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S U M M A R Y
Progressive deformation of upper mantle rocks via dislocation creep causes their constituent
crystals to take on a non-random orientation distribution (crystallographic preferred orien-
tation or CPO) whose observable signatures include shear-wave splitting and azimuthal de-
pendence of surface wave speeds. Comparison of these signatures with mantle flow models
thus allows mantle dynamics to be unraveled on global and regional scales. However, existing
self-consistent models of CPO evolution are computationally expensive when used with 3-D
and/or time-dependent convection models. Here we propose a new method, called ANPAR,
which is based on an analytical parametrization of the crystallographic spin predicted by the
second-order (SO) self-consistent theory. Our parametrization runs ≈2–6 × 104 times faster
than the SO model and fits its predictions for CPO and crystallographic spin with a variance
reduction >99 per cent. We illustrate the ANPAR model predictions for the deformation of
olivine with three dominant slip systems, (010)[100], (001)[100] and (010)[001], for three uni-
form deformations (uniaxial compression, pure shear and simple shear) and for a corner-flow
model of a spreading mid-ocean ridge.

Key words: Mantle processes; Creep and deformation; Seismic anisotropy.

1 I N T RO D U C T I O N

Seismic anisotropy observed in Earth’s upper mantle is typically
explained by the partial alignment of the lattices of the constituent
olivine and pyroxene crystals caused by deformation associated
with mantle convection (e.g. Nicolas & Christensen 1987; Silver
1996; Long & Becker 2010). Because each crystal is elastically
anisotropic, this non-random distribution of crystallographic di-
rections (called a crystallographic preferred orientation, or CPO)
will impart elastic anisotropy to the bulk material. The seismi-
cally observable consequences of this anisotropy include shear-
wave birefringence or ‘splitting’ (e.g. Crampin 1984; Silver & Chan
1991) and the azimuthal dependence of surface-wave speeds (e.g.
Montagner & Tanimoto 1991). Simulation of the development of
CPO in models of mantle deformation, and comparison of this
with seismic observations of the Earth, allow mantle dynamics
to be unraveled on global (e.g. Becker et al. 2012) and regional
scales (e.g. Long 2013). However, these simulations are compu-
tationally challenging when performed for time-dependent models
of mantle convection or at the high spatial resolution needed for
finite frequency simulation of seismic wave propagation. Here we

describe an accurate and computationally efficient alternative to
existing methods for the simulation of CPO development in the
upper mantle.

The principal cause of CPO and seismic anisotropy in the man-
tle is the progressive deformation experienced by mantle rocks as
they participate in the global convective circulation. Under appro-
priate conditions of stress, temperature, and grain size, olivine and
pyroxene crystals deform via dislocation creep, whereby internal
dislocations move through the crystal to accommodate strain. The
dislocations move on crystallographic planes and in directions set
by the crystal structure, and the combination of a plane and direc-
tion define the limited number of slip systems available to allow the
crystal to deform. Deformation of this type constrains the crystal-
lographic axes to rotate relative to a fixed external reference frame,
much as a tilted row of books on a shelf rotates when one pushes
down on it. Because crystals with different orientations rotate at
different rates, the overall distribution of orientations evolves with
time in a way that reflects both the geometry of the slip systems and
the character of the imposed deformation.

Because CPO and seismic anisotropy are so directly linked to
progressive deformation, observations of seismic anisotropy have
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the potential to constrain the pattern of convective flow in the mantle.
Realizing this potential, however, requires a reliable polycrystal
mechanics model that can predict how the individual crystals in an
aggregate deform and rotate in response to an imposed macroscopic
stress or strain rate. Three broad classes of polycrystal models have
been proposed to date.

The first class comprises the full-field models. In these, the poly-
crystal is treated explicitly as a spatially extended body, and the
stress and strain within it are field variables that vary continuously
as a function of position. Full-field models allow the stress and
strain to vary both among and within individual grains in a phys-
ically realistic way. This approach can be implemented as a finite
element problem (e.g. Sarma & Dawson 1996; Kanit et al. 2003) or,
more efficiently, using a method based on fast Fourier transforms
(Moulinec & Suquet 1998; Lebensohn 2001; Suquet et al. 2012).
Predictions from full-field models agree remarkably well with lab-
oratory experiments (Grennerat et al. 2012) and analytical results
available for simple cases (Lebensohn et al. 2011). However, their
great computational expense makes them too slow (by many orders
of magnitude) for routine use in convection calculations.

This disadvantage is overcome to some extent by so-called ‘ho-
mogenization’ models, in which the detailed spatial distribution of
the grains is ignored and the aggregate is treated as a finite number
of grains with different orientations and material properties. In this
mean-field approach compatibility of stress and strain equilibrium
is not enforced between spatially contiguous grains, but rather be-
tween each grain and a ‘homogeneous effective medium’ defined
by the average of all the other grains. For viscoplastic behaviours
as considered here, a well-known member of this class makes use
of the so-called ‘tangent’ anisotropic scheme of Molinari et al.
(1987) and Lebensohn & Tome (1993). In this model the local
stress and strain rate tensors vary among the grains. In the geophys-
ical literature this approach is generally known as the viscoplastic
self-consistent (VPSC) model, and we use this name for this first-
order approximation. The VPSC model has been widely used in
solid-earth geophysics including studies of CPO development in
the upper mantle (e.g. Wenk et al. 1991; Tommasi et al. 1999, 2000,
2009; Wenk & Tomé 1999 Mainprice et al. 2005; Bonnin et al. 2012;
Di Leo et al. 2014), the transition zone (Tommasi et al. 2004), in
the lowermost mantle (Wenk et al. 2006; Merkel et al. 2007; Wenk
et al. 2011; Mainprice et al. 2008; Walker et al. 2011; Dobson
et al. 2013; Nowacki et al. 2013; Amman et al. 2014; Cottaar et al.
2014), in the inner core (e.g. Wenk et al. 2000; Deguen et al. 2011;
Lincot et al. 2015), or in ice (Castelnau et al. 1996, 1997). However,
as noted by Masson et al. (2000), there is an inconsistency in the
common first-order VPSC approach in the definition of the stress
localization tensor, leading to an inaccurate estimation of the effec-
tive rheology for highly anisotropic viscoplastic polycrystals such
as olivine (Detrez et al. 2015).

More recently, an improved ‘second order’ (SO) self-consistent
homogenization scheme has been proposed by Ponte Castañeda
(2002). In the SO model the stress and strain rate varies among
grains with the same orientation and physical properties, and these
fluctuations are used to derive the effective polycrystal behaviour.
As a result, its predictions of quantities such as the effective average
stress in the aggregate are much more accurate than those of simpler
homogenization schemes (Lebensohn et al. 2007; Castelnau et al.
2008). Recent examples of the application of the SO approach to
olivine deformation are provided by Castelnau et al. (2008, 2009,
2010) and Raterron et al. (2014).

While the physical self-consistency of the SO and simpler VPSC
models is appealing, both are computationally expensive when ap-

plied to typical mantle minerals deforming by dislocation creep. The
reason is the strongly nonlinear rheology of such minerals, which
makes it necessary to use iterative methods to solve the equations of
stress compatibility among the large number (∼103–104) of grains
required to represent the polycrystal. Moreover, the number of it-
erations required at each deformation step increases rapidly as the
CPO becomes progressively more strongly anisotropic. These diffi-
culties render the VPSC and SO models unsuitable for calculations
of evolving CPO in complex time-dependent mantle flow fields, un-
less powerful computer capacity and elaborate computation strate-
gies are used. Indeed, because of these computational constraints,
none of the studies referenced above make use of the VPSC or
SO approaches to directly compute the elasticity on a fine spatial
scale (suitable for finite frequency forward modelling of the seismic
wave field) from a time-varying description of mantle flow. Instead
various approximations are used, such as limiting the calculation
to selected ray-theoretical paths (Blackman et al. 2002; Nowacki
et al. 2013; Di Leo et al. 2014), interpolating the calculated elas-
ticity (Bonnin et al. 2012), or simplifying the model of mantle flow
(Raterron et al. 2014).

A final degree of physical simplicity and computational effi-
ciency is reached in models of the ‘kinematic’ class, which are
based on either an analytical expression for the deformation-induced
rate of crystallographic rotation (Ribe & Yu 1991; Kaminski &
Ribe 2001; Kaminski et al. 2004) or on a simple relationship be-
tween finite strain and the expected CPO (Muhlhaus et al. 2004;
Lev & Hager 2008). One example, the DRex model (Kaminski &
Ribe 2001; Kaminski et al. 2004) has been widely used to predict
CPO and seismic anisotropy from flow models (e.g. Lassak et al.
2006; Conder & Wiens 2007; Becker 2008; Long & Becker 2010;
Faccenda & Capitanio 2012, 2013; Faccenda 2014). Kinematic
models are computationally 10–100 times faster than homogeniza-
tion models, and predict very similar CPO. However, the physical
principle underlying the expression for the spin is ad hoc, and has
not yet been adequately justified. Moreover, because the kinematic
approach does not account explicitly for stress compatibility among
grains, it cannot be used to predict rheological properties of a de-
forming aggregate.

In view of the above limitations, it would clearly be desirable to
have a polycrystal model that combines the physical rigour of the
self-consistent approach with a much lower computational cost. The
aim of this paper is to derive such a model. For purposes of illustra-
tion, we consider the case of a pure olivine polycrystal (dunite), a
relevant (albeit simplified) representation of the mineralogy of the
upper ≈400 km of Earth’s mantle. Our approach is to examine in
detail the predictions of the SO model for dunites subject to different
kinds of deformation, and to extract from those predictions a simple
parametrization that can be expressed analytically. The active slip
systems of mantle olivine are believed to vary with temperature,
pressure and hydrogen content (e.g. Jung & Karato 2001; Cordier
et al. 2002; Mainprice et al. 2005). In order to reduce the parameter
space that we need to consider, we limit ourselves to the three dom-
inant slip systems relevant to deformation under anhydrous upper
mantle conditions: (010)[100], (001)[100] and (010)[001]. How-
ever, we allow the relative importance of these three slip systems to
vary and, as discussed below, these slip systems include the most
important ones under mantle conditions down to 410 km (Castelnau
et al. 2010; Raterron et al. 2014).

The most important prediction of the SO model is the crystallo-
graphic spin ġ as a function of the crystal’s orientation g, which
is what controls the evolution of CPO. Accordingly, this paper fo-
cusses on the task of deriving an analytical parametrization of ġ
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Figure 1. Schematic comparison of the analytical approach and homoge-
nization methods for a single strain increment. Using SO to calculate the
spin, ġ, for the nth grain and update its orientation, g, requires knowledge of
the strain, and thus spin, of all other crystals in the aggregate necessitating
an expensive self-consistent solution. Our analytical approach replaces this
information with a record of previous deformation stored as an auxiliary
finite strain ellipsoid. This, combined with a handful of other parameters, A,
enables rapid calculation of the spin.

that agrees with the SO model predictions. We first note that the
total spin ġ is the sum of spins ġ[s] due to the activities of each
of the slip systems s = 1, 2, . . . , S within the crystals. We then
derive an analytical expression for ġ[s] that depends on the crystal’s
orientation, the macroscopic strain rate tensor (SRT), the already
existing texture and the parameters that characterize the rheology
of the slip systems. This expression is then compared, for each slip
system separately, with the spins ġ[s](g) predicted by the SO model
for an aggregate of crystals with several simultaneously active slip
systems (S > 1). Remarkably, we find that the analytical expression
for ġ[s] matches the SO prediction exactly for each slip system s,
to within a set of amplitudes Aijkl that can be determined by least-
squares fitting. We uncover surprising symmetries that reduce the
number of independent non-zero components of the ‘spin’ tensor
A from 25 to just 2. Finally, we use full SO solutions to determine
how these coefficients depend on the relative strengths of the slip
systems and on the finite strain experienced by the aggregate.

For irrotational, time-independent deformation, the finite strain
ellipsoid (FSE) has the same shape and orientation as the virtual el-
lipsoid generated by the instantaneous global SRT. In this simplified
case, we show that we require only one amplitude. However, when
the two ellipsoids are not aligned (see Fig. 1), an extra amplitude
is required. We show that predictions of evolving CPO using these
analytical parametrizations (which we call ANPAR) are indistin-
guishable from those of the SO model, and cost only ≈0.01 per cent
as much time to compute.

2 T H E O R E T I C A L P R E L I M I NA R I E S

We begin by reviewing how the orientation and internal deformation
of crystals in an aggregate are described mathematically, using the
particular case of olivine as an example.

2.1 Crystal orientation and orientation distribution

Consider an aggregate comprising a large number N of olivine
crystals deforming by dislocation creep. When the aggregate as a
whole is subject to a given macroscopic deformation, its constituent
crystals respond by deforming via internal shear on a small number
S of ‘slip systems’. Each slip system s = 1, 2, . . . , S is defined
by a unit vector n[s] normal to the slip (glide) plane and a unit
(Burgers) vector l [s] parallel to the slip direction. In this study we
assume that olivine has three dominant slip systems (010)[100],
(001)[100] and (010)[001], corresponding to the indices s = 1, 2,
and 3, respectively.

The degree of anisotropy of an aggregate can be described by
specifying for each crystal the three Eulerian angles (φ, θ, ψ) ≡ g
that describe its orientation relative to fixed external axes. The
definition of these angles that we use is shown in Fig. 2, follow-
ing Bunge’s (1982) convention. The associated matrix of direction
cosines aij is

ai j (g) =

⎛
⎜⎝

cφ cψ − sφ sψ cθ sφ cψ + cφ sψ cθ sψ sθ

−cφ sψ − sφ cψ cθ −sφ sψ + cφ cψ cθ cψ sθ

sφ sθ −cφ sθ cθ

⎞
⎟⎠ ,

(1)

where c and s indicate the cosine and sine, respectively, of the angle
immediately following. The quantity aij is the cosine of the angle
between the crystallographic axis i and the external axis j.

In the limit as the number of grains N → ∞, the distribution
of their orientations can be described by a continuous ‘orientation
distribution function’ (ODF) f (g, t), defined such that f (g, t) dg
is the volume fraction of crystals with orientations between g and
g + dg at time t. For crystals with triclinic symmetry, the volume
of the space of Eulerian angles (‘Euler space’) required to include
all possible orientations is φ ∈ [0, 2π], θ ∈ [0, π ], ψ ∈ [0, 2π ]. For
olivine, which is orthorhombic, it is sufficient to work in a reduced
space (so-called ‘irreducible space’) φ ∈ [0, π ], θ ∈ [0, π ], ψ ∈
[0, π ], as the entire Euler space can be retrieved from the irreducible
space by symmetry operations. The condition that the total volume
fraction of crystals with all possible orientations is unity is then∫

f (g, t)dg ≡
∫ π

0

∫ π

0

∫ π

0
f (g, t) dφ dψ dθ sin θ = 1, (2)

which implies that f = (2π 2)−1 ≡ f0 for an isotropic orientation
distribution.

2.2 Kinematics of intracrystalline slip

The time evolution of the ODF is governed by the equation (Clement
1982)

0 = ∂ f

∂t
+ ∇ · ( ġ f ) ≡ ∂ f

∂t
+ ∂

∂φ
(φ̇ f ) + ∂

∂ψ
(ψ̇ f )

+ 1

sin θ

∂

∂θ
(θ̇ sin θ f ), (3)

where (φ̇, θ̇ , ψ̇) ≡ ġ is the rate of change of the orientation (‘spin’)
of an individual crystal with orientation g. Eq. (3) is a conservation
law which states that the rate of change of the volume fraction of
crystals having orientations in a small element dg of the Euler space
is equal to the net flux of crystal orientations into that element. The
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Figure 2. (a) General definition of the Eulerian angles (φ, θ , ψ). (b) Definition of slip-system specific Eulerian angles (φ[s], θ [s], ψ [s]) such that both the slip
direction l [s] and the normal n[s] to the slip plane are in the plane perpendicular to the ψ̇ [s]-axis.

spins (φ̇, θ̇ , ψ̇) are related to the Cartesian components ωi of the
spin by

φ̇ = ω3 + (ω2 cos φ − ω1 sin φ) cot θ, (4a)

θ̇ = ω1 cos φ + ω2 sin φ, (4b)

ψ̇ = (ω1 sin φ − ω2 cos φ) csc θ. (4c)

Note also that the crystallographic spin ω is just the sum of the
externally imposed rotation rate � and a contribution ω(c) due to
intracrystalline slip, or

ωi = �i − εi jkl j nk γ̇ ≡ �i + ω
(c)
i , (5)

with εijk the Levi-Civita symbol (component of the permutation
tensor).

The spin ġ is the fundamental quantity that will concern us in
this study. It depends on the instantaneous macroscopic velocity
gradient tensor D, the components of which are

Di j = Ei j − εi jk�k, (6)

where Eij and �k are the components of the SRT E and the macro-
scopic rotation rate � of the polycrystal, respectively.

When the aggregate is deformed, each crystal within it responds
by deforming in simple shear on planes normal to n(g) at a rate
γ̇ (g). The local velocity gradient tensor inside the crystal is thus

di j = γ̇ li n j . (7)

The local SRT eij is the symmetric part of dij, or

ei j = γ̇

2
(li n j + l j ni ) ≡ γ̇ Si j , (8)

and � in eq. (5) is associated with the antisymmetric part of dij. Here
Sij is the Schmid tensor, which resolves the SRT inside each crystal
onto the natural frame of reference of the slip system. It is symmetric
and traceless and therefore has only five independent components.
These can be expressed in terms of generalized spherical harmonics
(GSH) T mn

l of degree l = 2, where

T mn
l (φ, θ, ψ) = eimψ Pmn

l (cos θ )einφ, (9)

and Pmn
l (cos θ ) is the associated Legendre polynomial (Bunge 1982,

eq. 14.2). Explicit expressions for the independent components of
the (slip-system specific) Schmid tensor S[s]

i j for the slip systems
s = 1, 2, 3, are given in Appendix A.

Another kinematical object that plays an important role in our
theory is the FSE associated with the deformation history experi-
enced by a polycrystal. It is well known in fluid mechanics that an
arbitrary time-dependent flow field transforms an initially spherical
fluid element of infinitesimal size into an ellipsoid, called the FSE.
The shape of the FSE can be characterized by the logarithms of the
ratios of the lengths c1, c2 and c3 of its axes, viz.

r12 = ln
c1

c2
≡ (E11 − E22)t, r23 = ln

c2

c3
≡ (E22 − E33)t,

r31 = ln
c3

c1
≡ (E33 − E11)t, (10)

where E11, E22 and E33 are the principal strain-rates of the SRT E
that generates the background texture. Incompressibility of the fluid
implies r12 + r23 + r31 = 0, so that only two of the quantities rij are
independent. We also define an ‘equivalent strain’

r0 =
√

2

3

(
r 2

12 + r 2
23 + r 2

31

)1/2 = 2

3

(
r 2

12 + r12r23 + r 2
23

)1/2
. (11)

2.3 Slip-system rheology

Following standard practice, we assume that the slip rate γ̇ [s] on
each slip system s obeys a power-law rheology of the form

γ̇ [s] ∝
∣∣∣ τ

τ [s]

∣∣∣m[s]−1 τ

τ [s]
, (12)

where τ is the resolved shear stress (i.e. the shear stress acting
on the slip plane in the slip direction), τ [s] is a ‘critical resolved
shear stress’ (CRSS) that measures the inherent resistance of the
slip system to slip, and m[s] is a power-law exponent. Although
the standard notation is to use n as the stress exponent, we have
chosen m in this paper to avoid confusion with all the different
occurrences of n. We assume m[s] = 3.5 for all slip systems, fol-
lowing Bai et al. (1991). Because the macroscopic deformation rate
of the aggregate is specified in our SO calculations, only the ratios
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Table 1. Slip systems.

Index s Slip plane Slip direction τ [s]/τ [2] Exponent

1 (010) [100] 0.25–4.0 3.5
2 (001) [100] 1.0 3.5
3 (010) [001] 0.25–4.0 3.5
4 (101) [101] 100.0 3.5
5 (101) [101] 100.0 3.5

of the parameters τ [s] (and not their absolute values) are relevant.
In our calculations we assume τ [1]/τ [2] ∈ [0.25, 4.0] and τ [2]/τ [3]

∈ [0.25, 4.0] (see Table 1). Olivine deforming under upper man-
tle conditions is typically modelled with values of τ [1]/τ [2] = 0.5
and τ [2]/τ [3] = 0.667 (Kaminski et al. 2004) but this range of pa-
rameters also captures deformation under the low temperature low
pressure (τ [1]/τ [2] = 0.53 and τ [2]/τ [3] = 0.58) and high-pressure
high-temperature (τ [1]/τ [2] = 0.73 and τ [2]/τ [3] = 0.39) conditions
considered by Castelnau et al. (2010). We note that these calcu-
lations also permit movement on the (100)[001], {021}[100] and
{110}[001] slip systems, which are suppressed in our model. We
characterize the CRSS ratios of the dominant slip systems s = 1, 2
and 3 in terms of the variables

p12 = ln
τ [1]

τ [2]
, p23 = ln

τ [2]

τ [3]
. (13)

Note also that

p31 = ln
τ [3]

τ [1]
= −p12 − p23. (14)

In this study, we have assumed that the SO model requires each
crystal in the aggregate to satisify von Mises’s criterion, accord-
ing to which a crystal can only accommodate an arbitrary imposed
deformation if it has at least five independent slip systems. How-
ever, it has recently been shown by Detrez et al. (2015) that the
SO model requires each crystal in the aggregate deform by at least
four independent slip systems, to ensure global strain compatibility.
There are potential mechanisms which allow olivine to accommo-
date plastic deformation without satisfying the von Mises crite-
rion. These include grain boundary sliding (e.g. Hirth & Kohlstedt
1995), diffusion (e.g. Chopra & Paterson 1984) and disclinations
(e.g. Cordier 2014), but none of these mechanisms have been in-
vestigated in this study. To ensure numerical convergence of the
SO model, we assume that each olivine crystal has, in addition to
the three dominant slip systems mentioned previously, two harder
systems, namely (101)[101] and (101)[101]. In our calculations we
assume τ [4]/τ [2] = τ [5]/τ [2] = 100 (see Table 1). While these slip
systems contribute significantly to the intracrystalline stress, they
have a negligible (≈1 per cent) effect on the slip rates of the dom-
inant systems. The model therefore gives valid predictions of the
evolution of CPO.

3 A NA LY T I C A L PA R A M E T R I Z AT I O N

The considerations of the previous section imply that the instan-
taneous crystallographic rotation rate ġ depends on the crystal’s
orientation g; the macroscopic SRT E; the already existing texture
f; and the parameters p12, p23 and m that characterize the rheology
of the slip systems:

ġ = ġ (g, E, f, p12, p23, m) . (15)

Here ġ is understood as the slip-induced rotation rate, without the
contribution due to the macroscopic vorticity which is the same for
all crystals and can simply be added to ġ.

Next, we note that the spin components (4) take a particularly
simple form when rewritten in terms of slip system-specific Eu-
lerian angles (φ[s], θ [s], ψ [s]) defined so that both the slip vector
l [s] and the vector n[s] normal to the slip plane are perpendicular
to the ψ̇ [s]-axis (Fig. 2b). The crystallographic spin ġ[s] produced
by slip in the direction l [s] on the plane n[s] then has only a single
non-zero component ψ̇ [s], and φ̇[s] = θ̇ [s] = 0 identically. Fig. 2(b)
implies that l [1]

i = a1i and n[1]
i = a2i , where aij are given by (1) with

(φ, θ , ψ) → (φ[s], θ [s], ψ [s]). Ignoring the macroscopic vorticity as
explained above, we find that eqs (4) and (5) simplify to

φ̇[s] = θ̇ [s] = 0, ψ̇ [s] = −γ̇ [s]
(
g[s]

)
. (16)

Thus, the crystallographic spin due to slip is simply the negative of
the shear rate on the slip system in question.

To go further, we first note the obvious difficulty that the space
of possible background textures f is infinite. To make progress,
therefore, we need to restrict and parameterize this space in some
way. Our choice is to consider the space of all textures produced by
uniform triaxial straining of an initially isotropic aggregate, which
can be parameterized by the axial ratios r12 and r23 of the associated
FSE. Accordingly, the functional dependence we need to determine
becomes

γ̇ [s] = γ̇ [s]
(
g[s], E, r12, r23, p12, p23, m

)
. (17)

This still seems impossibly complex, so we now call the SO model
to our aid. Consider the case of uniaxial compression along the
x3-axis at a rate ε̇, for which the nonzero components of the SRT
are E33 = −ε̇, E11 = E22 = ε̇/2. The shear rate γ̇ [1] and the ODF f
are then independent of the Eulerian angle φ[1] by symmetry. Fig. 3
shows the spin ψ̇ [1](θ [1], ψ [1]) for the slip system (010)[100] (s = 1)
predicted by the SO model with p12 = p23 = 0 (τ [1] = τ [2] = τ [3]) at
two different equivalent strains r0 ≡ |ε̇3|t = 0 (Fig. 3a) and r0 = 0.4
(Fig. 3b). Remarkably, the images of Figs. 3(a) and (b) appear to be
the same function with different amplitudes. A more detailed inves-
tigation shows that this impression is correct, and that the function
in question is F = b sin 2ψ [1]sin 2θ [1], where b is an unknown am-
plitude. Least-squares fitting of this expression to the numerical
predictions yields b = 1.25 for Fig. 3(a) and b = 1.71 for Fig. 3(b),
with a nearly perfect fit (variance reduction = 99.9 per cent) in both
cases.

Next, we note that the function sin 2ψ [1]sin 2θ [1] can be written
as

sin 2ψ [1] sin2 θ [1] = −2
√

3

3
T ′′20

2 = −2
(

S[1]
11 + S[1]

22

)
, (18)

where T ′′20
2 is a GSH, defined as T ′′mn

l =
2−1/2i1+m−n

(
T mn

l − T −m−n
l

)
(Bunge 1982, eq. 14.37), where

i = √−1. This result has two surprising and far-reaching implica-
tions. First, the angular dependence of the spin (∝ sin 2ψ [1]sin 2θ [1]

in this case) remains the same regardless of the strength of the
background texture; it is only the amplitude of the function
that depends on the texture. Second, it suggests that the angular
dependence of the spin is always a GSH of degree l = 2, without
any contribution from higher-degree harmonics. Noting further
that the shear rate γ̇ [s] must depend linearly on the imposed
macroscopic strain rate E, we are led to propose the following
expression for γ̇ [s]:

γ̇ [s] = −ψ̇ [s] = A[s]
i jkl (r12, r23, p12, p23, m)S[s]

i j Ekl , (19)

where A is a fourth-order ‘spin tensor’. The superscripts [s] denote
the index of the slip system (s = 1, 2 or 3). In the next section we
determine how the spin tensor Aijkl depends on its five arguments.
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Figure 3. Instantaneous crystallographic spin ψ̇ [1](θ [1], ψ [1]) for the slip
system (010)[100], predicted by the SO model with τ [1]/τ [2] = τ [2]/τ [3] = 1
for an initially isotropic olivine aggregate deformed in uniaxial compression.
(a) |ε̇3|t = 0; (b) |ε̇3|t = 0.4. Colour scale is in units of the axial shortening
rate ε̇3 < 0. The Eulerian angles θ [1] and ψ [1] are defined as in Fig. 2(b).

4 PA R A M E T R I Z AT I O N O F T H E S P I N
T E N S O R A

4.1 SO model calculations

We now use the SO model as a benchmark to determine the tensor
components Aijkl(r12, r23, p12, p23, m). The procedure comprises two
steps: (1) generation of the background texture and (2) calculation of
the instantaneous spin induced by applying a given rate of strain to
the background texture. Thus in step (1), we first select the number
of crystals N in the model aggregate (= 2000 in all cases) and the
values of the slip-system parameters p12, p23, and m (= 3.5 in all
cases). We also choose the components of the SRT E that generates
the background texture. We work in the reference frame of the FSE,
which means that

E =

⎛
⎜⎝
E11 0 0

0 E22 0

0 0 E33

⎞
⎟⎠ . (20)

This limits the model to orthotropic CPO, which is sound for prac-
tical purposes as natural CPO most often exhibit such a symmetry.
The SO model is then run starting from an isotropic initial condition

until target values of the FSE axial ratios r12 and r23 are reached. In
step 2, we apply an instantaneous SRT

E =

⎛
⎜⎝

E11 E12 E13

E12 E22 E23

E13 E23 E33

⎞
⎟⎠ (21)

to the background texture. Note that E need not be the same as E ,
which allows us to obtain results for arbitrary orientations of the
principal axes of E relative to those of E .

The final result of the procedure described above is a set of slip
rates γ̇ [s]

n on each of the three slip systems (s = 1, 2 or 3 in Table 1)
and for each of the n phases (n = 1, 2, . . . , N). The calculated values
of γ̇ [s]

n are then substituted into eq. (5) to obtain the ‘partial’ spins
ω

[s]
i due to the actions of the individual slip systems, and which are

related to the total spin ωi by

ωi =
3∑

s=1

ω
[s]
i . (22)

Finally, by substituting the partial spins ω
[s]
i into eq. (4) and ex-

pressing the results in terms of the slip system-specific Eulerian
angles (φ[s], θ [s], ψ [s]) ≡ g[s], we obtain the rotation rates ψ̇ [s]

n for
all grains n and slip systems s.

4.2 ANPAR model for crystallographic spin

At this point, we have a large library of numerical solutions, but
little idea of what they imply about the structure of the function
A[s]

i jkl (r12, r23, p12, p23, m). As a first simplification, we assume that
the dependence on r12 and r23 is separable from the dependence on
p12 and p23 , that is,

A[s]
i jkl = H [s](p12, p23, m)Qi jkl (r12, r23). (23)

The first factor H[s] in eq. (23) describes how the activities of the
three slip systems depend on the CRSS ratios at the initial instant
(r12 = r23 = 0) of the deformation, while the factor Qijkl(r12, r23)
describes how the activities of slip systems with equal strengths
(p12 = p23 = 0) vary as a function of strain for arbitrary deforma-
tions.

Consider first the factor Qijkl(r12, r23). Since Eij and S[s]
i j are both

symmetric and traceless, there are at most 25 independent products
of them, or equivalently 25 independent Qijkl. However, we have
found that Qijkl(r12, r23) obeys surprising symmetries that reduce
the number of its independent non-zero components to just two. We
began by fixing H[s](0, 0, 3.5) = 1 and performing a least-squares
fit of the model (19) to the spin predicted by the SO model. We did
this for 217 different values of (r12, r23), where both r12 and r23 were
in the range [−0.9, 0.9], which is within the range of finite strain
that can be successfully modelled by the SO approach. The sampled
points were equally spaced along radial lines in the (r12, r23)-plane.
For each of the sampled points we repeated the fit for five random
instantaneous SRTs, giving a total of 1085 fits of our model to the
numerical solutions of the SO model. This allowed us to discover
numerically that 18 of the coefficients Qijkl were identically zero.
We also found at this stage that Q1122 ≈ Q2211. These two numerical
results implied that the tensor Qijkl exhibits major symmetry, that is,
Qijkl = Qklij. This leaves only six independent, non-zero components
of Qijkl, namely Q1111, Q1122, Q2222, Q1212, Q1313 and Q2323.

Relationships among the six remaining non-zero Qijkl arise from
the fact that the labelling of the coordinate axes is arbitrary. We can
have a cyclic permutation of the coordinate axes from (1, 2, 3) to
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(2, 3, 1) or (3, 1, 2), or a non-cyclic permutation from (1, 2, 3) to
(1, 3, 2), (2, 1, 3) or (3, 2, 1). The spin ψ̇ [s] has to be invariant under
a relabelling of the coordinate axes. Equating the expressions for
ψ̇ [s] in the original and the transformed coordinate systems allows
us to derive rigourous transformation rules (in the reference frame
of the FSE). Setting B = Q1111 and C = Q1212, we find that

Q1212 (r12, r23) = C (r12, r23) , (24a)

Q1313 (r12, r23) = C (r31, r23) , (24b)

Q2323 (r12, r23) = C (r23, r12) , (24c)

Q1111 (r12, r23) = B (r12, r23) , (24d)

Q2222 (r12, r23) = B (r12, r31) , (24e)

Q1122 (r12, r23) = 1

2
[B (r23, r12) − B (r12, r23) − B (r12, r31)] .

(24f)

These symmetries reduce the number of independent coefficients
Qijkl to just two, which we take to be Q1111 and Q1212.

Now consider the factor H[s] in eq. (23). We have discovered
numerically that H[2] and H[3] can be obtained from H[1] by simple
variable transformations:

H [2](p12, p23) = H [1](−p12, −p31),

H [3](p12, p23) = H [1](−p23, −p12). (25)

Combining this with the previous results for Qijkl, we obtain the fol-
lowing general ANPAR model for the crystallographic spin, which
is valid on each slip system s:

ψ̇ [s] = 1

2
H [s](p12, p23)

×
{

B (r12, r23)
[

(−4E11 + E22) S[s]
11 + (E11 + 2E22) S[s]

22

]
− B (r23, r12)

[
(4E11 + 5E22) S[s]

11 + (5E11 + 4E22) S[s]
22

]
+ B (r12, r31)

[
(2E11 + E22) S[s]

11 + (E11 − 4E22) S[s]
22

]
− 8

[
C (r12, r23) E12 S[s]

12 + C (r23, r12) E23 S[s]
23

+ C (r31,r23) E31 S[s]
31

]}
. (26)

Note that the coefficient C multiplies the off-diagonal components
of E, and is therefore not needed for coaxial deformations where
the principal axes of the SRT and the FSE are aligned.

The final part of the ANPAR procedure is to calculate the total
spin for each crystal. Substituting the above slip-specific spin (26)
into eq. (16) provides us with the slip rates γ̇ [s] on each of the three
slip systems (s = 1, 2 or 3 in Table 1). The calculated values of γ̇ [s]

are then substituted into eq. (5) to obtain the Cartesian components
of the spin ω

[s]
i due to the actions of the individual slip systems,

and which are related to the total spin ωi by eq. (22). Finally, by
substituting ωi into eq. (4) we obtain the total spin (φ̇, θ̇ , ψ̇) ≡ ġ of
an individual crystal, in terms of the Eulerian angles.

4.3 Numerical determination of the parametrization
coefficients

The symmetries outlined above indicate that we only require ana-
lytical expressions for the three functions B, C and H[1]. Full details

Figure 4. Spin amplitude B as a function of deformation when the strengths
of the dominant slip systems are all equal, shown as a function of the axial
ratios of the finite strain ellipsoid. Solid contours show the amplitude B that
best fits the predictions of the SO model, and the dashed contours show the
fitting function (B3).

of the expressions obtained and the methods used are given in
Appendix B. Briefly, we first obtain models for B and C, by set-
ting equal slip-system strengths (p12 = p23 = 0) and fixing H[1](0,
0) = 1 in eq. (26). We then capture B and C data by a least-squares
fit of the model (26) to the spin predicted by the SO model, for
sampled values of r12 and r23, and random instantaneous SRTs. In
each case, the variance reduction of the fit R ≥ 99.7 per cent. Simple
polynomials in r12 and r23 are fitted to the B and C data (using least
squares) to obtain the analytical expressions (B3). The root mean
square (RMS) errors of the fits are 0.039 and 0.0070, respectively.
Figs 4 and 5 display contour plots of the models (B3) against the B
and C data, respectively.

To obtain an analytical expression for H[1], we capture H[1] data
over the entire admissible range of (p12, p23) values for olivine. Us-
ing eq. (13) and the CRSS ratios assumed in Table 1, this gives
admissible values of p12 and p23 in the range [−ln 4, ln 4] =
[−1.386, 1.386]. We fit eq. (26) to 81 instantaneous (t = 0, i.e.
isotropic CPO) numerical solutions of the SO model for uniaxial
compression, with equally spaced points in the (p12, p23)-plane with
p12 and p23 in the above admissible range. Simple polynomials in
p12 and p23 are fitted to the H[1] data using least squares, leading to
the analytical expression (B6). The RMS error of the fit is 0.0068.

Finally, we test the assumption (23) that Aijkl can be written as a
product of a scalar H[s] (that depends on p12 and p23) and a tensor
Qijkl (that depends on r12 and r23). We substituted the analytical
expressions for B, C and H[1] (see eqs B3 and B6, respectively)
into the full model for the spin on each slip system (26). We then
fitted these models to the spin predicted by the SO model for ran-
dom background textures (formed from various r12, r23, p12 and
p23 values) and random instantaneous SRTs. Remarkably, in each
case, the variance reduction R > 99.1 per cent and in most cases
R > 99.7 per cent.
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Figure 5. Same as Fig. 4, but for the spin amplitude C.

5 E V O LU T I O N O F C P O D U R I N G
P RO G R E S S I V E D E F O R M AT I O N

The results in the previous sections imply that the ANPAR model
provides an accurate and efficient substitute for the much more
computationally expensive SO model. We now demonstrate this in
more detail by comparing the textures predicted by the two models
for olivine polycrystals subjected to various kinds of finite defor-
mation. In the following three test cases (for uniform deformation)
the strain increment used (�r0 = 0.025) is the same for both the SO
and ANPAR models. The different components of our method for
ANPAR CPO calculation are summarized in Algorithm 1.

5.1 Irrotational deformations

Our first test case is a uniaxial compression to a strain r23 = 0.9,
r12 = 0, with CRSS ratios τ [1]/τ [2] = 0.5 and τ [2]/τ [3] = 0.667.
Fig. 6 shows the (100), (010) and (001) pole figures predicted
for this case by the SO model (Fig. 6a) and the ANPAR model
(Fig. 6b). The two sets of pole figures are practically indistin-
guishable (variance reduction R > 99.9 per cent. Variance reduction
for pole figures is defined in Appendix C). However, the ANPAR

model is a remarkable 1.75 × 104 times quicker than the SO model
(0.0344 s for ANPAR versus 603 s for SO).

To quantify the agreement in another way, we used the obtained
CPO to calculate the effective elastic behaviour of the aggregate
for the SO and ANPAR models using the MSAT software (Walker
& Wookey 2012). An element-by-element comparison of the two
Voigt–Reuss–Hill average elastic stiffness tensors gives a maximum
absolute difference of 0.19 GPa between SO and ANPAR, which is
not significant for geophysical purposes.

As a second test, Fig. 7 shows the predicted pole figures
for uniform deformation by pure shear in the x1–x3 plane to a
strain r12 = r23 = 0.563, again with CRSS ratios τ [1]/τ [2] = 0.5
and τ [2]/τ [3] = 0.667. Again, the two sets of pole figures and
the predicted elasticity are nearly identical (variance reduction
99.3 per cent, maximum absolute difference in the predicted elastic-
ity 0.16 GPa). In this case, the speed of the ANPAR model is 3.1×
104 greater than that of the SO model (0.0348 s for ANPAR versus
1090 s for SO).

5.2 Rotational deformations

Rotational deformations are those in which the axes of the FSE
do not remain aligned with the principal axes of the SRT as the
deformation progresses.

As an example, consider the case of simple shear, for which the
major axis of the FSE is initially aligned with the SRT but then
rotates progressively away from it towards the shear plane. As a
result, both functions B and C in eq. (26) come into play.

Let ε̇1 be the maximum rate of extension along the x1 axis. The
elongation of the FSE at time t can then be described by the axial
ratio R = exp(r12) = exp(2 sinh−1[ε̇1t]) (Ribe & Yu 1991, eq. 16).
If we denote χ (t) the angle between the two frames, then χ (0) = 0
and limt → ∞χ (t) = −π/4. Using the standard tensor transformation
rule, we obtain a velocity gradient tensor of the form D = E + W,
where

E = ε̇1

⎛
⎜⎜⎝

cos 2χ sin 2χ 0

sin 2χ − cos 2χ 0

0 0 0

⎞
⎟⎟⎠ , W = ε̇1

⎛
⎜⎜⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟⎟⎠

(27)

are the respective strain-rate and rotation-rate, tensors and
χ = − 1

2 tan−1 (ε̇1t). We used CRSS ratios τ [1]/τ [2] = 0.5 and
τ [2]/τ [3] = 0.667. We updated the velocity gradient tensor at each
time step to remain in the frame of reference of the FSE.

Algorithm 1. ANPAR CPO calculations for Olivine.

(1) Set N (Number of grains (n = 1, . . . , N))
(2) Set initial isotropic texture gn[0] = (φn[0], θn[0], ψn[0]).
(3) Set p12, p23 (CRSS ratios)
(4) Set r12[0] = r23[0] = 0. (FSE initially a sphere)
(5) For k = 1, . . . , K do (Calculate texture at each time-step)

(i) Set E[k] and �[k] (SRT and macroscopic rotation rate)
(ii) Transform SRT into reference frame of FSE
(iii) Calculate D[k] (velocity gradient tensor, using eq. 6)
(iv) Set r0[k] (strain increment)
(v) Calculate r12[k], r23[k] and tk (FSE parameters and time-step, using eqs 10 and 11)

(vi) Calculate slip-rates γ̇
[s]
n [k] (using eqs 16 and 26)

(vii) Calculate rotation rates ġn[k] = (
φ̇n[k], θ̇n[k], ψ̇n[k]

)
(using eqs 4 and 5)

(viii) Update texture gn[k] = (φn[k], θn[k], ψn[k]) (integrating forward in time)
end do

(6) Plot texture gn[K ] = (φn[K ], θn[K ], ψn[K ]) (using MTEX)

1
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Figure 6. Pole figures (equal-area projections) for an olivine polycrystal deformed by uniaxial compression to a strain r23 = 0.9, r12 = 0. The arrows indicate
the compression (x3-) axis, which extends from the bottom to the top of each figure. The predictions of (a) the SO model and (b) the analytical model (ANPAR)
are shown for critical resolved shear stress ratios τ [1]/τ [2] = 0.5 and τ [2]/τ [3] = 0.667. Figure generated using MTEX (Bachmann et al. 2010).

Fig. 8 shows the pole figures predicted by our theory together
with those predicted by the SO model for ε̇1 = 1 and r0 = 0.5. Yet
again, the two sets of pole figures are nearly indistinguishable, with
a variance reduction R = 99.5 per cent and a maximum difference
in the predicted elasticity of 0.77 GPa. The speed of the ANPAR
model is 5.6 × 104 greater than that of the SO model (0.367 s for
ANPAR versus 2062 s for SO).

5.3 Non-Newtonian corner-flow model
for a spreading ridge

Our final example is a more complex and non-uniform geophysical
flow, namely the flow in the mantle beneath an ocean ridge. This flow
can be simply modeled using the ‘corner flow’ similarity solution
of the Stokes equation in polar coordinates (r, ϕ) (Batchelor 1967).
Fig. 9 shows the geometry and boundary conditions appropriate
for a ridge crest (Lachenbruch & Nathenson 1974). Flow in the
asthenosphere 0 < ϕ < α is driven by the horizontal motion of
wedge-shaped surface plates at velocity U0. The solid lines with
arrows show typical streamlines of the flow for an asthenosphere
with a power law rheology with power law index n = 3 (Tovish et al.
1978). The two streamlines are for ϕ0 = 10◦ and 20◦, and we use
α = 60◦ throughout this subsection.

The steady incompressible Stokes equations and the boundary
conditions in Fig. 9 can be satisfied if the stream function � has the
self-similar form

� = U0r F(ϕ), (28)

which is valid for both Newtonian (n = 1) and non-Newtonian
(n �= 1) fluids. Here we use n = 3, corresponding to a rheology that
is close to that of olivine at high stresses (n ≈ 3.5; Bai et al. 1991).
The function F(ϕ) for n = 3 is of the form

F(ϕ) = A sin ϕ + Ch(ϕ, D), (29)

where

h(ϕ, D) = 27 cos

[√
5

3
(ϕ + D)

]
− cos

[√
5(ϕ + D)

]
. (30)

The constants A, C and D are chosen to satisfy the boundary condi-
tions, yielding

D = 3π

2
√

5
, (31)

C = − [
h(α, D) cos α − hϕ(α, D) sin α

]−1
, (32)

A = −C
[
h(α, D) sin α + hϕ(α, D) cos α

]
, (33)
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Figure 7. Same as Fig. 6, but for deformation by pure shear to r12 = r23 = 0.563. The axes of maximum extension (x1) and compression (x3) are indicated by
the arrows.

where hϕ = dh/dϕ. The maximum strain rate ε̇ is

ε̇ = U0
|F ′′ + F |

2r
, (34)

where F ′′ = d2

dϕ2 F(ϕ), and the local rotation rate (= one-half the
vorticity) is

� = −U0
F ′′ + F

2r
. (35)

To proceed, we require knowledge of the FSE as we progress along
a streamline. We obtain the axial ratio R = exp(r12) of the FSE
and the orientation χ of the FSE by solving the following evolution
equations (Kellogg & Turcotte 1990; Ribe 1992):

Ṙ = 2R (E11 cos 2χ + E12 sin 2χ ) , (36)

χ̇ = � + 1 + R2

1 − R2
(E11 sin 2χ − E12 cos 2χ ) . (37)

The above equations can be simplified by transforming the Cartesian
strain rate components Eij to polar coordinates, and then expressing
the time derivatives in terms of a ϕ-derivative (McKenzie 1979,
eq. 6):

D

Dt
= −U0 F

r

d

dϕ
. (38)

This leads to the following simplified form for the evolution equa-
tions:

dR
dϕ

= −R F ′′ + F

F
sin 2 (χ − ϕ) , (39)

dχ

dϕ
= F ′′ + F

2F

[
1 + 1 + R2

1 − R2
cos 2 (χ − ϕ)

]
(40)

which must be solved subject to the following initial conditions at
ϕ = ϕ0:

R (ϕ0) = 1, (41)

χ (ϕ0) = ϕ0 + π

4
. (42)

These evolution equations were solved using a fourth-order Runge–
Kutta method. In Fig. 9, the FSE is plotted at different points along
two different streamlines.

In polar coordinates the velocity gradient tensor is of the form
(McKenzie 1979)

D =

⎛
⎜⎝

0 −2� 0

0 0 0

0 0 0

⎞
⎟⎠ , (43)

where � is given by eq. (35). However, to calculate CPO, we have to
transform back into Cartesian coordinates. In doing this, we obtain
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Figure 8. Same as Fig. 6, but for deformation by simple shear to r12 = 0.841, r23 = −0.421 (r0 = 0.5), with CRSS ratios τ [1]/τ [2] = 0.5 and τ [2]/τ [3] = 0.667.
The black, red and blue lines indicate the axis of maximum instantaneous extension (x1), the shear plane and the long axis of the FSE, respectively. The
direction of shear is indicated.

a velocity gradient tensor of the form D = E + W, where

E = ε̇

⎛
⎜⎜⎝

− sin 2ϕ cos 2ϕ 0

cos 2ϕ sin 2ϕ 0

0 0 0

⎞
⎟⎟⎠ , W = ε̇

⎛
⎜⎝

0 1 0

−1 0 0

0 0 0

⎞
⎟⎠ .

(44)

We then use the standard tensor transformation rule to transform
the SRT into the reference frame of the FSE. This gives

E = ε̇

⎛
⎜⎝

sin 2(χ − ϕ) cos 2(χ − ϕ) 0

cos 2(χ − ϕ) − sin 2(χ − ϕ) 0

0 0 0

⎞
⎟⎠ . (45)

Fig. 10 shows the pole figures predicted by our theory together
with those predicted by the SO model for an equivalent strain
r0 = 0.6 (r12 = 1.047, r23 = −0.523). This was for the first stream-
line ϕ0 = 10◦ in Fig. 10, with ϕ = 49◦ and χ = 67◦. Again, the two
sets of pole figures are almost identical, with a maximum difference
in the predicted elasticity of 0.93 GPa. When comparing the two
pole figures, the variance reduction is 99.0 per cent. In this case, the
speed of the ANPAR model is 5.8 × 104 greater than that of the SO
model (0.384 s for ANPAR versus 2240 s for SO).

6 C O N C LU D I N G R E M A R K S

The new ANPAR method we describe in this article is an accurate
and computationally efficient alternative to existing methods for the
simulation of CPO development in olivine. Benchmark tests against
the SO self-consistent model (Ponte-Casteñeda 2002) show that
ANPAR runs 2–6 × 104 times faster, yet predicts textures that are
nearly indistinguishable from those predicted by SO. The proposed
method is limited to CPO calculations; ANPAR does not tackle
the viscoplastic mechanical behaviour of the polycrystal associated
with the predicted CPO.

The ANPAR model has some similarities with the D-Rex model
of Kaminski & Ribe (2001). In the latter model, the slip rates γ̇ [s]

are predicted by minimizing for each grain the misfit between the
local and global SRTs. This ad hoc principle yields

γ̇ [s] = 2AS[s]
i j Ei j , (46)

where A = 1 if global strain compatibility is not enforced and A = 5
if it is. Since the quantities S[s]

i j are GSHs of degree 2, D-Rex agrees
with ANPAR concerning the spectral content of the crystallographic
spin. However, D-Rex assumes that the spin does not depend on the
background texture, and so the amplitude A does not increase as
strain accumulates. This is in contrast to the amplitudes B and C
in ANPAR, both of which increase strongly with increasing strain
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φ

Figure 9. Geometry and boundary conditions for the corner flow model
of a ridge crest (right half only). The half spreading rate is U0 and the
asthenospheric wedge has angular dimension α = 60◦. Solid lines with
arrows show typical streamlines for a power-law rheology with index n = 3.
The FSEs are plotted at different points along the two streamlines. The black
ellipse relates to the point in the flow at which the texture is approximated
(see Fig. 10).

in order to satisfy global strain compatibility. The ANPAR model
for CPO depends on the deformation history, which agrees with the
recent studies of Skemer et al. (2012) and Boneh & Skemer (2014).

In constructing the ANPAR model we assumed that the spin
tensor Aijkl can be written as the product of a tensor Qijkl that depends
only on the axial ratios r12 and r23 of the FSE and a scalar H that
depends only on the relative slip system strengths p12 and p23.
Although this seems to be a major assumption, the near-perfection
of the fits we obtain to the SO predictions appears to justify it.

The simplicity of the ANPAR model is due in part to the or-
thorhombic symmetry of olivine and the resulting orthogonality
of the three dominant slip systems (010)[100], (001)[100] and
(010)[001]. This is the reason why the spin consists of only degree-2
GSHs and why the parameter space can be reduced so dramatically.
We are investigating the possibility of adapting ANPAR to min-
erals with non-orthogonal slip systems. We are currently looking
at post-perovskite, which is assumed to have slip systems which
are aligned with the crystallographic axes plus some slip systems
that are oblique to these axes (e.g. Carrez et al. 2007a,b; Merkel
et al. 2007; Metsue et al. 2009; Walker et al. 2011). For example,
{110}[001], (001)〈110〉 and {110}〈110〉 have been proposed as sets
of slip systems with symmetry equivalents that are oblique to the
crystal axes. In our preliminary investigation it appears that ANPAR
can be extended in this manner but the non-orthogonal slip systems
result in higher-degree harmonics being required in the model for
the crystallographic spin.

Figure 10. Same as Fig. 6, but for the corner-flow model of a spreading ridge shown in Fig. 9. Textures estimated by the SO and ANPAR models at the point of
the filled FSE in Fig. 9. α = 60◦, ϕ0 = 10◦, ϕ = 49◦, χ = 67◦, r12 = 1.047, r23 = −0.523 (r0 = 0.6), with CRSS ratios τ [1]/τ [2] = 0.5 and τ [2]/τ [3] = 0.667.
The red and blue lines have the same meaning as in Fig. 8.

http://gji.oxfordjournals.org/


In its current form the ANPAR method does not easily lend itself
to modelling polymineralic aggregates; this will be the subject of fu-
ture development work. However, the model can easily be extended
to other orthorhombic minerals with less than four independent
slip systems, such as enstatite, and without having to satisfy the von
Mises criterion. Detrez et al. (2015) show that polycrystalline aggre-
gates lacking four independent systems for dislocation glide can de-
form in a purely viscoplastic regime only if additional deformation
mechanisms (e.g. grain boundary sliding, diffusion, disclinations)
are activated, and they assume that the unknown accommodation
mechanism can be represented by an isotropic potential. The ro-
bust character of our results leads us to suppose that our approach
can be generalized to minerals with other symmetries and also to
polyphase rocks. If this is the case, the fact that ANPAR is based on
the SO model implies that such a generalization could be applicable
for a range of materials where first-order homogenization schemes
have had limited success and the more computationally taxing SO
approach has been considered essential. One such example is mod-
elling of deformation of materials, such as ice, with extreme plastic
anisotropy (e.g. Lebensohn et al. 2007). Finally, the speed advantage
of ANPAR over the SO model holds out the possibility that it could
be incorporated efficiently in 3-D and time-dependent simulations
of mantle convection.
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A P P E N D I X A : S L I P S Y S T E M - S P E C I F I C S C H M I D T E N S O R S

The Schmid tensor S is slip system specific, and thus different for each system. Let S[s]
i j be the Schmid tensor for slip system s. For the slip

system (010)[100] (s = 1), the relationships between the independent components of the Schmid tensor and the Eulerian angles are

S[1]
11 − S[1]

22 = −1

2

[
cos 2φ sin 2ψ

(
cos2 θ + 1

) + 2 sin 2φ cos θ cos 2ψ
]
, (A1a)

S[1]
12 = −1

4

[
sin 2φ sin 2ψ

(
cos2 θ + 1

) − 2 cos 2φ cos θ cos 2ψ
]
, (A1b)

S[1]
13 = −1

2
sin θ (sin φ cos θ sin 2ψ − cos φ cos 2ψ) , (A1c)

S[1]
23 = 1

2
sin θ (cos φ cos θ sin 2ψ + sin φ cos 2ψ) , (A1d)

S[1]
11 + S[1]

22 = −1

2
sin2 θ sin 2ψ. (A1e)

Similarly, for the slip system (001)[100] (s = 2) we obtain

S[2]
11 − S[2]

22 = sin θ (cos 2φ cos θ sin ψ + sin 2φ cos ψ) , (A2a)

S[2]
12 = 1

2
sin θ (sin 2φ cos θ sin ψ − cos 2φ cos ψ) , (A2b)

S[2]
13 = −1

2
(sin φ cos 2θ sin ψ − cos φ cos θ cos ψ) , (A2c)

S[2]
23 = 1

2
(cos φ cos 2θ sin ψ + sin φ cos θ cos ψ) , (A2d)

S[2]
11 + S[2]

22 = −1

2
sin 2θ sin ψ. (A2e)

Finally, for the slip system (010)[001] (s = 3) we find

S[3]
11 − S[3]

22 = sin θ (cos 2φ cos θ cos ψ − sin 2φ sin ψ) , (A3a)

S[3]
12 = 1

2
sin θ (sin 2φ cos θ cos ψ + cos 2φ sin ψ) , (A3b)

S[3]
13 = −1

2
(sin φ cos 2θ cos ψ + cos φ cos θ sin ψ) , (A3c)

S[3]
23 = 1

2
(cos φ cos 2θ cos ψ − sin φ cos θ sin ψ) , (A3d)

S[3]
11 + S[3]

22 = −1

2
sin 2θ cos ψ. (A3e)

A P P E N D I X B : A M P L I T U D E O F T H E C RY S TA L L O G R A P H I C RO TAT I O N R AT E

In this appendix, we quantify the dependence of the slip system amplitudes A[s]
i jkl on the strains r12 and r23 and the CRSS ratios p12 and p23.

We assume that A can be expressed more compactly, as shown in eq. (23).
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Table B1. Values of the coefficients zmn in the fitting functions (B3), for B(r12, r23) and C(r12, r23).

z00 z20 z11 z02 z40 z31 z22 z13 z04

B 2.241 0.3993 1.104 1.104 0.7619 2.507 5.518 6.023 3.012
C 1.662 0.2046 0.1992 −0.7517 −0.01853 −0.02831 −0.4396 −0.4246 0.2085

B1 Limit A[s]
i jkl(r12, r23, 0, 0, 3.5)

We first consider how the activities of slip systems with equal strengths (p12 = p23 = 0) vary as a function of strain. This enables us to find
out how the Qijkl depend on the parameters r12 and r23 that characterize the FSE. As we pointed out in Section 2.3, the value of m = 3.5 is
assumed for all slip systems.

We explained in Section 4.2 the symmetries that allow us to reduce the number of independent non-zero components Qijkl from 25 to just 2.
The transformation rules (24), derived by noting that the labelling of the coordinate axes is arbitrary, are given in their full form here:

Q1212 (r12, r23) = C (r12, r23) = C (−r12, −r23) = C (r12, r31) = C (−r12,−r31) , (B1a)

Q1313 (r12, r23) = C (r31, r12) = C (−r31, −r12) = C (r31, r23) = C (−r31,−r23) , (B1b)

Q2323 (r12, r23) = C (r23, r31) = C (−r23, −r31) = C (r23, r12) = C (−r23,−r12) , (B1c)

Q1111 (r12, r23) = B (r12, r23) = B (−r12, −r23) = B (r31, r23) = B (−r31,−r23) , (B1d)

Q2222 (r12, r23) = B (r12, r31) = B (−r12, −r31) = B (r23, r31) = B (−r23,−r31) , (B1e)

B (r31, r12) = B (−r31, −r12) = B (r23, r12) = B (−r23, −r12)

= B (r12, r23) + 2Q1122 (r12, r23) + Q2222 (r12, r23) . (B1f)

We also discovered, numerically, the symmetry condition

Qi jkl (r12, r23) = Qi jkl (−r12, −r23) . (B2)

This means, for example, that the values of Qijkl for uniaxial extension are identical to those for uniaxial compression. Using eq. (B2) and the
complete symmetry transformations (B1), we can reduce by a factor of eight the size of the parameter space (r12, r23) that we have to explore
numerically to determine how B and C depend on r12 and r23.

We determine values of B and C at sampled points in the (r12, r23)-plane by fitting eq. (26) (with H[s](0, 0) = 1) to the spin predicted by the
SO model, using a standard least-squares procedure. These calculations yield the curves shown by solid lines in Figs 4 and 5. In each case the
variance reduction R > 99.7 per cent. Then, we fitted B and C data, obtained by the above method, to fourth-order polynomials of the form

4∑
m=0

4∑
n=0

zmnrm
23rn

12, (B3)

where

zmn =
⎧⎨
⎩

0 if m + n > 4;
0 if m + n odd;
zmn otherwise.

(B4)

The RMS errors of the fits to the B and C data are 0.039 and 0.0070, respectively. The values of the non-zero coefficients zmn are given in
Table B1, for both fitting functions. The quality of these fits can be viewed in Figs 4 and 5.

B2 Limit A[s]
i jkl(0, 0, p12, p23, 3.5)

We next consider how the amplitudes depend on p12 and p23 at the initial instant (r0 = r12 = r23 = 0) of the deformation. This allows us to
discover how the functions H[s] in eq. (23) depend on the parameters that characterize the relative strength of the slip systems. Here, we
consider values of p12 and p23 in the range [−ln 4, ln 4] ≈ [−1.386, 1.386]. We discovered numerically the following transformation rules:

H [1](p12, p23) = H [1](−p31, −p23) (B5a)

H [2](p12, p23) = H [1](−p12, −p31) = H [1](p23, p31) (B5b)

H [3](p12, p23) = H [1](−p23, −p12) = H [1](p31, p12). (B5c)

These transformations enable us not only to express H[2] and H[3] in terms of H[1], but also to reduce the size of the parameter space (p12, p23)
that we have to explore numerically to determine how H[1] depends on p12 and p23.
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We obtain H[1] data by calculating, via least-squares, the amplitudes H[1] that fit eq. (26) to 81 instantaneous numerical solutions of the SO
model for uniaxial compression, with equally spaced points in the (p12, p23)-plane with both p12 and p23 in the range [−1.386, 1.386]. We
then fit quadratic polynomials, satisfying the above relations (B5), to the collected H[1] data. The results are

H [1](p12, p23) = 1 − 0.0295p12 − 0.0130p23 − 0.00743p2
12 − 0.00347p12 p23 − 0.00333p2

23. (B6)

The RMS error of the fit is 0.0068. We apply the transformations (B5) to form analytical expressions for H[2] and H[3], respectively.

B3 General case

We construct a general form for A [s]
i jkl (r12, r23, p12, p23) that is consistent with the above limiting cases. We first substitute the model (B6) into

eq. (23). We then use the coefficients in eq. (B4) and Table B1 to formulate the models (B3) for B and C. The B and C models are substituted
into eqs (24a)–(24f) to form Qijkl, which is subsequently used in eq. (23). The resulting expression is the one we use in all our numerical
calculations.

We have fitted this model to the spin predicted by the SO model for random background textures (formed using various r12, r23, p12

and p23 values) and random instantaneous SRT’s. Remarkably, in each case, the variance reduction R > 99.1 per cent and in most cases
R > 99.7 per cent.

A P P E N D I X C : VA R I A N C E R E D U C T I O N B E T W E E N P O L E F I G U R E S

To calculate the variance reduction between the pole figures shown in Section 5, we use the transformations

φ∗
n = 2

π
φn, θ∗

n = 1 + cos θn, ψ∗
n = 2

π
ψn (C1)

to map the Euler angles (φn, θ n, ψn) of each grain onto an ‘Euler cube’
(
φ∗

n , θ
∗
n , ψ∗

n

)
. The Euler cube has a uniform metric, and each of its

sides is of length 2.0. Let the set of Euler angles for each grain for the SO and ANPAR approximations be denoted by (φ∗
(n,SO), θ

∗
(n,SO), ψ

∗
(n,SO))

and (φ∗
(n,AN), θ

∗
(n,AN), ψ

∗
(n,AN)), respectively. For each grain the ‘distance’, dn, between these two sets of Euler angles is calculated by

dn =
√(

φ∗
(n,SO) − φ∗

(n,AN)

)2
+

(
θ∗

(n,SO) − θ∗
(n,AN)

)2
+

(
ψ∗

(n,SO) − ψ∗
(n,AN)

)2
. (C2)

The variance reduction between the two pole figures is then given by

R = 1 −
∑N

n=1 d2
n∑N

n=1

[(
φ∗

(n,SO)

)2
+

(
θ∗

(n,SO)

)2
+

(
ψ∗

(n,SO)

)2
] . (C3)
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