied:

1. (Respect of the incidence rule) for any $e \in HE$ such that $\iota(e) \neq e$, $\iota(\text{type}(e)) = \text{type}(\iota(e))$.

2. (Respect of the vertex types) for any $v \in V$, the multiset $\text{type}(v) = \{\text{type}(e) \mid s(e) = v\}$ belongs to V.

3. (Connectivity and one-particle irreducibility) the set of internal edges of G is:

$$\text{Int}(G) = \{\{e, \iota(e)\} \mid e \in HE, \iota(e) \neq e\}.$$

The source map makes $(V, \text{Int}(G))$ a graph. This graph is 1-PI, that is to say that it is connected and remains connected if one edge $e \in \text{Int}(G)$ is deleted.

4. (External structure) the set of external half-edges of G is:

$$\text{Ext}(G) = \{e \mid e \in HE, \iota(e) = e\}.$$

We define $\text{typeExt}(G)$ as the multiset $\{\text{type}(e) \mid e \in \text{Ext}(G)\}$. Two case are possible:

(a) $\text{typeExt}(G) = \{t_1, t_2\}$, with $\iota(t_1) = t_2$. In this case, we shall say that the external structure of G is of type edge $\text{typeExt}(G)$.

(b) $\text{typeExt}(G) \in V$. In this case, we shall say that the external structure of G is of type vertex $\text{typeExt}(G)$.

A Feynman graph is the disjoint union of a finite number (possibly 0) 1-PI Feynman graphs, called its connected components. The set of Feynman graphs of the theory \mathcal{T} is denoted by $\mathcal{FG}_\mathcal{T}$.

We shall only consider theories such that there exists 1-PI Feynman graphs for all type of external structures.

Examples.

24
1. Here are examples of 1-PI Feynman graphs in QED.

<table>
<thead>
<tr>
<th>External structure</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Here are examples of 1-PI Feynman graphs in QCD.

<table>
<thead>
<tr>
<th>External structure</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Here are examples of 1-PI Feynman graphs in φ^3.

<table>
<thead>
<tr>
<th>External structure</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

Definition 34
1. Let $G = (HE, V, i, s)$ and $G' = (HE', V', i', s')$ be two Feynman graphs of a theory T. We shall say that G' is a subgraph of G if:

 (a) $HE' \subseteq HE$, $V' = s(HE')$ and $s' = s|_{HE'}$.
 (b) For any $e \in HE'$, $i'(e) = e$ or $i'(e) = i(e)$.

2. Let G' be a connected subgraph of G. We define a structure $G/G' = (HE'', V'', i'', s'')$ in the following way:

 - If the type of the external structure of G' is a vertex:
 (a) $HE'' = (HE \setminus HE') \cup \text{Ext}(G')$.
 (b) $V'' = (V \setminus V') \cup \{0\}$.
 (c) For all $e \in HE''$:
 $$s''(e) = \begin{cases}
 s(e) & \text{if } e \in HE \setminus HE', \\
 0 & \text{if } e \in \text{Ext}(G').
 \end{cases}$$
 (d) For all $e \in HE''$, $i''(e) = i(e)$.

- If the type of the external structure of G' is an edge, let us denote by e_1 and e_2 its two external half-edges.
 (a) $HE'' = HE \setminus HE'$.
 (b) $V'' = V \setminus V'$.
 (c) For all $e \in HE''$, $s''(e) = s(e)$.
 (d) For all $e \in HE''$:
 $$i''(e) = \begin{cases}
 i(e_2) & \text{if } e = i(e_1), \\
 i(e_1) & \text{if } e = i(e_2), \\
 i(e) & \text{otherwise}.
 \end{cases}$$
If G' is not connected, we put $G' = G_1' \ldots G_k'$ its decomposition into connected parts, and define $G/G' = (\ldots (G/\langle G_1' \rangle)/\langle G_2' \rangle \ldots)/\langle G_k' \rangle$. It does not depend of the order chosen on the connected components of G'.

3. If G/G' is a Feynman graph, we shall say that G' is an admissible subgraph and we shall write $G' \subseteq G$.

Roughly speaking, G/G' is obtained by deleting G' from G and contracting the hole which appeared until it vanishes. By convention, $G/G = 1$ and $G/1 = G$. Observe that if $G' \subset G$ and G is 1-PI, then G/G' is also 1-PI, with the same external structure as G.

The set $\mathcal{FG}(T)$ is a basis of the Hopf algebra $\mathcal{H}_{\mathcal{FG}(T)}$ associated to a theory T of Feynman graphs. Its product is given by the disjoint union of Feynman graphs; its coproduct is given by:

$$\forall G \in \mathcal{FG}(T), \Delta(G) = \sum_{G' \subseteq G} G' \otimes G/G'.$$

Examples. In QED:

$$\Delta\begin{array}{c}
\xymatrix{& & \bigcirc
\end{array}
= \begin{array}{c}
\xymatrix{& & & \bigcirc
}
\end{array} \otimes 1 + 1 \otimes \begin{array}{c}
\xymatrix{& & \bigcirc
}
\end{array} + \begin{array}{c}
\xymatrix{& \bigcirc
}
\end{array} \otimes \bigcirc.$$

$$\Delta\begin{array}{c}
\xymatrix{& \bigcirc
\ar@{-->}[l]
\end{array}
= \begin{array}{c}
\xymatrix{& & & \bigcirc
}
\end{array} \otimes 1 + 1 \otimes \begin{array}{c}
\xymatrix{& & \bigcirc
}
\end{array} + \begin{array}{c}
\xymatrix{& \bigcirc
}
\end{array} \otimes \bigcirc.$$

$$\Delta\begin{array}{c}
\xymatrix{& & & \bigcirc
\ar@{-->}[l]
\end{array}
= \begin{array}{c}
\xymatrix{& & & \bigcirc
\ar@{-->}[l]
\end{array} \otimes 1 + 1 \otimes \begin{array}{c}
\xymatrix{& & \bigcirc
\ar@{-->}[l]
\end{array} + 2 \begin{array}{c}
\xymatrix{& \bigcirc
\ar@{-->}[l]
\end{array} \otimes \bigcirc.$$

Definition 35 Let G be a Feynman graph of a given theory T. The loop number of G is:

$$\ell(G) = \sharp \text{Int}(G) - \sharp \text{Vert}(G) + \sharp \{\text{connected components of } G\}.$$

Note that because of the 1-PI condition, for all nonempty graph G, $\ell(G) \geq 1$.

We shall prove afterwards that the loop number defines a connected \mathbb{N}-gradation of the Hopf algebra $\mathcal{H}_{\mathcal{FG}(T)}$.

5.2 Graduations

Let us fix a theory $T = (\mathcal{H}, \nu, \iota)$. We look for gradations of the Hopf algebra $\mathcal{H}_{\mathcal{FG}(T)}$. We shall use the following notions:

Definition 36 1. The incidence matrix of T is the matrix $A_T = (a_{e,v})_{e \in \mathcal{H}, v \in \nu}$, where $a_{e,v}$ is the multiplicity of e in the multiset v.

2. The reduced incidence matrix of T is the matrix $A'_T = (a'_{e,v})_{e \in \mathcal{E}, v \in \nu}$, where:

$$a'_{e,v} = \begin{cases}
\frac{a_{e_1,v}}{2} & \text{if } e = \{e_1, e_1\}, \\
\frac{a_{e_1,v} + a_{e_2,v}}{2} & \text{if } e = \{e_1, e_2\} \text{ with } e_1 \neq e_2.
\end{cases}$$

3. Let $G \in \mathcal{FG}(T)$. We define four vectors related to G: 27
(a) $V_G = (v_t(G))_{t \in V}$, where $v_t(G)$ is the number of vertices v of G such that $\text{type}(v) = t$.
(b) $E_G = (e_t(G))_{t \in H_E}$, where $e_t(G)$ is the number of half-edges e of G such that $\text{type}(e) = t$.
(c) $E'_G = (e_t(G))_{t \in E}$, where $e_t(G)$ is the number of internal edges e of G such that $\text{type}(e) = t$.
(d) $S_G = (s_t(G))_{t \in V \oplus E}$, where $s_t(G)$ is the number of connected components of G of external structure t.

Examples.

\[
A_{QED} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad A_{QCD} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 3 & 4 \end{pmatrix}, \quad A_{\varphi^n} = (n).
\]

\[
A'_{QED} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad A'_{QCD} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{2} & 2 \end{pmatrix}, \quad A'_{\varphi^n} = \left(\frac{n}{2}\right).
\]

Proposition 37 Let $G \in \mathcal{F}_G(T)$. Then:

2. $E'_G = A'_T V_G - (A'_T \text{Id}) S_G$.
3. The number of external half-edges of G is $(1 \ldots 1)(A_T 2\text{Id}) S_G$.
4. The loop number of G is:
\[
\ell(G) = \left(\frac{(1 \ldots 1) A_T}{2} - (1 \ldots 1)\right) V_G - \left((1 \ldots 1) \left(\frac{A_T}{2} 0\right) - (1 \ldots 10 \ldots 0)\right) S_G.
\]

Proof. The first three points are easy results of graph theory. The number of connected components of G is $(1 \ldots 1) S_G$; the number of external half-edges of G is given, from the third point, by $(1 \ldots 1)(A_T 2\text{Id}) S_G$. Hence, the number of internal edges of G is given by:

\[
(1 \ldots 1) E_G - (1 \ldots 1)(A_T 2\text{Id}) S_G
\]

The loop number of G is consequently given by:

\[
\ell(G) = \frac{(1 \ldots 1) E_G - (1 \ldots 1)(A_T 2\text{Id}) S_G}{2} - (1 \ldots 1) V_G + (1 \ldots 1) S_G
\]

\[
= \left(\frac{(1 \ldots 1) A_T}{2} - (1 \ldots 1)\right) V_G - \left((1 \ldots 1) \left(\frac{A_T}{2} \text{Id}\right) - (1 \ldots 1)\right) S_G
\]

\[
= \left(\frac{(1 \ldots 1) A_T}{2} - (1 \ldots 1)\right) V_G - \left((1 \ldots 1) \left(\frac{A_T}{2} 0\right) - (1 \ldots 10 \ldots 0)\right) S_G,
\]

which proves the last point.

We now look for Q^N-graduations of the Hopf algebra $\mathcal{H}_{\mathcal{F}_G(T)}$, which only depend on the combinatorial datas of definition 36-3. According to proposition 37, for such a graduation, there exists a map $f : \mathbb{N}^{|V|} \times \mathbb{N}^{|V|+|E|} \rightarrow Q^N$, such that for any graph G, $\text{deg}(G) = f(V_G, S_G)$.

28
Proposition 38 Let \(f : \mathbb{N}^{|V|} \times \mathbb{N}^{|V| + |E|} \rightarrow \mathbb{Q}^N \). We consider the \(\mathbb{Q}^N \)-graduation of \(\mathcal{H}_{FG(T)} \) defined by \(\text{deg}(G) = f(V_G, S_G) \). It is a Hopf algebra graduation if, and only if, there exists \(C \in M_{N, |V|} (\mathbb{Q}) \) such that for any Feynman graph \(G \):
\[
\text{deg}(G) = CV_G - (C 0)S_G.
\]

Proof. Let \(G \) and \(G' \) be two graphs. Then \(V_{G'} = V_G + V_{G'} \) and \(S_{G'} = S_G + S_{G'} \). Consequently, the graduation respects the product if, and only if, for all \(G, G' \):
\[
 f(V_G + V_{G'}, S_G + S_{G'}) = f(V_G, S_G) + f(V_{G'}, S_{G'}).
\]
that is to say if, and only if, \(f \) is additive. Hence, \(f \) gives a graduation of the algebra \(\mathcal{H}_{FG(T)} \) if, and only if, there exists \(C \in M_{N, |V|} (\mathbb{Q}) \) and \(D \in M_{N, |V| + |E|} (\mathbb{Q}) \) such that for any Feynman graph \(G \), \(\text{deg}(G) = CV_G + DS_G \).

Let \(G' \subseteq G \). By definition of \(G'' = G/G' \), \(V_{G''} = V_G - V_{G'} + (\text{Id} 0)S_{G'} \) and \(S_{G''} = S_G \). Hence:
\[
\text{deg}(G) = CV_G + DS_G \\
= CV_{G''} + CV_{G'} - C(\text{Id} 0)S_{G'} + DS_{G''} \\
= \text{deg}(G') + \text{deg}(G'') - (D + C(\text{Id} 0))S_G.
\]
So \(f \) gives a graduation of \(\mathcal{H}_{FG(T)} \) if, and only if, for all subdiagram \(G' \subseteq G \), \((D + C(\text{Id} 0))S_{G'} = 0 \). As there exists diagrams for any external structure, we can choose \(G \) and \(G' \) such that \(S_{G'} \) is the \(i \)-th vector of the canonical basis; hence, we have a graduation of \(\mathcal{H}_{FG(T)} \) if, and only if, \(D + C(\text{Id} 0) = 0 \). \(\square \)

Consequently, any matrix \(C \in M_{N, |V|} (\mathbb{Q}) \) defines a \(\mathbb{Q}^N \)-graduation of the Hopf algebra \(\mathcal{H}_{FG(T)} \). This of course may be not a \(\mathbb{N}^N \)-graduation, or may be not connected.

Examples.

1. The loop number \(\ell \) gives a Hopf algebra \(\mathbb{N} \)-graduation with \(C_\ell = \frac{(1 \ldots 1)A_r}{2} - (1 \ldots 1) \). This is a connected \(\mathbb{N} \)-graduation, as we only consider 1-PI graphs.

2. Let \(t \in E_T \), and let \(C \) be the \(t \)-th row of \(A'_T \); the associated graduation is noted \(\text{deg}_t \). For all \(G \in \mathcal{F}_{G}(T) \), \(\text{deg}_t(G) = e_t(G) + s_t(G) \). This is a \(\mathbb{N} \)-graduation, which may be not connected.

3. If \(\text{deg} \) and \(\text{deg}' \) are two graduations of the Hopf algebra \(\mathcal{H}_{FG(T)} \), then \(\text{deg} \oplus \text{deg}' \) defined by \(\text{deg} \oplus \text{deg}'(G) = (\text{deg}(G), \text{deg}'(G)) \) is also a graduation of \(\mathcal{H}_{FG(T)} \). If \(\text{deg} \) and \(\text{deg}' \) are respectively given by \(C \) and \(C' \), \(\text{deg} \oplus \text{deg}' \) is given by \(\left(\begin{array}{c} C \\ C' \end{array} \right) \).

5.3 Insertions

Definition 39 Let \(G \) and \(G' \) be two Feynman graphs of a theory \(T \).

1. We denote by \(G'_1, \ldots, G'_k \) the connected components of \(G' \). A place of insertion \(f \) of \(G' \) into \(G \) is given by:

 (a) for all \(G'_i \) of external structure of type a vertex \(t \), a pair \((v_i, f_i) \), where \(v_i \) is a vertex of \(G \) of type \(t \), and \(f_i \) a bijection from the set of external edges of \(G'_i \) to the set of half-edges of \(G' \) such that \(s(e) = t \), compatible with the type, that is to say \(\text{type}(f_i(e')) = \text{type}(e') \) for all \(e' \). Moreover, if \(G'_i \) and \(G'_j \) are both of external structure of type \(t \), with \(i \neq j \), then \(v_i \neq v_j \).
(b) for all \(G_i' \) of external structure of type an edge \(t \), a pair \((e_i, f_i)\) where \(e_i = \{e_i^{(1)}, e_i^{(2)}\} \) is an internal edge of \(G \) of type \(t \), and \(f_i \) a bijection from the set of the two external half-edges of \(t \) into \(\{e_i^{(1)}, e_i^{(2)}\} \).

(c) For all internal edge \(e \) of \(G \), the set of components \(G_i \) such that \(e_i = e \) is totally ordered.

Note that the set of places of insertion of \(G' \) into \(G \) is finite and may be empty. Its cardinality is denoted \(\text{ins}(G', G) \).

2. Let \(F \) be a place of insertion of \(G' \) into \(G \). The insertion \(G' \xrightarrow{F} G \) is the Feynman graph obtained in this way:

(a) For all \(G_i' \) of external structure of type vertex, delete \(v_i \) and all the half-edges \(e \) such that \(s(e) = v_i \); then glue each external edge \(e' \) of \(G_i' \) to \(i(f_i(e')) \) if \(i \) is not equal to \(f_i(e') \); otherwise, \(e' \) becomes an external edge.

(b) For each internal edge \(e \), such that there exists components \(G_i' \) with \(e_i = e \), first separate the two half-edges constituting this internal edge; then insert all these components \(G_i' \), following their total order, by gluing their external edges with the two open half-edges according to \(f_i \).

For any Feynman graph such that \(\text{ins}(G', G) \neq 0 \), we put:

\[
B_G(G') = \frac{1}{\text{ins}(G', G)} \sum_F G' \xrightarrow{F} G.
\]

Proposition 40

1. For all graph \(G \), the space \(I_G = \text{Vect}(G', \text{ins}(G', G) \neq 0) \) is a left comodule.

2. For all primitive graph \(G \), for all \(x \in I_G \):

\[
\Delta \circ B_G(x) = B_G(x) \otimes 1 + (\text{Id} \otimes B_G) \circ \Delta(x).
\]

3. We define a graduation on \(\mathcal{H}_{FG(T)} \) with the help of a matrix \(C \in M_{N, |V|}(\mathbb{Q}) \). Then for any Feynman graph \(G, B_G \) is homogeneous of degree \(\text{deg}(G) \).

Proof.

1. Let \(G \) and \(G' \) be two graphs. Then \(G' \in I_G \) if, and only if, the two following conditions hold:

- For any \(t \in \mathcal{V} \), \(s_t(G') \leq v_t(G) \).
- For any \(t \in \mathcal{E} \), \((s_t(G')) = 1 \) \(\implies \) \((e_t(G')) = 1 \).

Consequently, if \(G' \in I_G \) and \(G'' \subset G' \), noting that \(s_t(G'/G'') \leq s_t(G') \) for all \(t \in \mathcal{V} \cup \mathcal{E} \), then \(G' / G'' \in I_G \). So \(I_G \) is a left comodule.

2. Let \(G' \in \mathcal{FG}(T) \), such that \(\text{ins}(G', G) \neq 0 \). As \(G \) is primitive, \(\Delta(G) = G = \otimes 1 + 1 \otimes G \), so \(G \) has no proper subgraph. For all insertion place \(f \), let us consider a subgraph \(H \) of \(G'' = G' \xrightarrow{f} G \). If \(H \) contains internal edges of \(G'' \) which does not belong to \(G' \), as \(G' \) has no proper subgraph, it contains all the edges of \(G \), and, as \(H \) is a subgraph, it is equal to \(G \). Otherwise, \(H \) is a subgraph of \(G' \), and then \(G'' / H = G' / H \xrightarrow{f} G \) for a particular \(F' \). Summing, we obtain:

\[
\Delta(B_G(G')) = \frac{1}{\text{ins}(G', G)} \sum_f \left(G' \xrightarrow{f} G \otimes 1 + \sum_{H \subseteq G'} H \otimes G' / H \xrightarrow{f'} G \right)
\]

\[
= B_G(G') \otimes 1 + \sum_{H \subseteq G'} H \otimes B_G(G' / H)
\]

\[
= B_G(G') \otimes 1 + (\text{Id} \otimes B_G) \circ \Delta(G').
\]
By linearity, the result holds for all \(x \in I_G \).

3. Let \(G \) and \(G' \) be Feynman graphs, and \(G'' = G' \xrightarrow{F} G \). Then \(S_{G''} = S_G \) and \(V_{G''} = V_G + V_{G'} - (Id 0)S_G' \). Hence:

\[
deg(G'') = CV_G + CV_{G'} - C(Id 0)S_{G'} - (C 0)S_G \\
= CV_G - (C 0)S_G + CV_{G'} - (C 0)S_{G'} \\
= \deg(G) + \deg(G').
\]

So \(B_G \) is homogeneous of degree \(\deg(G) \).

\[\square \]

5.4 SDSE associated to a theory of Feynman graphs

Let \(\mathcal{T} \) be a family of Feynman graphs. We put \(V = \{t_1, \ldots, t_k\}, E = \{t_{k+1}, \ldots, t_{k+l}\} \) and \(M = k + l \). We choose a connected \(\mathbb{N}^N \)-gradation of \(\mathcal{H}_{FG}^{(\mathcal{T})} \) given by a \(N \times k \) matrix \(C \). In order to ease the notation, for all \(i \in [k] \), we put \(v_i(t_i) = v_i(G) \) and for all \(k + 1 \leq j \leq k + l \), \(e_{t_j}(G) = e_j(G) \), for any Feynman graph \(G \).

Notations.

1. For each \(i \), we denote by \(P_i \) the set of primitive 1-PI Feynman graphs of the theory \(\mathcal{T} \) of external structure of type \(t_i \).
2. Let \(\alpha_1, \ldots, \alpha_N \) be \(N \) indeterminates (the coupling constants). For any graph \(G \), if \(\deg(G) = (d_1, \ldots, d_N) \), we put \(\alpha^{\deg(G)} = \alpha_1^{d_1} \ldots \alpha_N^{d_N} \).

We consider the following SDSE on \(\mathcal{H}_{FG}^{(\mathcal{T})} \):

\[
(S_T) : \forall i \in [M], \ X_i = \sum_{G \in P_i} \alpha^{\deg(G)} B_G \left(\prod_{j=1}^{k} (1 + X_j)^{v_i(G)} \prod_{j=k+1}^{k+l} (1 - X_j)^{e_j(G)} \right).
\]

We decompose \(X_i \) according to the powers of the \(\alpha_i \):

\[
X_i = \sum_{d \in \mathbb{N}^N} \alpha^d X_i(d).
\]

It is not difficult to show that \(X_i(d) \) is homogeneous of degree \(d \), as \(B_G \) is homogeneous of degree \(\deg(G) \). The subalgebra generated by the \(X_i(d)'s \) is denoted by \(\mathcal{H}(S_T) \).

Combinatorially, \(X_i \) is a span of all connected graph of external structure of type \(t_i \); its homogeneous components can be inductively computed by taking all possible insertions of already computed homogeneous components of \(X_j \) into primitive Feynman graphs of the good external structure, in order to obtain the expected degree.

We lift this SDSE to the level of rooted trees. The set of decorations is the set of primitive connected Feynman graphs:

\[
P = \bigsqcup_{i=1}^{k+l} P_i.
\]

The graduation of \(\mathcal{H}_{FG}^{(\mathcal{T})} \) is given by the degree of primitive Feynman graphs, and we consider the SDSE on \(\mathcal{H}_{FG}^{(\mathcal{T}}) \):

\[
(S_T) : \forall i \in [M], \ Y_i = \sum_{G \in P_i} B_G \left(\prod_{j=1}^{k} (1 + Y_j)^{v_i(G)} \prod_{j=k+1}^{k+l} (1 - Y_j)^{e_j(G)} \right).
\]

31
The homogeneous component of Y_i of degree d is denoted by $Y_i(d)$ and the subalgebra of H^D_{CK} generated by the $Y_i(d)$ is denoted by $H_1(S_T)$.

Proposition 41 If $H(S_T')$ is a Hopf subalgebra of H^D_{CK}, then $H(S_T)$ is a Hopf subalgebra of $H_{FG(T)}$, and the algebra morphism defined by $Y_i(d) \mapsto X_i(d)$ is a surjective Hopf algebra morphism from $H(S_T')$ to $H(S_T)$.

Proof. Let T be a rooted tree decorated by D. We shall say it is admissible if for all vertex v of T, denoting by G the decoration of v and by $\mathbf{G}_1, \ldots, \mathbf{G}_k$ the decorations of the children of v, then $\mathbf{G}_1 \ldots \mathbf{G}_k \in I_G$. We denote by A' the subalgebra generated by all admissible trees. If T is admissible, then for all admissible cut c of T, $P^c(T)$ and $R^c(T)$ are admissible, so A' is a Hopf subalgebra. By definition of (S_T), $Y_i(d) \in A'$ for all $i \in [M]$, $d \in \mathbb{N}^N$.

One can define an algebra morphism ϕ from A' to $H_{FG(T)}$ inductively by:

$$\phi(B^+_G(T_1 \ldots T_k)) = B_G(\phi(T_1) \ldots \phi(T_k)),$$

for all admissible tree $B^+_G(T_1 \ldots T_k)$. It is well-defined: indeed, if $\phi(T_1), \ldots, \phi(T_k)$ are well-defined, then for all i, $\phi(T_i)$ is a linear span of graphs with the external structure given by the decoration of the root of T_i. As $B_G(T_1 \ldots T_k)$ is admissible, $\phi(T_1) \ldots \phi(T_k) \in I_G$, so $\phi(B^+_G(T_1 \ldots T_k))$ is well-defined. As B_G and B^+_G are both homogeneous of degree $\deg(G)$, an easy induction proves that ϕ is homogeneous of degree 0. As $\phi \circ B^+_G = B_G \circ \phi$ on A' for all G', $\phi(Y_i(d)) = X_i(d)$ for all $i \in [M]$ and all $d \in \mathbb{N}^N$. By the one-cocycle property of B_G and B^+_G on I_G, $(\phi \otimes \phi) \circ \Delta = \Delta \circ \phi$ on A'. Consequently, if $H(S_T)$ is a Hopf subalgebra of H^D_{CK}, its image $H(S_T)$ is a Hopf subalgebra of $H_{FG(T)}$. \hfill \Box

Theorem 42 If $\text{Rank}(C) = |V|$, then $H(S_T)$ is a Hopf subalgebra of H^D_{CK}; moreover, the SDSE (S_T') is associated to a deg1 pre-Lie algebra.

Proof. First, observe that, as C is a $N \times k$-matrix, $\text{Rank}(C) \leq k = |V|$.

Let us assume that $\text{Rank}(C) = k$. There exists a matrix $C' \in M_{k,N}(\mathbb{K})$, such that $C'C = I_{dk}$.

For any primitive Feynman graph G of external structure e_i and of degree d, if (e_1, \ldots, e_M) is the canonical basis of \mathbb{K}^M, noting that $d = CV_G - (C0)e_i:

$$V_G = C'd + (Id_0)\epsilon_i, \quad E_G' = A'TC'd - (0 Id_k)\epsilon_i.$$

For all $i \in [M]$, for all $d \in \mathbb{N}^N$, we put:

$$B^+_{i,n} = \sum_{G \in P_i, \deg(G) = d} B^+_G.$$

The SDSE can be written as:

$$Y_i = \sum_{d \in \mathbb{N}^N} B_{i,d} \left(\prod_{j=1}^k (1 + Y_j) \sum_{\sigma, \sigma'} \epsilon_{j, p, d_p} \prod_{j=k+1}^{k+l} (1 - Y_j) \sum_{\sigma, \sigma'} \epsilon_{j, p, d_p} \right) \quad \text{if } i \leq k,$n

$$Y_i = \sum_{d \in \mathbb{N}^N} B_{i,d} \left(\prod_{j=1}^k (1 + Y_j) \sum_{\sigma, \sigma'} \epsilon_{j, p, d_p} \prod_{j=k+1}^{k+l} (1 - Y_j) \sum_{\sigma, \sigma'} \epsilon_{j, p, d_p} \right) \quad \text{if } i \geq k + 1.$$

Hence, we recognize the deg1 pre-Lie algebra with $I_p = \{p\}$ for all $1 \leq p \leq k + l$, b given by:

$$b^{(ij)} = \begin{cases} \delta_{i,j} \text{ if } i \leq k, \\ -\delta_{i,j} \text{ if } i \geq k + 1, \end{cases}$$

and A given by the matrix $\begin{pmatrix} C' & A'_T C' \end{pmatrix}$. \hfill \Box

As C' has also rank k:

32
Corollary 43 If \(\text{Rank}(C) = |\mathcal{V}| = k \), the graded dual of the Hopf algebra \(\mathcal{H}_{(S_T^l)} \) is the enveloping algebra of the reduced deg1 pre-Lie algebra with structure coefficients given by:

\[
A'(i,j) = \begin{cases}
 i \setminus j & 1 \ldots k \quad k + 1 \ldots k + l \\
 1 \ldots M & A'_{ij} \\
 0 & 1 \ldots M
\end{cases}
\]

\[
A' = \begin{pmatrix} I_k & 0 \\
 A'' & 0
\end{pmatrix}
\]

If \(C \) is invertible, then \(A'' = -A'_T \). Moreover, \(\mathcal{H}_{(S_T^l)} \) is isomorphic to the coordinate Hopf algebra of the group \(V_i^l \rtimes G_{A''} \).

Proof. It remains to consider the case where \(C \) is invertible. In this case, \(C' = C^{-1} \) and \(A = \begin{pmatrix} C' & 0 \\
 -A'_T & C' \end{pmatrix} \). We then take \(A = A'C = \begin{pmatrix} \text{Id}_k & 0 \\
 -A'_T & \text{Id}_k \end{pmatrix} \).

Examples.

1. If there is only one vertex type, we can choose the graduation by the loop number.

 (a) For QED, \(C = (\frac{1}{2}) \), so \(C' = (2) \); hence, \(A = \begin{pmatrix} \frac{1}{2} & 0 \\
 -\frac{1}{2} & 0 \end{pmatrix} \) and \(A' = \begin{pmatrix} 1 & 0 \\
 -1 & 1 \end{pmatrix} \). The SDSE is:

 \[
 X_1 = \sum_{k \geq 1} \alpha^k \sum_{G \in D_1(k)} B_G \frac{(1 + X_1)^{2k+1}}{(1 - X_2)^k (1 - X_3)^2}
 \]

 \[
 X_2 = \sum_{k \geq 1} \alpha^k \sum_{G \in D_2(k)} B_G \frac{(1 + X_1)^{2k}}{(1 - X_2)^{k-1} (1 - X_3)^2}
 \]

 \[
 X_3 = \sum_{k \geq 1} \alpha^k \sum_{G \in D_3(k)} B_G \frac{(1 + X_1)^{2k}}{(1 - X_2)^k (1 - X_3)^{2k-1}}
 \]

 where \(D_1(k), D_2(k) \) and \(D_3(k) \) are sets of primitive Feynman graphs with \(k \) loops and respective external structures \(\begin{array}{c} \xrightarrow{\sim} \\
 \end{array} \), \(\begin{array}{c} \xrightarrow{\sim} \\
 \end{array} \) and \(\begin{array}{c} \xrightarrow{\sim} \\
 \end{array} \). In particular:

 \[
 D_2(k) = \begin{cases}
 \begin{array}{c} \xrightarrow{\sim} \end{array} & \text{if } k = 1, \\
 \emptyset & \text{otherwise};
\end{cases}
 \]

 \[
 D_3(k) = \begin{cases}
 \begin{array}{c} \xrightarrow{\sim} \end{array} & \text{if } k = 1, \\
 \emptyset & \text{otherwise};
\end{cases}
 \]

(b) In \(\varphi^n \), \(C = (\frac{n-2}{2}) \), so \(C' = (\frac{2}{n-2}) \); hence, \(A = \begin{pmatrix} \frac{2}{n-2} & 0 \\
 -\frac{2}{n-2} & 0 \end{pmatrix} \) and \(A' = \begin{pmatrix} 1 & 0 \\
 -n & 1 \end{pmatrix} \). The SDSE is:

 \[
 X_1 = \sum_{k \geq 1} \alpha^k \sum_{G \in D_1(k)} B_G \frac{(1 + X_1)^{\frac{2k}{n-2}+1}}{(1 - X_2)^{\frac{n}{n-2}} (1 - X_3)^{\frac{n}{n-2}}}
 \]

 \[
 X_2 = \sum_{k \geq 1} \alpha^k \sum_{G \in D_2(k)} B_G \frac{(1 + X_1)^{\frac{2k}{n-2}}}{(1 - X_2)^{\frac{n}{n-2}} (1 - X_3)^{\frac{n}{n-2}-1}}
 \]

 where \(D_1(k) \) and \(D_2(k) \) are sets of primitive Feynman graphs with \(k \) loops and respective external structures the vertex and the edge.
2. In QCD, we take:

\[C = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 2 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1
\end{pmatrix}. \]

If \(G \) is a QCD Feynman graph, then:

\[\text{deg}(G) = \left(\text{deg}(G), \text{deg}(G), \text{deg}(G), \ell(G) \right). \]

It is a connected \(\mathbb{N}^4 \)-graduation. Moreover, \(C' = C^{-1} \), and:

\[
A = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 2 & -4 \\
-1 & -1 & -1 & 3 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0
\end{pmatrix}, \quad A' = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
-\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -2
\end{pmatrix}.
\]

The SDSE is:

\[
X_1 = \sum_{k \in \mathbb{N}^4} \alpha^k \sum_{G \in D_1(k)} B_G \left(\frac{(1 + X_1)^{k_1+1} (1 + X_2)^{k_2} (1 + X_3)^{k_3}}{(1 + X_5)^{k_1} (1 - X_6)^{k_2} (1 - X_7)^{k_3}} \right),
\]

\[
X_2 = \sum_{k \in \mathbb{N}^4} \alpha^k \sum_{G \in D_2(k)} B_G \left(\frac{(1 + X_1)^{k_1} (1 + X_2)^{k_2+1} (1 + X_3)^{k_3}}{(1 - X_5)^{k_1} (1 - X_6)^{k_2} (1 - X_7)^{k_3}} \right),
\]

\[
X_3 = \sum_{k \in \mathbb{N}^4} \alpha^k \sum_{G \in D_3(k)} B_G \left(\frac{(1 + X_1)^{k_1} (1 + X_2)^{k_2} (1 + X_3)^{k_3}}{(1 - X_5)^{k_1} (1 - X_6)^{k_2} (1 - X_7)^{k_3}} \right),
\]

\[
X_4 = \sum_{k \in \mathbb{N}^4} \alpha^k \sum_{G \in D_4(k)} B_G \left(\frac{(1 + X_1)^{k_1} (1 + X_2)^{k_2} (1 + X_3)^{k_3}}{(1 - X_5)^{k_1} (1 - X_6)^{k_2} (1 - X_7)^{k_3}} \right),
\]

\[
X_5 = \sum_{k \in \mathbb{N}^4} \alpha^k \sum_{G \in D_5(k)} B_G \left(\frac{(1 + X_1)^{k_1} (1 + X_2)^{k_2} (1 + X_3)^{k_3}}{(1 - X_5)^{k_1} (1 - X_6)^{k_2} (1 - X_7)^{k_3}} \right),
\]

\[
X_6 = \sum_{k \in \mathbb{N}^4} \alpha^k \sum_{G \in D_6(k)} B_G \left(\frac{(1 + X_1)^{k_1} (1 + X_2)^{k_2} (1 + X_3)^{k_3}}{(1 - X_5)^{k_1} (1 - X_6)^{k_2} (1 - X_7)^{k_3}} \right),
\]

\[
X_7 = \sum_{k \in \mathbb{N}^4} \alpha^k \sum_{G \in D_7(k)} B_G \left(\frac{(1 + X_1)^{k_1} (1 + X_2)^{k_2} (1 + X_3)^{k_3}}{(1 - X_5)^{k_1} (1 - X_6)^{k_2} (1 - X_7)^{k_3}} \right),
\]

with \(\alpha(k) = k_1 + k_2 + 2k_3 - 4k_4 \) and \(\beta(k) = -k_1 - k_2 - k_3 + 3k_4 \), and where \(D_1(k), D_2(k), D_3(k), D_4(k), D_5(k), D_6(k) \) and \(D_7(k) \) are sets of primitive Feynman graphs of degree \(k \) and respective external structures:

![External structures](image)

Remark. We can extend the set of considered Feynman graphs by admitting other external structures, indexed by \(k+l+1, \ldots, k+l+m \) for \(k+1 \leq j \leq k+l \) and \(k+l+1 \leq i \leq k+l+m \),
let $\lambda_{j}^{(i)}$ be the number of copies of half-edges of the j-th type of edge t_j in the i-th external structure, divided by 2. We obtain a SDSE given by:

$$X_i = \sum_{d \in \mathbb{N}_N} B_{i,d} \left(\prod_{j=1}^{k} (1 + X_j) \sum_{p} c_{j,p}^d (1 - X_j) \sum_{q} a_{j,p,q}^d (1 + X_i) \right)$$

if $i \leq k$,

$$X_i = \sum_{d \in \mathbb{N}_N} B_{i,d} \left(\prod_{j=1}^{k} (1 + X_j) \sum_{p} c_{j,p}^d (1 - X_j) \sum_{q} a_{j,p,q}^d (1 - X_i) \right)$$

if $k + 1 \leq i \leq k + l$,

$$X_i = \sum_{d \in \mathbb{N}_N} B_{i,d} \left(\prod_{j=1}^{k} (1 + X_j) \sum_{p} c_{j,p}^d (1 - X_j) \sum_{q} a_{j,p,q}^d (1 - X_i) \right)$$

otherwise.

We recognize the deg1 pre-Lie algebra with $I_p = \{p\}$ for all $1 \leq p \leq k + l$, $I_0 = \{k + l + 1, \ldots, k + l + n\}$, b given by:

$$b^{(i,j)} = \begin{cases}
\delta_{i,j} & \text{if } i \leq k, \\
-\delta_{i,j} & \text{if } k + 1 \leq i \leq k + l, \\
-\lambda_{j}^{(i)} & \text{if } i \geq k + l + 1,
\end{cases}$$

and A given by the matrix $\begin{pmatrix} C' & -A' \delta \end{pmatrix}$. If C is invertible, $\mathcal{H}(S_T)$ is isomorphic to the Hopf algebra of coordinates of the group:

$$(V_{\Lambda(k+l+m),0} \oplus \cdots \oplus V_{\Lambda(k+l+1),0}) \rtimes (V_0 \rtimes G_{AN})$$

5.5 Minimal rank for QCD

Let us consider a QFT, the SDSE (S'_T) associated to it, and a matrix C giving a connected \mathbb{N}_N-graduation. We proved that if $\text{Rank}(C) = |\mathcal{V}|$, then $\mathcal{H}(S_T)$ is Hopf; we would like to know what the minimal rank of C required to make $\mathcal{H}(S'_T)$ a Hopf subalgebra is. For QED or φ^4, as $|\mathcal{V}| = 1$, this is obviously 1. If the theory has enough primitive Feynman graphs, this minimal rank is $|\mathcal{V}|$: we now prove this result for QCD.

Proposition 44 In the QCD case, the graduation induced by C gives a Hopf SDSE if, and only if $\text{Rank}(C) = 4$.

Proof. We already proved the implication \Leftarrow. We first construct enough primitive Feynman graphs of external structure ∞. Let $(a,b,c,d) \in \mathbb{N}_4$. We start with $G = \infty$. Judiciously gluing the external edges of a copies of ∞, b copies of ∞, c copies of ∞, and d copies of ∞ on the edges \rightarrow and \rightarrow, creating in this way new 2$a + 2b + 3c + 4d$ new vertices of type ∞, we obtain a primitive Feynman graph G' with:

$$V_{G'} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + a \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} + c \begin{pmatrix} 3 \\ 0 \\ 0 \\ 0 \end{pmatrix} + d \begin{pmatrix} 4 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$
Let us assume that $\mathcal{H}(S^1_\uda)$ is Hopf and that $\text{Rank}(C) \leq 3$. There exists a nonzero vector $v \in \mathbb{Q}^4$, such that $Cv = (0)$. We decompose this vector v in the basis:

\[
\begin{pmatrix}
2 & 0 & 3 & 4 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

After a multiplication by a nonzero integer and separation of the terms according to their signs, we obtain that there exists two different vectors w and w', such that:

\[
w = a \begin{pmatrix}
2 & 0 \\
0 & 2 \\
0 & 0 \\
0 & 0
\end{pmatrix} + b \begin{pmatrix}
2 & 0 \\
0 & 2 \\
0 & 0 \\
0 & 0
\end{pmatrix} + c \begin{pmatrix}
3 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{pmatrix} + d \begin{pmatrix}
4 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}, \ a, b, c, d \in \mathbb{N},
\]

\[
w' = a' \begin{pmatrix}
2 & 0 \\
0 & 2 \\
0 & 0 \\
0 & 0
\end{pmatrix} + b' \begin{pmatrix}
2 & 0 \\
0 & 2 \\
0 & 0 \\
0 & 0
\end{pmatrix} + c' \begin{pmatrix}
3 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{pmatrix} + d' \begin{pmatrix}
4 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}, \ a', b', c', d' \in \mathbb{N},
\]

$Cw = Cw'$.

Let G and G' be primitive Feynman graphs of external structure such that:

\[
V_G = \begin{pmatrix}
1 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix} + w, \quad V_{G'} = \begin{pmatrix}
1 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix} + w'.
\]

Their degree are:

\[
\text{deg}(G) = CV_G - (C \begin{pmatrix}
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{pmatrix}) = Cw, \quad \text{deg}(G') = CV_{G'} - (C \begin{pmatrix}
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{pmatrix}) = Cw'.
\]

So $\text{deg}(G) = \text{deg}(G')$. According to lemma 13, $f_G = f_{G'}$, so in particular, for all $i \in [4]$, $v_i(G) = v_i(G')$, which implies that $V_G = V_{G'}$ and finally $w = w'$, which is a contradiction. We conclude that $\text{Rank}(C) = 4$.

\section{SDSE associated to coloured graphs}

We now generalize multicylic SDSE of [7, 9]. We are interested here in SDSE of the form:

\[
(S) : \forall i \in [M], \quad X_i = \sum_{\alpha \in \mathbb{N}^N} B_{i, \alpha} \left(1 + \sum_{j \in I_{i, \alpha}} X_j \right),
\]

where the $I_{i, \alpha}$ are nonempty sets.

\textbf{Definition 45} 1. A N-coloured oriented graph is an oriented graph G, with a map from the set $E(G)$ of edges of G into $[N]$. We denote by $V(G)$ the set of vertices of G. For all $i, j \in V(G)$, for all $\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{N}^N$, we shall write $i \overset{\alpha}{\rightarrow} j$ if there exists an oriented path from i to j in G, with α_i edges coloured by i for all $i \in [N]$.

\end{document}
2. Let G be a N-coloured oriented graph. The SDSE associated to G is associated to the \mathbb{N}^N-graded partitioned set $D = V(G) \times \mathbb{N}^N$:

$$(S_G): \forall i \in V(G), X_i = \sum_{\alpha \in \mathbb{N}^N} B_{i,\alpha} \left(1 + \sum_{j \in I_{i,\alpha}} X_j\right).$$

3. Let G be a N-coloured oriented graph. We shall say that G is Hopf if, for all $i, j, k \in V(G)$, for all $\alpha, \beta \in \mathbb{N}^N$,

$$(i \xrightarrow{\alpha} j \text{ and } j \xrightarrow{\beta} k) \iff (i \xrightarrow{\alpha} j \text{ and } i \xrightarrow{\alpha + \beta} k).$$

(Note that \iff is always satisfied).

Proposition 46 We consider a SDSE of the form:

$$(S): \forall i \in [M], X_i = \sum_{\alpha \in \mathbb{N}^N} B_{i,\alpha} \left(1 + \sum_{j \in I_{i,\alpha}} X_j\right),$$

It is Hopf, if, and only if, there exists a N-coloured Hopf graph on $[M]$ such that (S) is equal to (S_G). If this holds, the dual pre-Lie algebra of $\mathcal{H}(S_G)$ is associative; it has a basis $(f_i(\alpha))_{i \in V(G), \alpha \in \mathbb{N}^N}$ and the product is given by:

$$f_j(\beta) \ast f_i(\alpha) = \begin{cases} f_i(\alpha + \beta) \text{ if } i \xrightarrow{\alpha} j, \\ 0 \text{ otherwise.} \end{cases}$$

Proof. \Longrightarrow. First step. Let us assume that (S) is Hopf. We fix $i, j, k \in [M]$ and $\alpha, \beta, \gamma \in \mathbb{N}^N$. We put:

$$a = \begin{cases} 1 & \text{if } j \in I_{i,\alpha}, \\ 0 & \text{otherwise;} \end{cases} \quad b = \begin{cases} 1 & \text{if } k \in I_{i,\alpha + \beta}, \\ 0 & \text{otherwise;} \end{cases} \quad c = \begin{cases} 1 & \text{if } k \in I_{j,\beta}, \\ 0 & \text{otherwise.} \end{cases}$$

We obtain:

$$X_i(\alpha + \beta) = a_1 b_1 \alpha + \beta + \ldots,$$

$$X_i(\alpha + \beta + \gamma) = a_1 b_1 \alpha + \beta + \gamma + a_1 c_1 b_2 \alpha + \beta + \gamma + \ldots$$

Hence:

$$\Delta(X_i(\alpha + \beta + \gamma)) = a_1 b_1 \alpha + \beta + \gamma + a_1 c_1 b_2 \alpha + \beta + \gamma + \ldots \cdots \cdots \cdots$$

As $\mathcal{H}(S)$ is Hopf, X is a multiple of $X_i(\alpha + \beta)$, so $ab = ac$: $a = 0$ or $b = c$. In particular, if $a \neq 0$, $b = c$. Hence, for all $i, j, k \in [M]$, for all $\alpha, \beta, \gamma \in \mathbb{N}^N$, $j \in I_{i,\alpha}$ and $k \in I_{j,\beta}$ if, and only if, $i \in I_{i,\alpha}$ and $k \in I_{j,\alpha + \gamma}$.

Second step. We define a coloured graph structure G on $[M]$ in the following way: for all $i, j \in [M]$, for all $p \in [N]$, there exists an edge from i to j decorated by p if, and only if, $i \in I_{i,p}$. Let us prove that for all $i, k \in [M]$, for all $\alpha \in \mathbb{N}^N$, $k \in I_{i,\alpha}$ if, and only if, $i \xrightarrow{\alpha} k$ in G. We proceed by induction on $|\alpha| = \alpha_1 + \ldots + \alpha_N$. This is obvious if $|\alpha| = 1$. Let us assume the result at rank $|\alpha| - 1$.

\Longrightarrow. Let us choose α' and α'', such that $\alpha = \alpha' + \alpha''$, $|\alpha'| = |\alpha| - 1$ and $|\alpha''| = 1$. Let $j \in I_{i,\alpha'}$. By the first step, then $k \in I_{j,\alpha''}$. By the induction hypothesis, $i \xrightarrow{\alpha'} j$ and $j \xrightarrow{\alpha''} k$, so $i \xrightarrow{\alpha} k$.

37
\(\Leftarrow \). Let us assume that \(i \xrightarrow{\alpha} k \). We consider a path in \(G \) from \(i \) to \(k \), of weight \(\alpha \). If \(j \) is the last step, there exists \(\alpha', \alpha'' \), such that \(\alpha = \alpha' + \alpha'' \), \(|\alpha'| = |\alpha| - 1 \) and \(|\alpha''| = 1 \), \(i \xrightarrow{\alpha'} j \) and \(j \xrightarrow{\alpha''} k \). By the induction hypothesis, \(j \in I_{i,\alpha'} \) and \(k \in I_{j,\alpha''} \). By the first step, \(k \in I_{i,\alpha} \).

Hence:

\[
(S) : \forall i \in [M], \ X_i = \sum_{\alpha \in \mathbb{N}^N} B_{i,\alpha} \left(1 + \sum_{j} X_j \right).
\]

So \(S = (S_G) \). The first step implies that \(G \) is Hopf.

\(\Rightarrow \). Let us consider a Hopf \(\mathbb{N} \)-coloured graph \(G \). We define a product on the vector space \(\mathfrak{g} = Vect(f_i(\alpha))_{i \in V(G), \alpha \in \mathbb{N}^N} \) by:

\[
f_j(\beta) * f_i(\alpha) = \begin{cases} f_i(\alpha + \beta) \text{ if } i \xrightarrow{\alpha} j, \\ 0 \text{ otherwise}. \end{cases}
\]

Let \(i,j,k \in V(G) \). For any \(\alpha, \beta, \gamma \in \mathbb{N}^N \):

\[
 f_k(\gamma) * f_j(\beta) * f_i(\alpha) = \begin{cases} f_i(\alpha + \beta + \gamma) \text{ if } i \xrightarrow{\alpha} j \text{ and } j \xrightarrow{\beta} k, \\ 0 \text{ otherwise}; \end{cases}
\]

\[
f_k(\gamma) * (f_j(\beta)f_i(\alpha)) = \begin{cases} f_i(\alpha + \beta + \gamma) \text{ if } i \xrightarrow{\alpha} j \text{ and } i \xrightarrow{\alpha+\beta} k, \\ 0 \text{ otherwise}. \end{cases}
\]

So \(*\) is associative. Hence, \(\mathfrak{g} \) is a \(\mathbb{N}^N \)-graded connected pre-Lie algebra. It is not difficult to prove that the graded dual of its enveloping algebra, imbedded in \(\mathcal{H}^D \), is the subalgebra generated by the solution of the SDSE \((S_G)\), which as a consequence is Hopf.

An example of coloured graph is given by families of commuting endofunctions:

Proposition 47 Let \(V \) be a set and, for all \(1 \leq p \leq |N| \), let \(f_p : V \rightarrow V \) be a map. We construct a graph \(G_f \) in the following way:

- \(V(G) = V \).

- For all \(i,j \in V \), for all \(p \in [N] \), \(i \xrightarrow{\epsilon_p} j \) if, and only if, \(f_p(i) = j \).

In other terms, \(G \) is the coloured graph of maps \(f_1, \ldots, f_N \). Then \(G_f \) is Hopf, if and only if, for all \(p,q \in [N] \), \(f_p \circ f_q = f_q \circ f_p \).

Proof. \(\Rightarrow \). Let us assume that \(G_f \) is Hopf. Let \(i,j \in V \). We put \(j = f_q(i) \), \(j' = f_p(i) \), \(k = f_q \circ f_p(i) \), \(\alpha = \epsilon_q \) and \(\beta = \epsilon_p \). Then \(i \xrightarrow{\alpha} j \) and \(i \xrightarrow{\alpha+\beta} k \), so \(j \xrightarrow{\beta} k \): hence, \(f_p(j) = f_p \circ f_q(j) = k = f_q \circ f_p(i) \).

\(\Leftarrow \). Let us assume that \(i \xrightarrow{\alpha} j \) and \(i \xrightarrow{\alpha+\beta} k \). There exists a sequence \(p_1, \ldots, p_m \) such that \(\epsilon_{p_1} + \ldots + \epsilon_{p_m} = \alpha \), \(f_{p_1} \circ \ldots \circ f_{p_m}(i) = j \). There exists a sequence \(p_1, \ldots, p_m \) such that \(\epsilon_{q_1} + \ldots + \epsilon_{q_{m+n}} = \alpha + \beta \), \(f_{q_1} \circ \ldots \circ f_{q_{m+n}}(i) = k \). Note that \(m = |\alpha| \), and \(m + n = |\alpha + \beta| \).

Moreover, the multiset \(\{p_1, \ldots, p_m\} \) is included in the multiset \(\{q_1, \ldots, q_{m+n}\} \). We proceed by induction on \(n = |\beta| \). If \(n = 1 \), let us assume that \(\{q_1, \ldots, q_{m+n}\} \setminus \{p_1, \ldots, p_m\} = \{q_r\} \). The commutation relation implies that:

\[
f_{q_1} \circ \ldots \circ f_{q_{m+n}}(i) = f_r \circ f_{q_1} \circ \ldots \circ f_{q_{r-1}} \circ f_{q_{r+1}} \circ \ldots \circ f_{q_{m+n}}(i).
\]

By permuting the \(p_j \)'s using the commutation relations, we obtain that these two elements are equal. Hence, \(f_r(j) = l \), so \(j \xrightarrow{\beta} k \).
Let us assume the result at rank $n - 1$. There exists k', such that $i \xrightarrow{\alpha + \beta'} k' \xrightarrow{\beta''} k$, $\beta = \beta' + \beta''$, $|\beta'| = n - 1$ and $|\beta''| = 1$. By the induction hypothesis, $j \xrightarrow{\beta''} k'$, so $j \xrightarrow{\beta} k$. \qed

Example. Let $V = \mathbb{Z}/N\mathbb{Z}$, $N = 1$ and:

$$f : \begin{cases} \mathbb{Z}/N\mathbb{Z} \rightarrow \mathbb{Z}/N\mathbb{Z} \\ k \rightarrow k + 1. \end{cases}$$

The SDSE associated to f is a cyclic SDSE of [7, 9].

Remark. There are other examples of coloured Hopf graphs, for example:

![Diagram of a coloured Hopf graph]

References

