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Structural reliability assessment through metamodel based importance sampling with

dimension reduction

A. Murangira∗, M. Munoz Zunigaa,∗, T. Perdrizeta

aIFP Energies Nouvelles, 1-4 Avenue du Bois Préau, 92852 Rueil-Malmaison

Abstract

We present a method for reliability assessment through metamodel based importance sampling. The contribution is the use

of the sufficient dimension reduction method which enables the construction of the limit state function Kriging surrogate in lower

dimension. This metamodel is used to build an approximation of the optimal importance density as in the original MetaIS algorithm

by Dubourg et al. (2011). The so called augmented failure probability and correction factor are recast in this dimension reduction

framework. Simple strategies for metamodel refinement in the dimension reduction subspace are described and, in the case of

Gaussian inputs, a computationally efficient MCMC scheme aimed at sampling the quasi-optimal importance density is presented.

The case non-Gaussian inputs is also laid out and it is argued and demonstrated through simulations that this approach can reduce

the number of calls to the computer model, which is usually the limiting factor in reliability analysis. Advantages of this method

are also supported by numerical simulations carried on an industrial case study concerned with the extreme response prediction of

a wind turbine under wind loading.
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1. Introduction

Structural reliability analysis aims at assessing the probabil-

ity of occurrence of an extreme event related to a given struc-

ture. In the usual setting, we are given a limit state function

(l.s.f.) g which describes the safety level of the structure for a

given input vector X ∈ Rd. The failure domain F, corresponds

to the set of inputs for which the performance function g is neg-

ative, i.e. F = {X ∈ Rd | g(X) ≤ 0}, and the failure probability

is thus:

P f = P(g(X) ≤ 0) = E(1g(X)≤0) (1)

This probability may readily be estimated through standard

Monte Carlo simulation, however since P f is often less than

10−5 it takes roughly 107 − 108 evaluations of G to obtain an

estimate with a coefficient of variation (c.o.v.) less than 5 %.

This is clearly problematic for many engineering applications

since most of the time G depends on the output of an expen-

sive computer model. Analytical approximations based on the

most probable failure point have long been the practical alter-

native to Monte Carlo sampling. This has led to the popular

FORM/SORM approximations (Ditlevsen and Madsen, 1996).

However these approximations are often poor whenever there

exists multiple failure modes or when the non-linearity are ex-

treme. Moreover, the FORM/SORM methods do not provide

any confidence bounds on the failure probability estimate. Im-

portance sampling (IS) (Hammersley and Handscomb, 1964) is

a standard variance reduction Monte Carlo method that can
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be used to estimate P f by sampling from an importance den-

sity whose main contribution takes place near the limit state

surface. A preliminary design point or multiple failure mode

computation can be used to design an importance density such

as a mixture of standard distributions centred on the failure

modes (Au et al., 1999) or a single design point (Melchers,

1989). Still, the number of evaluations of the limit state func-

tion required to reach a given accuracy may still be impor-

tant, limiting the applicability of such a scheme. Subset sim-

ulation (Au and Beck, 2001) eliminates the need to design an

importance density by estimating the failure probability as a

product of intermediate probabilities which are evaluated by

Monte Carlo Markov Chain simulations. However, the in-

curred computing cost is usually prohibitive in many indus-

trial reliability cases. As a result, methods based on surrogate

modelling have been devised to limit the number of computer

model evaluations. AK-MCS (Echard et al., 2011), and AK-

IS (Echard et al., 2013) are based on the active kriging princi-

ple, that is the performance function is replaced by a kriging

metamodel which is iteratively refined so as to provide accu-

rate kriging predictions in the vicinity of the limit state surface.

While often superior to a simple FORM analysis, simple sub-

stitution of G by the metamodel gives generally non-consistent

failure probability estimators. In the subset simulation frame-

work, a similar approach has been proposed by Bourinet et al.

(2011), where a SVM classifier is built to emulate the interme-

diate limit state surfaces.

To obtain consistent importance sampling estimators, the Meta-

IS (Dubourg et al., 2011) method was introduced, where the
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sought probability is evaluated via an approximation of the op-

timal importance density (OID) based on a kriging emulator.

The corresponding IS estimator of P f is cast as a product of the

failure probability relative to the metamodel - the augmented

failure probability - and a correction factor based on the limit

state function G. Simulations on mechanical reliability prob-

lems have demonstrated the efficiency of this methodology both

in terms of accuracy and simulation budget.

However, it is known that fitting a kriging metamodel can break

down in high dimensional settings (d ≥ 20− 30), or demand an

unreasonable amount of code evaluations to obtain sufficient

accuracy in the failure region . Furthermore, in the methodol-

ogy of Meta-IS, sampling from the approximate OID is accom-

plished by resorting to an MCMC algorithm, most of which

are known to suffer from the curse of dimensionality. On the

other hand dimension reduction techniques have been the ob-

ject of much research in computational statistics in the last cou-

ple of decades. In this paper, we lay out a methodology for

importance sampling based on the sufficient dimension reduc-

tion (SDR) framework (Chiaromonte and Cook, 2002) for re-

gression. SDR is based on the assumption that the output sta-

tistical dependency on the input X can be described entirely

by projecting X on a lower dimensional subspace. Based on

this assumption, we propose to build a kriging metamodel in

the dimension reduction subspace, making the Meta-IS algo-

rithm tractable. Assuming that the input vector is Gaussian,

we show that the augmented failure probability can be esti-

mated through Monte Carlo simulation in the dimension reduc-

tion subspace. As for the correction factor which is based on a

sample from an approximation to the optimal importance den-

sity, we demonstrate how sample generation can be achieved

efficiently since MCMC sampling is only performed in the

dimension reduction subspace. We also discuss the case of

application of SDR for Gaussian process emulation of com-

plex models with non-Gaussian inputs. The paper is orga-

nized as follows. Section 2 recalls the basics of metamodel-

based importance sampling. Section 3 gives an overview of

dimension reduction tools, more specifically Kernel Dimension

Reduction (KDR) (Fukumizu et al., 2009) and gradient-based

KDR (Fukumizu and Leng, 2014). Section 4 is devoted to

metamodel based importance sampling with sufficient dimen-

sion reduction. Finally, in section 5 we numerically illustrate

these ideas on an academic example and on a relevant industrial

case study which consists in the assessment of the structural re-

liability of a wind turbine, where the wind and wave processes

are are modelled as Gaussian processes leading to a high di-

mensional (d ≥ 100) case study.

2. Importance sampling with a kriging metamodel

Throughout this article, the input is a real d dimensional ran-

dom vector X = (X1, . . . , Xd)T with density q . As previously

stated g denotes the limit state function.

Kriging models, also known as Gaussian process regres-

sion models, are flexible and efficient surrogates to complex

computer codes. As most metamodels, they rely on an initial

design of experiments (DoE) y∗ =
{

x1, . . . , xND

}

. The popularity

of Kriging stems among other things from the availability of

prediction uncertainty estimates, given by the Kriging variance.

This makes it possible to devise refinement strategies aimed at

increasing some measure of accuracy in the region of interest.

For reliability purposes this region is in the vicinity of the limit

state surface defined by {x ∈ Rd | g(x) = 0}.

2.1. Gaussian process models

Kriging is based on the assumption that the performance

function G is a sample from a Gaussian process (GP) G so that

G(x) = fT (x)β + Z(x) (2)

where fTβ is the GP mean and Z a zero-mean stationary Gaus-

sian process. f =
(

f1, . . . , fp

)T
is a vector of basis functions

∈ L2(Rd,R) and β a constant vector in R
d. Z is parametrized

by its autocovariance function

C(x, x′) = σ2
GRθ(x − x′) (3)

where σ2
G

is the GP variance and θ is a vector of parameters

of the autocorrelation function R. Equation 2 is known as uni-

versal kriging (UK) as it allows for a non constant mean of the

process G.

Prediction at a previously unobserved input x is based on the

best linear unbiased prediction (BLUP) of G(x) given the ob-

servations y = g(x1, . . . , xND ) at the DoE y∗. The BLUP at x,

denoted Ĝ(x), is a normal random variableN(mĜ, σ
2

Ĝ
) where

mĜ(x) = fT (x)β̂ + rT (x)R−1(y − Fβ̂) (4)

σ2

Ĝ
(x) = σ2

G(1 − rT (x)R−1r(x) + vT (x)(FT R−1F)−1v(x)) (5)

are respectively the prediction mean and variance, R is the

correlation matrix of the DoE defined by Ri j = Rθ(xi, x j),

i, j = 1, . . . ,ND. r =
[

Rθ(x − xi)
]N

i=1
is the cross-correlation

vector between the prediction and the observations while F is

the matrix defined by Fi j = f j(xi), 1 ≤ i ≤ ND, 1 ≤ j ≤ p. The

vector β̂ is the solution to a generalized least-squares problem

β̂ = (FT R−1F)−1FT R−1y (6)

and v(x) = FT R−1r(x) − f(x).

2.2. Basics of metamodel based importance sampling (Meta-

IS)

In this section, we give an overview of the Meta-IS algorithm

originally due to Dubourg et al. (2011). The method is founded

on the use of a quasi-optimal importance density which mimics

the intractable optimal importance density.

2.2.1. Standard importance sampling

Importance sampling is a well known variance reduction

method where the quantity of interest is an expectation of a

integrable function. In the context of reliability methods, the

2



expectation of interest is P f = Eq(1g(X)≤0) =
∫

Rd 1g(x)≤0q(x)dx.

Let q̃ be a density such that:

1g(x)≤0q(x) , 0 =⇒ q̃(x) , 0 (7)

Eq

(

1g(X)≤0

q(X)

q̃(X)

)

< ∞ (8)

IS stems from the equality P f = Eq(1g(X)≤0) = Eq̃

(

1g(X)≤0
q(X)

q̃(X)

)

.

Given an i.i.d. sample x(i), i = 1, . . . , n from q̃, the importance

sampling estimator of P f reads

P̂IS
f =

1

n

n∑

i=1

1g(x(i))≤0

q(x(i))

q̃(x(i))
(9)

The above estimator is unbiased and its variance is given by

Varq̃(P̂IS
f ) =

1

n
Eq̃

(

1g(X)≤0

q2(X)

q̃2(X)

)

−
P2

f

n
(10)

which can readily be estimated by

σ̂2
IS =

1

n

n∑

i=1

1g(x(i))≤0

q2(x(i))

q̃2(x(i))
−

(P̂IS
f

)2

n
(11)

An important result is that Varq̃(P̂IS
f

) =

0 (Rubinstein and Kroese, 2008), for the following opti-

mal proposal density

q̃opt(x) =
1g(x)≤0q(x)

P f

(12)

which is generally difficult to sample from because it depends

on the complex limit state function g. In Meta-IS samples are

drawn from a quasi-optimal density obtained by replacing the

indicator function with a a continuous probabilistic classifica-

tion function linked to the kriging predictor.

2.2.2. Probabilistic classification function and quasi-optimal

importance density

Since the Kriging prediction Ĝ(x) at an unknown location x

is a normal random variable, it’s straightforward to compute the

following probabilistic classification function

π(x) = P0(Ĝ(x) ≤ 0) (13)

where P0 is the probability measure associated with the Gaus-

sian process G. It turns out that

π(x) =






Φ(−mĜ(x)

σĜ (x)
) if x < y∗

1G(x)≤0 if x ∈ y∗
(14)

where Φ is the standard normal cumulative distribution func-

tion (cdf). Now by swapping π(x) and 1G(x)≤0 in (12),

one obtains the following quasi-optimal importance density

(Dubourg et al., 2011):

q̃∗(x) =
π(x)q(x)

P f ,ǫ

(15)

where P f ,ǫ =
∫

π(x)q(x)dx is the augmented failure probability.

One would be tempted to use the simpler density q̃meta(x) =
1m

Ĝ
(x)≤0q(x)

P f
but this choice does not guarantee that the proposal

density dominates the unnormalized pdf 1g(x)≤0q(x) as required

by condition (7). Note that this is condition is always satisfied

for q̃∗ no matter the Kriging model.

2.2.3. The Meta-IS failure probability estimator

Having defined the quasi-optimal instrumental density, the

failure probability estimate may now be broken down as fol-

lows Dubourg et al. (2011)

PIS
f =

∫

1g(x)≤0

q(x)

q̃∗(x)
q̃∗(x)dx = P f ,ǫ

∫
1g(x)≤0

π(x)
q̃∗(x)dx (16)

= P f ,ǫαcorr (17)

where αcorr = Eq̃∗ (
1g(X)≤0

π(X)
) is a factor that corrects for the bias

in the augmented probability estimator which relies solely on

the metamodel. The value αcorr actually depends on how accu-

rate the Kriging predictor is in the failure domain F. It’s clear

that whenever the metamodel is highly accurate in the failure

domain, the ratio
1g(X)≤0

π(X)
is close to 1 and so is αcorr. In case of

lower accuracy, there are regions of F with high uncertainty on

the sign of the Kriging prediction, i.e. π(x) is far from 1. This

yields a correction factor also different from 1.

Let x(i), i = 1, . . . ,Nmeta be an i.i.d. sample from the prior den-

sity q, then

P̂ f ,ǫ =
1

Nmeta

Nmeta∑

i=1

π(x(i)) (18)

is an unbiased and consistent estimator of P f ,ǫ . The estimation

error is quantified by the Monte Carlo variance

σ̂2
ǫ =

1

Nmeta(Nmeta − 1)

Nmeta∑

i=1

(

π(x(i)) − π̄Nmeta

)2
(19)

where π̄Nmeta
, γ̄Ncorr

is the respective sample average. From a

practical standpoint, sampling from q is usually straightforward

whereas obtaining draws from q̃∗ requires adequate algorithms

such as Monte Carlo Markov Chain simulation. Let t( j), j =

1, . . . be a chain with stationary distribution q̃∗, then from the

ergodic theorem 1
N

∑N
j=1

1
g(t( j))≤0

π(t( j))
converges a.s. to αcorr as N →

∞. A biased finite sample estimate of αcorr is then

ˆαcorr =
1

Ncorr

Ncorr+b∑

j=b+1

1g(t( j))≤0

π(t( j))
(20)

where b is a burnin parameter. The standard squared error can

be assessed as

σ̂2
corr =

1

Ncorr





1

Ncorr

Ncorr+b∑

j=b+1

h(t j) − ˆαcorr
2




(1 + γ̂corr) (21)

where h(t j) =
1

g(t( j))≤0

π2(t( j))
and γcorr is an estimator of

2
∑∞

k=0 Corr(h(t(0)), h(t(k))), which can be estimated as detailed
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in Dubourg (2011). In the original paper (Dubourg et al., 2011),

samples from the quasi-optimal density are obtained through

a modified Metropolis-Hastings scheme (Au and Beck, 2001).

To mitigate the inflation of the estimation variance due to the

dependence in the chain, thinning can be performed prior to the

correction factor estimation, that is taking one in k draws in the

simulated chain. This of course increases the length of the sim-

ulated chain which must be kNcorr long in order to retain Ncorr

samples. From a computational perspective, the MCMC sam-

pler only evaluates the probabilistic classification function, and

is therefore expected to be relatively efficient.

2.2.4. Efficient splitting estimator for the augmented failure

probability

While the estimation of the augmented failure probability

P f ,ǫ only resorts to the Kriging predictor, its computation in

a high dimensional through standard Monte Carlo simulation

can still be improved. One idea due to Sudret et al. (2012) is to

use a splitting estimator of P f ,ǫ , much like in subset simulation

which is base on the following equality:

P f ,ǫ = Pǫ,1

s∏

k=2

Pǫ,k|k−1 (22)

where

Pǫ,1 = Eq(π1(X)) (23)

Pǫ,k|k−1 = Eq̃k∗

[

π(k)(X)

π(k−1)(X)

]

(24)

where π(k)(x) = Φ(− lk−mĜ(x)

σĜ (x)
) and q̃k∗(x) ∝ π(k−1)(x)q(x) is the

quasi-optimal density for a failure level lk−1. The thresholds

l1 > . . . > ls = 0 should be such that the intermediate probabil-

ities Pǫ,k|k−1 are easy to estimate (around 0.1-0.3 for instance).

They can be fixed a priori or by running a subset simulation al-

gorithms on the Kriging mean of the limit state function and

using the corresponding intermediate levels as the lk thresh-

olds. Notice that Pǫ,1 can evaluated by standard Monte Carlo

efficiently since it is a relatively large probability and q. Esti-

mation of Pǫ,k|k−1 and its standard error σǫ,k|k−1 can be achieved

by running a Monte Carlo Markov Chain targeting q̃k∗. Assum-

ing δ̂ǫ,k =
σ̂ǫ,k|k−1

P̂ǫ,k|k−1
is the coefficient of variation for the estimation

of Pǫ,k|k−1, a conservative estimate of the overall c.o.v. of P f ,ǫ is

δ̂ǫ =

s∑

i=1

δ2
ǫ,k (25)

2.2.5. Kriging metamodel refinement

Before computing both quantities P̂ f ,ǫ and αcorr, it is

paramount to have a sufficiently accurate Kriging metamodel.

Otherwise, the approximation q̃∗ of the optimal importance

density would be poor and yield high estimation variance. To

obtain an accurate emulator, one has to iteratively enrich the ini-

tial design DoE with new limit state function evaluations. This

initial DoE can be any relevant space filling design. In relia-

bility analysis, iterative refinement methods are usually geared

towards accurate approximation of a target region as evidenced

by Vasquez and Bect (2009), Picheny et al. (2010) or Bect et al.

(2012). The sign of the performance function G which delin-

eates the failure domain is the most uncertain in this target re-

gion. It is usually determined by optimizing some in-fill cri-

terion (Bect et al., 2012). However, the in-fill criterion might

feature multiple optima or cause the optimizer to be stuck on a

local plateau. Therefore, unless one uses a multi-start scheme

(which wouldn’t guarantee finding all local optima anyway),

most iterative in-fill criteria do not allow for multiple points to

be added to the DoE.

This has motivated sampling based design enhancements as

in Bourinet et al. (2011) which rely on a so-called margin

shrinking concept: initially these were based on adding multi-

ple points in the margin of a support vector margin (SVM) clas-

sifier, which acts as a surrogate to the function G. The idea is

to cluster points generated from the density of the inputs given

that they belong to the margin. In practice after generating a

sufficiently large number of samples (through accept-reject for

instance), k-means clustering could be used to obtain any given

number of points. The Kriging metamodel enhancement pro-

ceeds in a similar fashion by drawing a large number of samples

from the weighted margin probability density defined as

h(x) ∝ w(x)q(x) (26)

where

w(x) = P0(Ĝ(x) ∈ [−t1−ασĜ(x), t1−ασĜ(x)]) (27)

= Φ

(

t1−ασĜ(x) − mĜ(x)

σĜ(x)

)

−Φ
(−t1−ασĜ(x) − mĜ(x)

σĜ(x)

)

(28)

is the margin probability (Dubourg, 2011) and t1−α is the 1 − α
quantile of the standard normal pdf. Drawing samples from

h yields points with a high uncertainty on the sign of their

Kriging predictor: these are good candidates to be added to the

DoE. In practice, an MCMC algorithm (e.g. slice sampling)

can provide a sufficiently large sample with stationary distri-

bution h. The k-means algorithm then provides Nadd clusters

from these samples, which are evaluated on the performance

function and added to the DoE. The Kriging model is then

updated on the basis of this enhanced design.

The model refinement is iterated as long as a stopping crite-

rion is not met. In the Meta-IS algorithm, the usual criterion is a

leave-one-out estimate of the correction factor which is defined

as

αLOO =
1

ND

ND∑

i=1

1G(xi)≤0

π−i(xi)
(29)

where π−i(x) = Φ

(

−
m̂GD\xi

(xi)

σ̂GD\xi
(xi)

)

is the classification function

obtained by removing observation xi from the DoE D. As

stated in section 2.2.3, a factor close to 1 signifies accuracy

of the classifier based on the Kriging classification function π.

The DoE enhancement can therefore be terminated whenever

0.1 ≤ αLOO ≤ 10 and the number of experiments ND is higher

4



than a pre-specified threshold (typically a few tenths/hundreds).

It’s also necessary to impose a maximum of computer model

evaluations during the initial space-filling and refinement phase,

as there is no guarantee that αLOO will get closer to 1 with a rea-

sonable amounts of l.s.f. evaluations.

3. Sufficient dimension reduction for regression and classi-

fication

3.1. Motivations and principle of sufficient dimension reduc-

tion

While flexible enough to cover a wide range of reliability

analysis problems, the metamodel based importance sampling

procedure can sometimes be intractable when dealing with

high dimensional inputs. Indeed, the Kriging metamodel

usually needs a DoE with sufficient size to cover the input

space. Furthermore, the Gaussian process training which

requires learning the kernel hyperparameters might be faced

with Hessian matrix singularity during marginal likelihood

optimization, especially when the kernel is parametrized by a

scalar parameter for each input variable (e.g. the length-scale

parameters for the squared-exponential (SE) kernel).

Attempts have been made recently to propose adequate repre-

sentations for high dimensional Kriging. For instance, additive

Kriging (Durrande et al., 2012) can be used by assuming an

additive model for the emulator, i.e. that model is a sum of

univariate metamodels. The resulting kernel function is simply

the sum of the kernel submodels. This was shown to be more

effective than using standard separable kernels on a few test

cases involving between 10 and 50 variables. Another relevant

approach is to incorporate variable selection into the Gaussian

process regression framework as suggested by Yi et al. (67).

In this work, we take another approach which is moti-

vated by the literature in supervised dimension reduction,

specifically the sufficient dimension reduction (SDR) frame-

work (Chiaromonte and Cook, 2002). The idea of SDR is to

find a low rank matrix B such that regression of the output Y

on X can be performed by replacing X by BT X. Without re-

quirements on the rank r of matrix B, B always exists since

B = Id does the trick. However, for many regression models,

it is frequent for the output to be only a function of a linear

combination of inputs as well as an optional noise independent

of the inputs. For instance, if Y depends only on a subset of

covariates, B is a sparse matrix with zero rows on the irrele-

vant predictors. Indeed, assuming without loss of generality

that XT = (XT
A, X

T
−A) where XA (resp. X−A) is the subset of rel-

evant (resp. irrelevant) components, then B =

(

I|A|
Od−|A|×|A|

)

sat-

isfies the SDR requirements. More formally, S (B) = span(B) is

dimension reduction subspace if

Y ⊥⊥ X | BT X (30)

where B ∈ R
d×r and ⊥⊥ stands for independence. Equivalently,

(30) could be rewritten as

Y = gr(B
T X, ε) (31)

where ε is a noise term independent of X and gr an unknown

function. An object of interest is the central subspace (CS)

which is defined as the intersection of all dimension reduction

subspace and therefore has minimal dimension: it exists under

mild conditions (see (Cook, 1996). The interest of SDR for

metamodeling is obvious : if we could find a matrix B with

sufficiently low rank r, a surrogate model of the link function

gr can be built. Typically, in structural reliability of offshore

structures we might be dealing with over 100 input variables. If

r ≤ 10 usual GP metamodels can then be applied to model the

response Y = g(X) but in the subspace S B. Because, we have

no prior knowledge on the noise term, we may obtain a coarse

metamodel by using the simplified model

Y = gr(B
T X) (32)

In this case, the surrogate model is fitted to the link function gr.

To deal with the fact that model (32) does not take into account

the noise in the original dimension reduction model (7), we sug-

gest to use a nugget term in the corresponding metamodel. Let

us stress that this is equivalent to Kriging with noisy observa-

tions when considering data points outside the DoE. However,

for points in the experimental design, the Kriging metamodel

with nugget effect interpolates the observations which appar-

ently contradicts the original model (31). This shouldn’t how-

ever be a major problem since the whole objective is to design

an emulator that is close enough to the original limit state func-

tion. The fact that we are fitting a metamodel not to the true

limit state function but to the link function gr in the simplified

regression model (32) shouldn’t necessarily hamper the meta-

model’s performance if the regression noise ε is not predom-

inant. We call the importance sampling procedure with SDR

subspace metamodelling Meta-ISDR, where DR stands for di-

mension reduction. It will be outlined in 4.

3.2. SDR estimation methods

Let us get back at dimension reduction subspace estimation.

The first arguably popular SDR method is sliced inverse regres-

sion (Li, 1991) which finds a basis of the central subspace un-

der restrictive conditions on the marginal distributions of X.

Although very efficient computationally, it is difficult to use

in the context of metamodelling for reliability purposes. In-

deed, we are interested in reducing the dimension for the re-

gression of the output Y in a region that is large enough to

part of the failure domain. Therefore, it is necessary to ob-

tain a training set {xi
tr}Ntr

i=1
consisting in a random samples that

fill the input space but also populate the failure domain. Be-

cause SIR constrains the training set to satisfy restrictive con-

ditions on the marginal distributions of the training sample, it

seems difficult to find such a sampling distribution that also ex-

plores efficiently both the safety and failure domains. Also, SIR

tends to miss some SDR directions in some special cases (Cook,

2000). Other methods such as Sliced Average Variance Esti-

mation (SAVE) (Cook, 2000) and contour regression (Li et al.,

2005) have similar limitations.

More recently, kernel methods have lead to the kernel di-

mension reduction(KDR) algorithm (Fukumizu et al., 2009)
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and its gradient based counterpart (gKDR, Fukumizu and Leng

(2014)): these algorithms impose no strict conditions on the dis-

tribution of the input vector X. As such, they lends themselves

well to the task at hand since the user has much more latitude

in the choice of the sampling distribution. These are therefore

preferable methods to learn a dimension reduction subspace in

very general settings.

3.3. Standard and gradient based kernel dimension reduction

3.3.1. Kernel dimension reduction

The basis of KDR is to express the conditional independence

criterion (30) as an optimization problem that reaches its min-

imum at the dimension reduction matrix. The optimization

problem is defined through conditional covariance operators on

reproducing kernel Hilbert spaces (RKHSs) that capture condi-

tional independence. From a practical standpoint these opera-

tors are estimated from Gram matrices of the data and a specific

functional of these Gram matrices is minimized to yield an es-

timate of a SDR matrix.

Let (X, Y) be a random variable onX×Ywith distribution prob-

ability PXY where (X,BX) and (Y,BY) are measure spaces.

Let kX and kY be measurable positive definite kernels on X
and Y respectively, with associated reproducing kernel Hilbert

spaces HX and HY. Furthermore, assume E(kX(X, X)) < ∞
and E(kY(Y, Y)) < ∞. The conditional independence crite-

rion of (30) in KDR relies on the cross-covariance operator

ΣYX : HX 7→ HY defined as (Fukumizu et al., 2009)

〈g,ΣYX f 〉HY = E

(

f (X) − f̄ )(g(Y) − ḡ)
)

(33)

for all f ∈ HX and g ∈ HY. The covariance operator ΣXX is

defined similarly. The conditional covariance operator ΣYY |X is

defined as

ΣYY |X = ΣYY − Σ1/2

YY
VYXVXYΣ

1/2

YY
(34)

where VYX , VXY are bounded operators such that ΣYX =

Σ
1/2

XX
VXYΣ

1/2

YY
and ΣXY = Σ

1/2

YY
VYXΣ

1/2

XX
and the conditional cross-

covariance is sometimes abusively expressed as ΣYY |X = ΣYY −
Σ

1/2

YX
Σ−1

XX
Σ

1/2

XY
. Let B ∈ R

d×r a matrix such that span(B) is a

dimension reduction subspace and BT B = Ir. Letting kd a pos-

itive kernel and kB
X a positive definite kernel on R

r defined by

kB
X(x, x′) = kd(BT x, BT x′), define the (cross-)covariance opera-

tors w.r.t. kernel kB
X as ΣB

YX
, ΣB

XY
, ΣB

YY
and ΣB

XX
. The conditional

cross covariance operator ΣB
YY |X associated to kB

X is then defined

as in (34). Under mild conditions that are satisfied in particular

if all involved kernels are Gaussian RBFs, the following funda-

mental relationship links the dimension reduction subspace and

conditional cross-covariance operators (Fukumizu et al., 2009).

ΣYY |X = Σ
B
YY |X ⇔ Y ⊥⊥ X | BT X (35)

In addition to (35), we have ΣB
YY |X ≥ ΣYY |X (with the order of

self-adjoint operators). Thus, in order to find the SDR matrix

B, the KDR algorithm minimizes Tr(ΣB
YY |X ) subject to BT B = Ir.

The practical algorithm takes as inputs n i.i.d. samples (xi, yi)

from PXY and solves

min
BT B=Ir

Tr
[

GY (GB
X + nεnIn)−1

]

(36)

where GY and GX are the centred Gram matrices defined by

GX = HKX H, GY = HKY H, (KX)i j = kX(xi, x j), (KY )i j =

kX(yi, y j), 1 ≤ i, j ≤ n and H = In − 11
T

n
. The parameter εn is

a regularization term that facilitates matrix inversion. In KDR

this non-convex optimization problem is solved by a steepest-

descent with algorithm line search (see Fukumizu et al. (2009)

for more details).

3.3.2. Gradient-based kernel dimension reduction(gKDR)

The previous kernel dimension reduction procedure is ef-

ficient and consistent under non-restrictive assumptions on

the joint and marginal distributions of X and Y. However,

the required non-convex optimization step makes it somewhat

CPU intensive depending on the size of the training samples

(xi, yi). Moreover, kernel parameter selection and the choice

of the regularization term is needed and cross-validation for

parameter selection is not possible because of the comput-

ing cost of the optimization procedure. The gKDR method

(Fukumizu and Leng, 2014) solves these issues with a much

faster algorithm for dimension reduction subspace identifica-

tion. It relies on the fact that the derivative ∂E(Y | X = x)/∂x is

contained in the SDR subspace. A non-parametric estimator of

this derivative is obtained through covariance operators and the

dimension reduction matrix B is identified as the solution of an

eigenproblem with few matrices inversions. This fast procedure

enables regularization and kernel parameter selection through

cross-validation and can be applied to large training sets in high

dimensions. For a detailed description of gKDR, we refer the

reader to the original paper by Fukumizu and Leng (2014).

Note that both KDR and gKDR require a priori knowledge of

the SDR subspace dimension r which is seldom the case in

practical applications. In the case of gKDR, we suggest a cross-

validation procedure in 1 based on the mean-squared error of

the regression estimate of Y w.r.t. BT
r X where Br is the dimen-

sion reduction matrix of rank r.

Algorithm 1 CV procedure for dimension selection

Require: samples (xi, yi), i = 1, . . . , n, Kcv: number of CV

folds, rmax: maximum SDR subspace dimension, kernels

kX,kY
Split dataset into Kcv folds of similar size C1, . . . ,CKcv

for r = 1 to rmax do

for j = 1 to Kcv do

– Estimate B̂r using (xi, yi), i < C j

– Estimate the mean-squared error e2
r, j

of k-NN regres-

sion of Y on B̂T
r X using validation fold (xi, yi), i ∈ C j

end for

Estimate the regression error of Y on BT
r X by e2

r =
1

Kcv

∑Kcv

j=1
e2

r, j

end for

r̂ ← arg min1≤r≤rmax
e2

r is the SDR dimension estimate

Compute B̂ = B̂r̂ using the whole dataset

As a matter of fact, algorithm 1 can be made more efficient

since gKDR defines the columns of the dimension reduction
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subspace matrix estimate B̂ as the eigenvectors corresponding

to the r largest eigenvalues of some symmetric n×n matrix (see

Fukumizu and Leng (2014)). This implies that if r < s, then

the columns of B̂r are the first r columns of B̂s, possibly up to a

sign. It is therefore sufficient to only compute B̂ for the largest

candidate dimension for all cross-validation folds leading to the

faster algorithm 2.

Algorithm 2 Fast CV procedure for dimension selection

Require: samples (xi, yi), i = 1, . . . , n, Kcv: number of CV

folds, rmax: maximum SDR subspace dimension, kernels

kX,kY
Split dataset into Kcv folds of similar size C1, . . . ,CKcv

for j = 1 to Kcv do

Compute B̂( j) = B̂
( j)
rmax
∈ Rd×rmax using (xi, yi), i < C j

end for

for r = 1 to rmax do

for j = 1 to Kcv do

B̂
( j)
r ← B̂

( j)

:,1:r
matrix of first r columns

Estimate the mean-squared error e2
r, j of k-NN regres-

sion of Y on
(

B̂
( j)
r

)T
X using validation fold (xi, yi), i ∈ C j

end for

Estimate the regression error of Y on BT
r X by e2

r =
1

Kcv

∑Kcv

j=1
e2

r, j

end for

r̂ ← arg min1≤r≤rmax
e2

r is the SDR dimension estimate

Compute B̂ = B̂r̂ using the whole dataset

4. Importance sampling with dimension reduction sub-

space metamodel

As stated in 3.1, the aim of sufficient dimension reduction is

to enable Kriging metamodelling in a space of much lower di-

mension, given by the dimension reduction subspace. We now

consider a Kriging metamodel of the limit state function output

Y by using a Gaussian process model GP(fTβ,C) for the link

function gr of the dimension reduction model in 32. The en-

suing Kriging predictor is denoted Ĝr . For reasons that will be

clear in the sequel, we restrict ourselves to limit state functions

that are defined for random inputs X ∈ Rd.

4.1. Quasi-optimal importance density with reduced meta-

model

Consider the natural extension of the original quasi-optimal

importance density defined as

q̃r∗(x) =
πr(B

T x)q(x)
∫

πr(BT x)q(x)dx
(37)

where πr is the probabilistic classification function of the Krig-

ing metamodel in the SDR subspace

πr(z) = Φ

(

−
mĜr

(z)

σĜr
(z)

)

(38)

The ensuing augmented failure probability estimates and cor-

rection factor using the IS density q̃r∗ then read

P f ,ǫ = Eq(πr(B
T X)) (39)

αcorr = Eq̃r∗

(
1g(X)≤0

πr(BT X)

)

(40)

4.2. Reduced Kriging metamodel refinements

Regarding the sampling based Kriging refinement strategy

outlined in 2.2.5, a similar approach may readily be applied,

that is we define the weighted margin probability density

hr(x) ∝ wr(B
T x)q(x) (41)

where wr is defined as in (28). The refinement strategy using

a reduced metamodel may now proceed as follows: given a

sample xi, i = 1, . . . , n drawn from a Markov chain targeting

hr, Nadd cluster centers are determined via a k-means algorithm

and then projected onto the dimension reduction subspace us-

ing matrix B. These projected points can then be added to the

DoE. However this runs the risk that two cluster centers have

very close projections which is inefficient since the metamodel

actually emulates the link function in the simplified regression

model (32). The same remark can be made in the initial space

filling design.

To avoid this, we suggest another strategy. The DoE for the re-

duced Kriging model is a set of input-evaluation pairs in R
r ×R

in which the evaluated function is the link function gr of the

SDR model. Because gr is unknown, we should use the true

limit state function g. To do so, a mapping from R
r to R

d is

necessary. The simplified model states that Y = gr(B
T X). On

the other hand Y = g(X). Hence if (z∗, y∗ = gr(z
∗)) is a point to

be added to the DoE, letting x∗ = (BT )#z∗ where BT (BT )# = Id

ensures that y∗ = g(x∗) = gr(B
T (BT )#z∗) = gr(z

∗). Therefore,

(z∗, y∗) can be added to the design of experiments by evaluating

y∗ = g((BT )#z∗). In the case where the input domain X is not

R
d, there is no guarantee that x∗ = (BT )#z∗ ∈ X, therefore the

following tweak can be adopted:

1. let zi = BT xi, i = 1, . . . , n be the projected samples

2. find Nadd cluster centers {c j}N j

i=1
of the zi dataset

3. let i j be the index of the closest projections zi to c j: add

(zi j , y j∗ = gr(z
i j )) by evaluating y j∗ = g(xi j )

4.3. The case of Gaussian inputs

The augmented failure probability and correction factor (39)

and (40) normally require ordinary Monte Carlo or MCMC

sampling in a d-dimensional space. Admittedly, (39) doesn’t

resort to expensive limit state function evaluations but a small

value of the target failure probabibility may require a substan-

tial amounts of sampling in R
d and calls to the Kriging pre-

dictor. More importantly, the estimation of the correction fac-

tor requires sampling from q̃r∗ which is achieved through an

MCMC algorithm such as the Metropolis-Hastings (MH) al-

gorithm. Tuning the MH algorithm in high dimensions can

prove cumbersome though approaches such as the modified

Metropolis-Hastings algorithm (Au and Beck, 2001) may prove
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successful.

Let us assume the input X to be a standard multivariate Gaus-

sian variable. The estimation of (39) and (40) is made more

efficient as shown below.

Lemma 1. (i) The augmented failure probability P f ,ǫ can be

expressed as P f ,ǫ = E(πr(Z)) where Z is an r dimensional

standard normal variable.

(ii) Let Ba = [B, B⊥] where the columns of B⊥ form an or-

thonormal basis of span(B)⊥. Let W2 ∼ N(0d−r×1, Id−r),

W1 ∼ pW1
(w1) =

πr(w1)ϕr (w1)

P f ,ǫ
where ϕr is the standard r-

dimensional multinormal pdf and W = [WT
1
,WT

2
]T . Then

X̃ = B−T
a W is distributed according to q̃r∗(x).

The first result regarding the augmented failure probability

computation is a straightforward consequence of the fact that

Z = BT X ∼ N(0, Ir) since BT B = Ir. The proof of (ii) is

deferred to the appendix.

The practical implications of these results are that:

• the estimation of P f ,ǫ requires sampling of a standard dis-

tribution in R
r instead of Rd.

• the estimation of the correction factor boils down to

MCMC sampling in a space of expected much lower di-

mension r which voids some of the limitations of high di-

mensional MCMC. The second part of the sampling pro-

cedure is a straightforward standard Gaussian generation

which makes the whole procedure faster than performing

MCMC sampling in R
d directly where d ≫ r potentially.

• note that lemma 1 can also be used to sample the weighted

margin probability density: the method is strictly the same

if one replaces the probabilistic classification function

with the margin probability of the reduced Kriging model.

Also, given that we only need the projection of cluster cen-

ters of the samples onto the dimension reduction subspace,

this implies that we only need to simulate a chain with sta-

tionary unnormalized distribution wr(w1)ϕr(w1).

4.4. The general case

Assuming Gaussian inputs yields a simple importance sam-

pling scheme after linear dimension reduction. In the gen-

eral case, one might simply consider the limit state function

in the standard Gaussian space U, which is denoted g0. The U

space formulation is classically achieved through an isoprob-

abilistic transform T : X ∈ X 7→ T (X) = U ∈ U so that

g0(U) = g
(

T−1(U)
)

. In this paper, T we consider the Nataf

transform defined as T = T2 ◦ T1, where

T1 : X 7→ Z = T1(X) =





Φ−1(F1(X1))
...

Φ−1(Fd(Xd))





(42)

T2 : Z 7→ T2(Z) = L−1
0

Z where L0LT
0
= R0 is the linear corre-

lation matrix of Z, Φ is the standard normal cdf and F1, . . . , Fd

are the marginal CDFs of X.

One could simply try dimension reduction on the response

model Y = g0(U), but because of the non-linear nature of the

Nataf transform, there is no guarantee that an SDR type hy-

pothesis of the form Y ⊥⊥ U | B̃T U holds for some B̃ even if

Y ⊥⊥ X | BT X. Nevertheless, the U space formulation being

convenient for practical reliability analysis, to achieve dimen-

sion reduction, we suggest to simply backtransform to the X

space and perform linear dimension reduction. A quasi-optimal

importance density in the U space is then obtained as

q̃r∗(u) =
πr(B

TT−1(u))ϕd(u)

P f ,ǫ

(43)

with P f ,ǫ =
∫

πr(B
T T−1(u))ϕd(u)du. The correction factor

reads

αcorr = Eq̃r∗

(
1g0(U)≤0

πr(BT T−1(U))

)

(44)

Now, because of the non-linear transformation, drawing sam-

ples from (43) is not as simple as in the case of Gaussian inputs

X. A chain targeting q̃r∗ has to be simulated in R
d either via

relevant MCMC method. For this purpose, we suggest using a

modified Metropolis-Hastings algorithm (Au and Beck, 2001).

As far as the sampling based refinement criterion is concerned,

we redefine the weighted margin probability in a similar fash-

ion, that is

hr(u) = wr(B
T T−1(u))ϕd(u) (45)

Since this density may have modes that are far apart, slice sam-

pling is recommended as an alternative to standard Metropo-

lis Hastings which typically struggles in this setting, as noted

by Dubourg (2011). Once samples are obtained, we back-

transform them to the physical input domain X and proceed as

outlined in 2.2.5.

4.5. Alternative probabilistic classification function

A common challenge in estimating the correction factor is

that the quasi-optimal density q̃r∗ may be multimodal in which

case a standard Metropolis-Hastings scheme may be trapped in

a mode and fail to provide an accurate sample from the tar-

get density. One way to deal with this is to use an ad-hoc

MCMC scheme such as population MCMC (Liu, 2001). In-

stead of changing the sampling scheme, we suggest modifying

the quasi-optimal density by altering the probabilistic classifi-

cation function πr. The modification consists in replacing the

standard normal cdf with a logistic function L in the definition

of πr:

πr(z) = L

(

−
mĜr

(z)

σĜr
(z)

)

(46)

where L(x) = 1
1+exp(−x)

. With this definition, πr no longer cor-

responds to the probability that the Kriging predictor falls into

the failure domain, however it is a reasonable approximation.

The main advantage is that L decreases less slowly to zero as

x → ∞, hence the resulting importance density q̃r∗ has modes

that are separated by valleys where the density achieves larger

values. For this choice of IS density, the standard MH scheme

has better mixing properties and thus provides more reliable es-

timates of the correction factor in multimodal settings.
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4.6. The Meta-ISDR algorithm

We hereafter sketch the Meta-ISDR algorithm, assuming X

to be a standard Gaussian vector. The general case may be ob-

tained by considering the modifications stated in 4.4. Note that

we assume a preliminary single/multiple failure points search

but this is optional. The main parameters of the algorithm,

along with sensible default parameters in brackets are:

• x∗
1
, . . . , x∗m : m ≥ 1 most probable failure points (optional)

• NS DR: number of samples for the SDR basis estimation

• rmax: maximum SDR subspace dimension

• Kcv(5): number of CV folds for the reduced dimension

estimation

• kX,kY : Gaussian kernels used in SDR.

• Nmax: maximum number of limit state function evaluations

• Rmax: radius of the hypersphere enclosing the design of

experiments

• Ninit
D

(2d): initial size of DoE

• N f ill (105) number of samples generated for the space-

filling design

• Nmin
D

, Nmax
D

minimum/maximum number of points in final

design of experiments

• Nadd: number of points added to DoE during refinement

step

• αmin
LOO

(0.1), αmax
LOO

(10): min/max of leave-one-out criteria

for the metamodel quality assessment

• Naug: number of samples used for the estimation of the

augmented failure probability P̂ f ,ǫ

• δǫ : target coefficient of variation (c.o.v.) for P̂ f ,ǫ

• δα: target coefficient of variation (c.o.v.) for αcorr

Although the random input vector is not bounded, the radius

parameter Rmax, which defines the domain of the Kriging meta-

model, can be set by choosing Rmax such that P(‖X‖2 > R2
max)

is much smaller than P f . For instance if P f >> 10−b for some

positive integer b then solving P(‖X‖2 > R2
max) = 10−b yields

Rmax =
√

qχ2
d
,1−10−b where qχ2

d
,1−10−b is the quantile of order

1 − 10−b of the chi-squared distribution with d degrees of free-

dom. The complete algorithm is given in table 3.

5. Numerical illustrations

We now investigate the performance of the metamodel-based

importance sampling procedure with dimension reduction on a

simple analytical setting and a realistic high dimensional indus-

trial application consisting in estimating the failure probability

of a floating wind turbine under stationary wind and wave loads.

5.1. Academic example

We consider an analytical limit state function whose dimen-

sionality can be varied to illustrate the impact of increasing

number of inputs. The performance function reads

g(X) = d + aσ
√

d −
d∑

i=1

Xi (47)

where the Xi are d i.i.d. lognormal variables with mean 1 and

standard deviationσ = 0.2 and a = 1. We consider 3 cases with

increasing dimension, d = 2, 50, 100. It is obvious that a suffi-

cient dimension reduction subspace is spanned by b =
(

1 · · ·1
)T

since g(X) = d+aσ
√

d−bT X so we can expect sizeable perfor-

mance improvements for high dimensions for the Meta-ISDR

method. The strategy presented here is confronted with stan-

dard reliability methods, namely FORM, standard Monte Carlo

simulation, importance sampling with a proposal centered on

the design point (IS-FORM) and the standard Meta-IS. Note

that, with the exception of FORM, we only consider methods

that yield consistent probability estimation. The design point

in FORM was computed using a sequential quadratic program-

ming algorithm as described in Liu and Der Kiureghian (1991).

Method FORM Monte Carlo IS-FORM MetaIS MetaIS-DR

d = 2

N 18 5 × 105 8818 103 518

P̂ f 3.81 × 10−3 4.93 × 10−3 4.90 × 10−3 4.88 × 10−3 4.94 × 10−3

c.o.v. - 2% 2% 1.3% 2.1%

d = 50

N 255 1.4 × 106 14000 3255 1026

P̂ f 1.54 × 10−3 1.89 × 10−3 1.95 × 10−3 1.87 × 10−3 1.85 × 10−3

c.o.v. - 1.9% 1.9% 2% 1.9%

d = 100

N 505 1.5 × 106 18000 5505 1783

P̂ f 3.74 × 10−5 1.73 × 10−3 1.76 × 10−3 1.76 × 10−3 1.71 × 10−3

c.o.v. - 1.8% 1.9% 2% 1.9%

Table 1: Failure probability estimation: analytical limit state function (47)

As can be expected for d = 2, the dimension reduction is

not worth it since it comes at an additional cost of limit state

function evaluations: from table 5.1 the total calls to g for the

MetaIS-SDR is 5 times that of standard MetaIS. For higher di-

mensions however, it appears that the metamodelling in a re-

duced space limits the number of limit state function evalua-

tions: this reduction occurs at the Kriging model construction

but is even more noticeable for the correction factor estima-

tion. This is probably because a more accurate Kriging model

is obtained in the one-dimensional SDR subspace leading to an

importance sampling density closer to the optimal one hence

achieving lower estimation variance.

5.2. Reliability assessment of a wind turbine in stationary con-

ditions

We now turn to an industrial case study where the goal is

the reliability analysis of an onshore wind turbine under wind

loading. We use a 5MW wind turbine mode developed by the

National Renewable Energy Laboratory (NREL). The turbine

has a 90m hub height and implements a blade and generator

control strategy. The mechanical response analysis to the wind
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Algorithm 3 Meta-ISDR algorithm for standard Gaussian inputs

SDR Basis estimation:

1: Sample xi
S DR
∼ N(0, Id), i = 1, . . . ,NS DR and compute yi

S DR
= g(xi

S DR
)

2: Using gKDR algorithm find a dimension reduction subspace estimate B̂, r̂ ← gKDR(xi
S DR

, yi
S DR

, kX, kY,Kcv, rmax)

Initial DoE:

1: Add design points x∗
1
, . . . , x∗m to DoE (optional)

2: Space-filling design: sample N f ill points in the hypersphere of radius Rmax and add Ninit
D
− m corresponding cluster centers xinit

j

to initial DoE by evaluating yinit
j
= g(xinit

j
), j = 1, . . . ,Ninit

D
− m

3: Initial metamodel: fit a Kriging model to initial DoE and compute α̂LOO

4: Metamodel refinement:

5: while ND < Nmin
D

or α̂LOO < [αmin
LOO

, αmax
LOO

] do

6: sample n1 ∈ [104, 5 × 104] points zi, i = 1, . . . , n1 from hr (defined in (41)) using procedure from lemma 1.

7: add Nadd points to DoE according to the procedure outlined in 4.2.

8: if ND > Nmax
D

then break

9: end if

10: end while

Failure probability estimation

1: Augmented probability estimation: compute P̂ f ,ǫ , δ̂ǫ using standard Monte Carlo or the splitting algorithm in 2.2.4

2: Correction factor estimation: run an MCMC of length Ncorr = b + Nmax − NS DR − ND targeting q̃r∗ as described in lemma 1.

Compute ˆαcorr and δ̂α =
σ̂corr

ˆαcorr
according to (20) and (21)

3: Failure probability estimate: P̂ f = ˆαcorrP̂ f ,ǫ , δ̂ =

√

δ̂2
α + δ̂

2
ǫ + δ̂

2
αδ̂

2
ǫ

inflow is obtained using the FAST software which provides

extreme and fatigue loads for a a wide array of turbines.

The random wind field is described in terms of its (u, v,w)

coordinate where u is a vector pointing towards the mean wind

flow, (v,w) completes the orthogonal basis and thus mean wind

speeds in the v and w directions are zero. For the purpose of

our analysis, we neglect the turbulent wind flow components in

the v and w directions and consider the wind speed along u as

the random input load.

5.2.1. Wind speed model

The wind speed process {X(t), t ≥ 0} was modelled as a

stationary Gaussian process according to a spectral expansion

model (Shinozuka and Deodatis, 1991)

X(t) = U10 +

n∑

i=1

(uiσi cos(ωit) − ūiσi sin(ωit)) (48)

ui, ūi are standard independent normal variables, ωi are the fre-

quencies with increment dωi = wi+1 − wi and σ2
i
= S (ω)dωi

where S (ω) is the power spectrum density (p.s.d.) of {X(t), t ≥
0}. U10 is the 10-minute mean wind speed. The spectrum was

estimated from real measurements on the Danish coastal site

Hornsrev. To achieve near-stationarity, we extracted 10-minute

wind speed time series corresponding to a turbine rated wind

speed of U10 = 11.5 m/s and turbulence intensity I = 6%.

These measurements where broken down into 5 minutes seg-

ments. A p.s.d. estimate was then obtained by averaging

the periodograms of each segment. The resulting spectrum is

shown in figure 1. For simulation purposes, the spectrum is
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Figure 1: One-sided power spectral density of wind speed process

discretized into n = 50 harmonics so that the random vector

U = [u1, . . . , un, ū1, . . . , ūn] describing X is 100-dimensional.

5.2.2. Time variant reliability analysis

The objective of this reliability analysis problem is to evalu-

ate the 10-minute failure probability of the turbine. Failure is

hereafter characterized as the exceedance of a distance thresh-

old s by the tower-top displacement due to fore-aft forces. Let-

ting {Y(t), t ≥ 0} the mechanical response, we seek the follow-

ing quantity

P f (T ) = P(∃t ∈ [0, T ] | Y(t) ≥ s) (49)
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where T = 10 minutes. Equivalently, we may introduce a time-

varying limit state function g(t,U) = s − Y(t) where U are

the coefficients of the spectral expansion model, which yields

P f (T ) = P(∃t ∈ [0, T ] | g(t,U) ≤ 0).

It is well known that a related quantity is the expected number

of downcrossings E(N+(0, T )) (of level 0 by the limit state g)

which is such that

P f (T ) ≤ P(g(0,U) ≤ 0) + E(N+(0, T )) (50)

Furthermore, E(N+(0, T )) =
∫

ν+(t)dt, where

ν+(t) = lim
∆t→0

P (g(t,U) > 0, g(t + ∆t,U) ≤ 0)

∆t
(51)

is the outcrossing rate. This is the actual quantity of interest in

the usual time-varying reliability framework. In most random

vibration models, the response Y is modelled thanks to a lin-

earized stochastic differential equation. The non linearity and

non Gaussian nature of Y is then due to the loading force term

(see Jensen et al. (2011). Assuming wind speed stationarity,

one does not automatically obtain output stationarity because

of the coupling that goes on between the loading force and the

response. However, simulations show that for stationary wind

conditions, the response can generally be considered stationary

after a transitory period which corresponds to the memory of

the system. This means ν+ is independent of the time t for suf-

ficiently large t. Therefore, its computation can be obtained by

considering the limit state function at a fixed time t0. In prac-

tice, the simulation length must be sufficiently high so as to dis-

card the initial transient part of the response signal. We however

acknowledge that the stationarity assumption of the response

assuming stationary inputs must be assessed more carefully but

this is left out for a future study.

An approximation of the outcrossing rate may be obtained by

considering an integration time-step ∆t << 1 so that

ν̂+ =
P (g(t0,U) > 0, g(t0 + ∆t,U) ≤ 0)

∆t
(52)

In our settings, we consider a threshold on the tower-top dis-

placement s = 0.4 m and ∆t = 0.01. The simulation length is

one minute.

5.2.3. Instantaneous failure probability

To illustrate the performance of the MetaIS-DR algorithm

with respect to other simulation-based reliability algorithms,

we first look at the instantaneous failure probability at time

t0 = 60 s. As for the academic examples, we also implement

for comparison purposes a design point based method, an im-

portance sampler, and subset simulation (Au and Beck, 2001):

• We considered a multiple failure point (MFP) search based

on the approach of Der Kiureghian and Dakessian (1998):

this method has the ability to find several failure points

which contribute significantly to the failure probability.

This algorithm essentially modifies the limit state function

in the vicinity of a previously found design point thus re-

defining a new constrained optimization problem geared

towards finding a failure point far enough from previ-

ous solutions. The constrained optimization method used

in our simulations was the sequential quadratic approx-

imation (SQA) algorithm, a gradient free method which

proved efficient in terms of number of limit state function

evaluations. The MFP search was done with a limit of 5

distinct design points.

• The importance sampler used a mixture proposal where

each component was a unit covariance Gaussian distribu-

tion centered on a failure points identified by the MFP ap-

proach

• The subset simulation algorithm was ran using the original

algorithm by Au and Beck (2001). The conditional prob-

abilities where set to p0 = 0.1 and a modified Metropolis-

Hastings chain of length Nsubset = 1000 was generated at

each subset level, using a thinning interval of length 3.

The Meta-ISDR algorithm was implemented with the follow-

ing setup:

• a maximum dimension of the SDR subspace rmax = 6

• the dimension reduction subspace was estimated with the

KDR algorithm using NKDR = 1000 training samples. The

training set was constructed by drawing 50% samples from

a uniform distribution in the hypersphere in R
d of radius

Rmax =
√

qχ2,1−10−8 and 50% samples from a Gaussian

mixture distribution centered on the design points. Note

that this Rmax parameter corresponds to a lower bound on

the instantaneous failure probability of 10−8 (see section

4.6).

• a Kriging model with constant mean β and squared expo-

nential covariance function

• initial DoE of size Ninit
D
= 10r+M: Latin Hypercube Sam-

pling of size 10 × r + m ”design points”, where r is the

estimated reduced dimension

• minimum/maximum size of the DoE Nmin
D
= 60, Nmax

D
=

300

• number of points added to DoE during refinement Nadd =

2r

For all methods, the target coefficient of variation was

7%. For the Meta-ISDR algorithm, a maximum number

of Nmax = 11000 limit state function evaluations was set,

including the number of calls due to the preliminary multiple

failure points.

The multiple failure points algorithm found two significant

design points. A FORM approximation based on the lowest re-

liability index was then performed, while both design points

were used in the importance sampler and MetaIS-DR algo-

rithm. The results in table 5.2.3 indicate the good performance

of the MetaIS-DR algorithm as it achieves both the target co-

efficient of variation while also requiring the least amount of
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P̂ f (t0) c.o.v. # G calls P f ,ǫ αcorr

Multi-FORM 3.78 × 10−6 N/A 4657 N/A N/A

IS 2.68 × 10−5 7% 84657 N/A N/A

MetaIS 2.41 × 10−5 5.3% 14657 5.49 × 10−5 0.44

MetaIS-DR 2.34 × 10−5 5.8% 10645 3.25 × 10−5 0.7198

SS 2.73 × 10−5 27% 57000 N/A N/A

Table 2: Instantaneous Failure probability estimation: method comparison

ν̂+ c.o.v. # G calls ν+
f ,ǫ

(Q) αcorr(Q)

Multi-FORM 2.50 × 10−5 N/A 4657 N/A N/A

MetaIS-DR 1.99 × 10−5 0.16 10657 2.07 × 10−3 9.63 × 10−3

Table 3: Short-term outcrossing rate estimation

limit state function evaluations. The standard MetaIS requires

37% more limit state evaluations. The performance of the sub-

set simulation algorithm in terms of estimation error is due to

the limited length of Markov chains simulated at each level,

which isn’t enough to mitigate the chain’s autocorrelation. A

better error can be achieved by increasing the thinning interval

for instance but this results in running a longer chain and more

evaluations of the limit state.

5.2.4. Outcrossing rate estimation

As previously stated, the object of interest for time-variant

reliability analysis in stationary conditions is the outcrossing

rate ν+. To evaluate this quantity, let us rewrite (52) in a more

convenient fashion

ν̂+ =
P (g(t0,U) > 0, g(t0 + ∆t,U) ≤ 0)

∆t

=
P

[

min (−g(t0,U), g(t0 + ∆t,U)) ≤ 0
]

∆t

− P [

g(t0,U) = 0, g(t0 + ∆t,U) ≤ 0
]

=
P

[

min (−g(t0,U), g(t0 + ∆t,U)) ≤ 0
]

∆t

=
P

(

Ht0,t0+∆t(U) ≤ 0
)

∆t
(53)

where Ht0,t0+∆t(U) = min (−g(t0,U), g(t0 + ∆t,U)) In (53), we

implicitly assume that the response process {Y(t), t ≥ 0} and

therefore the limit state g(t0,U), admit a density leading to

P (g(t0,U) = 0, g(t0 + ∆t,U) ≤ 0) = 0. The formulation (53)

lends itself to standard reliability analysis algorithms and is

used to compute numerical outcrossing rate estimates. The

FORM outcrossing rate was computed using an approximation

due to Koo et al. (2005) for i.i.d. standard Gaussian inputs ui:

ν+(t0) =
1

2πβ
e−

1
2
β2

√√
n∑

i=1

(

u∗2
i

(t0) + ū∗2
i

(t0)
)

ω2
i

(54)

where β = ‖u∗(t0)‖ is the reliability index and u∗(t0) is the de-

sign point of the limit state function g(t0, ·).
Surprisingly, the FORM approximation for this case study

is more accurate than the corresponding instantaneous failure

probability computed in the previous subsection and is compa-

rable to the estimation of MetaIS-DR. We however expect the

FORM outcrossing rate estimation to be inaccurate for more

pronounced non-linearities.

6. Conclusion

A concern of Monte Carlo based methods for structural re-

liability assessment such as standard importance sampling or

subset simultation is their high computational cost as the di-

mension exceeds a few tenths and/or the failure probability gets

below 10−4.

Recently, the MetaIS algorithm, which combines a Kriging

metamodel of the failure surface and an importance sampling

procedure, enables more efficient estimation by sampling a

so-called quasi-optimal density which acts as a surrogate to

the optimal IS density. In high dimensional settings however,

the Kriging metamodel construction demands a non-negligible

number of limit state function evaluations so as to achieve suffi-

cient accuracy in the vicinity of the failure region. This number

influences directly the achievable variance reduction by the IS

scheme.

Considering that in some reliability problems, the performance

function depends on a projection of the input variables on a

lower-dimension subspace, we have suggested to build a sur-

rogate to the limit state function in this reduced subspace. The

proposed approach leverages recent sufficient dimension reduc-

tion techniques to find this subspace. A cross-validation type

procedure is suggested in order to infer the dimension of the re-

duced subspace. The MetaIS algorithm is then cast into this

framework and yields particularly efficient MCMC sampling

for Gaussian distributed inputs. Its applicability in dimensions

up to 100 is demonstrated on a well known academic exam-

ple which illustrates the impact on constructing a metamodel

in the reduced subspace on the efficacy of the probability esti-

mator for a given confidence level. Finally, an industrial case

study focused on the extreme response prediction of a wind tur-

bine shows a notable reduction in the computational cost, com-

pared to existing approaches which yield consistent estimators

(subset simulation, standard importance sampling and standard

MetaIS).

Appendix A. Quasi-optimal density sampling in Meta-

ISDR

We provide the proof of lemma 1. Let B ∈ Rd×r a matrix such

that BT B = Ir and span(B) is a dimension reduction subspace

for the regression of Y on X . Let Ba = [B, B⊥] ∈ R
d×d where

the columns of B⊥ form an orthonormal basis of span(B)⊥. Now

assume X ∼ N(0, Id).

X has density q(x) = ϕd(x) = (2π)−
d
2 exp(− ‖x‖2

2
) where ϕd is the

d dimensional multinormal pdf. If xB and xB⊥ are the orthogo-

nal projections of x on span(B) and span(B) respectively, then

x = xB + xB⊥ = B(BT x)+ B⊥(BT
⊥x) and ‖x‖2 = ‖xB‖2 + ‖xB⊥‖2 =

‖BT x‖2 + ‖BT
⊥x‖2. Hence,

q(x) = (2π)−
d
2 exp(−‖xB‖2 + ‖xB⊥‖2

2
)

= (2π)−
r
2 exp(−‖B

T x‖2
2

)(2π)−
d−r

2 exp(−‖B
T
⊥x‖2
2

)

= ϕr(B
T x)ϕd−r(B

T
⊥x)
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and the quasi-optimal density is equal to

q̃r∗(x) =
πr(B

T x)ϕr(B
T x)ϕd−r(B

T
⊥x)

P f ,ǫ

Now let X̃ ∼ q̃r∗ and consider the mapping X̃ 7→ W = BT
a X̃.

By a change of variable, for any continuous bounded function

ψ from R
d to R

d

E(ψ(W)) =

∫

Rd

ψ(BT
a x̃)q̃r∗(x̃)dx̃

=
1

| det(BT
a )|

︸    ︷︷    ︸

=1

∫

Rd

ψ(w)q̃r∗(B
−T
a w)dw

which implies that the density of W is

pW (w) = q̃r∗(B
−T
a w) (A.1)

=
1

P f ,ǫ

πr(B
T B−T

a w)ϕr(B
T B−T

a w)ϕd−r(B
T
⊥B−T

a w) (A.2)

=
1

P f ,ǫ

πr(w1)ϕr(w1)ϕd−r(w2) (A.3)

where wT = (wT
1
,wT

2
). By the same argument, if W has density

pW (w) = 1
P f ,ǫ
πr(w1)ϕr(w1)ϕd−r(w2) then X̃ = B−T

a W ∼ q̃r∗. It

is clear from (A.3) that to sample W = (WT
1
,WT

2
)T from pW ,

suffice it to sample W2 ∼ N(0d−r×1, Id−r), and W1 ∼ pW1
(w1) =

πr (w1)ϕr (w1)

P f ,ǫ
.
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