M. Langhammer and B. Pasca, Floating-Point DSP Block Architecture for FPGAs, Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA '15, pp.117-125, 2015.
DOI : 10.1145/2684746.2689071

N. Shirazi, A. Walters, and P. Athanas, Quantitative analysis of floating point arithmetic on FPGA based custom computing machines, Proceedings IEEE Symposium on FPGAs for Custom Computing Machines, p.155, 1995.
DOI : 10.1109/FPGA.1995.477421

W. Wong and E. Goto, Fast evaluation of the elementary functions in single precision, IEEE Transactions on Computers, vol.44, issue.3, pp.453-457, 1995.
DOI : 10.1109/12.372037

J. Low and C. C. Jong, A Memory-Efficient Tables-and-Additions Method for Accurate Computation of Elementary Functions, IEEE Transactions on Computers, vol.62, issue.5, pp.858-872, 2013.
DOI : 10.1109/TC.2012.43

D. , D. Sarma, and D. Matula, Faithful bipartite rom reciprocal tables, Computer Arithmetic Proceedings of the 12th Symposium on, pp.17-28, 1995.

M. Schulte and J. Stine, Symmetric bipartite tables for accurate function approximation, Proceedings 13th IEEE Sympsoium on Computer Arithmetic, pp.175-183, 1997.
DOI : 10.1109/ARITH.1997.614893

J. Stine and M. Schulte, The symmetric table addition method for accurate function approximation Journal of VLSI signal processing systems for signal, image and video technology, pp.167-177, 1999.

J. Muller, A Few Results on Table-Based Methods, Reliable Computing, vol.5, issue.3, pp.279-288, 1999.
DOI : 10.1007/978-94-017-1247-7_22

F. De-dinechin and A. Tisserand, Some improvements on multipartite table methods, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, pp.128-135, 2001.
DOI : 10.1109/ARITH.2001.930112

URL : https://hal.archives-ouvertes.fr/inria-00072577

S. Hsiao, P. Wu, C. Wen, and P. Meher, Table size reduction methods for faithfully rounded lookup-table-based multiplierless function evaluation Circuits and Systems II: Express Briefs, IEEE Transactions on, vol.62, issue.5, pp.466-470, 2015.

N. Takagi, Generating a power of an operand by a table look-up and a multiplication, Proceedings 13th IEEE Sympsoium on Computer Arithmetic, pp.126-131, 1997.
DOI : 10.1109/ARITH.1997.614887

M. Ito, N. Takagi, and S. Yajima, Efficient initial approximation for multiplicative division and square root by a multiplication with operand modification, IEEE Transactions on Computers, vol.46, issue.4, pp.495-498, 1997.
DOI : 10.1109/12.588066

M. Ercegovac, T. Lang, J. Muller, and A. Tisserand, Reciprocation, square root, inverse square root, and some elementary functions using small multipliers, IEEE Transactions on Computers, vol.49, issue.7, pp.628-637, 2000.
DOI : 10.1109/12.863031

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in the Analytic Number Theory and Computational Complexity, 1987.

S. Chevillard, M. Joldes¸, C. Joldes¸, and . Lauter, Sollya: An Environment for the Development of Numerical Codes, Lecture Notes in Computer Science, K. Fukuda, J. van der Hoeven, vol.6327, pp.28-31, 2010.
DOI : 10.1007/978-3-642-15582-6_5

URL : https://hal.archives-ouvertes.fr/hal-00761644

M. Flynn, On Division by Functional Iteration, IEEE Transactions on Computers, vol.19, issue.8, pp.702-706, 1970.
DOI : 10.1109/T-C.1970.223019

P. Rabinowitz, Multiple-precision division, Communications of the ACM, vol.4, issue.2, p.98, 1961.
DOI : 10.1145/366105.366171

F. Willers and R. Beyer, Practical analysis: graphical and numerical methods, ser. Dover Books on Science, 1948.

F. De-dinechin, M. Joldes, and B. Pasca, Automatic generation of polynomial-based hardware architectures for function evaluation, ASAP 2010, 21st IEEE International Conference on Application-specific Systems, Architectures and Processors, 2010.
DOI : 10.1109/ASAP.2010.5540952

URL : https://hal.archives-ouvertes.fr/ensl-00470506