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Abstra
t

In this work, we are interested in the small time lo
al null 
ontrollability for the vis
ous

Burgers' equation yt − yxx + yyx = u(t) on the line segment [0, 1], with null boundary 
onditions.

The se
ond-hand side is a s
alar 
ontrol playing a role similar to that of a pressure. In this setting,

the 
lassi
al Lie bra
ket ne
essary 
ondition [f1, [f1, f0]] introdu
ed by Sussmann fails to 
on
lude.

However, using a quadrati
 expansion of our system, we exhibit a se
ond order obstru
tion to

small time lo
al null 
ontrollability. This obstru
tion holds although the information propagation

speed is in�nite for the Burgers equation. Our obstru
tion involves the weak H−5/4
norm of

the 
ontrol u. The proof requires the 
areful derivation of an integral kernel operator and the

estimation of residues by means of weakly singular integral operator estimates.

1 Introdu
tion

1.1 Des
ription of the system and our main result

For T > 0 a small positive time, we 
onsider the line segment x ∈ [0, 1] and the following one-

dimensional vis
ous Burgers' 
ontrolled system:



















yt − yxx + yyx = u(t) in (0, T )× (0, 1),

y(t, 0) = 0 in (0, T ),

y(t, 1) = 0 in (0, T ),

y(0, x) = y0(x) in (0, 1).

(1.1)

The s
alar 
ontrol u ∈ L2(0, T ) plays a role somewhat similar to that of a pressure for multi-

dimensional �uid systems. Unlike some other studies, our 
ontrol term u depends only on time and not

on the spa
e variable. It is supported on the whole segment [0, 1]. For any initial data y0 ∈ H1
0 (0, 1)

and any �xed 
ontrol u ∈ L2(0, T ), it 
an be shown (see Lemma 8 below) that system (1.1) has a

unique solution in the spa
e XT = L2((0, T );H2(0, 1))∩H1((0, T );L2(0, 1)). We are interested in the

behavior of this system in the vi
inity of the null equilibrium state.

De�nition 1. We say that system (1.1) is small time lo
ally null 
ontrollable if, for any small time

T > 0, for any small size of the 
ontrol η > 0, there exists a region δ > 0 su
h that:

∀|y0|H1
0
≤ δ, ∃u ∈ L2(0, T ), |u|2 ≤ η su
h that y(T, ·) = 0, (1.2)

where y ∈ XT is the solution to system (1.1) with initial 
ondition y0 and 
ontrol u.

Theorem 1. System (1.1) is not small time lo
ally null 
ontrollable. Indeed, there exist T, η > 0 su
h
that, for any δ > 0, there exists y0 ∈ H1

0 (0, 1) with |y0|H1
0
≤ δ su
h that, for any 
ontrol u ∈ L2(0, T )

with |u|2 ≤ η, the solution y ∈ XT to (1.1) satis�es y(T, ·) 6= 0.

We will see in the sequel that our proof a
tually provides a stronger result. Indeed, we prove that,

for small times and small 
ontrols, whatever the small initial data y0, the state y(t) drifts towards a
�xed dire
tion. Of 
ourse, this prevents small time lo
al null 
ontrollability as a dire
t 
onsequen
e.
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1.2 Motivation: small time obstru
tions despite in�nite propagation speed

As an example, let us 
onsider the following transport 
ontrol system:











yt +Myx = 0 in (0, T )× (0, L),

y(t, 0) = v0(t) in (0, T ),

y(0, x) = y0(x) in (0, L),

(1.3)

where T > 0 is the total time, M > 0 the propagation speed and L > 0 the length of the domain.

The 
ontrol is the boundary data v0. No 
ondition is imposed at x = 1 sin
e the 
hara
teristi
s �ow

out of the domain. For system (1.3), small time lo
al null 
ontrollability 
annot hold. Indeed, even if

the initial data y0 is very small, the 
ontrol is only propagated towards the right at speed M . Thus,

if T < L/M , 
ontrollablity does not hold. Of 
ourse, if T ≥ L/M , the 
hara
teristi
s method allows

to 
onstru
t an expli
it 
ontrol to rea
h any �nal state y1 at time T . In this 
ontext, the obstru
tion

to 
ontrollability 
omes from the fa
t that the information propagation speed is bounded. Indeed, let

us modify slightly system (1.3) into:



















yt − νyxx +Myx = 0 in (0, T )× (0, L),

y(t, 0) = v0(t) in (0, T ),

y(t, 1) = 0 in (0, T ),

y(0, x) = y0(x) in (0, L),

(1.4)

where ν > 0 is a (very small) vis
osity. This system is small time globally null 
ontrollable, for any

ν > 0. Of 
ourse, the 
ost of 
ontrollablity must explode as ν → 0 if T is too small (see [22℄ for a

pre
ise study of the 
ost of 
ontrollability for (1.4)). What we want to underline here, is that the

in�nite information propagation speed yields (at least in this 
ontext) small time lo
al 
ontrollability.

Therefore, there is a strong interest for systems where small time lo
al 
ontrollability does not

hold despite an in�nite information propagation speed.

An example of su
h a system is the 
ontrol of a quantum parti
le in a moving potential well (box).

This is a bilinear 
ontrollability problem for the S
hrödinger equation. For su
h system, it 
an be

shown that large time 
ontrollablity holds (see [4℄ if only the parti
le needs to be 
ontrolled or [5℄ to


ontrol both the parti
le and the box). For small times, negative results have been obtained by Coron

in [18℄ (when one tries to 
ontrol both the parti
le and the position of the box), by Beau
hard, Coron

and Teissman in [6℄ for large 
ontrols (but smooth potentials) and by Beau
hard and Moran
ey in [7℄

(under an assumption 
orresponding to a Lie-bra
ket 
ondition [f1, [f1, f0]] 6= 0). This last paper is

related to ours sin
e their proof relies on a 
oer
ivity estimate involving the H−1
norm of the 
ontrol.

This is natural as we will see in paragraph 1.5. We refer the reader to these papers for more details

and surveys on the 
ontrollability of S
hrödinger equations.

Theorem 1 
an be seen as another example of a situation (in the 
ontext of �uid dynami
s) where

small time lo
al 
ontrollability fails despite an in�nite propagation speed.

1.3 Previous works 
on
erning Burgers' 
ontrollability

Let us re
all known results 
on
erning the 
ontrollability of the vis
ous Burgers' equation. More

generally, we introdu
e the following system:



















yt − yxx + yyx = u(t) in (0, T )× (0, 1),

y(t, 0) = v0(t) in (0, T ),

y(t, 1) = v1(t) in (0, T ),

y(0, x) = y0(x) in (0, 1),

(1.5)

where v0 and v1 are seen as additional 
ontrols with respe
t to the single 
ontrol u of system (1.1).

Various settings have been studied (with either one or two boundary 
ontrols, with or without u). On
e
again, here u only depends on t and not on x. Some studies have been 
arried out with v0 = v1 = 0
and a sour
e term u(t, x)χ[a,b] for 0 < a < b < 1. However, these studies are equivalent to boundary


ontrols thanks to the usual domain extension argument. Up to our knowledge, Theorem 1 is the �rst

result 
on
erning the 
ase without any boundary 
ontrol and a s
alar 
ontrol u.
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We start with results involving only a single boundary 
ontrol (either v0 or v1 by

symmetry) and u = 0.
In [31℄, Fursikov and Imanuvilov prove small time lo
al 
ontrollability in the vi
inity of traje
tories

of system (1.5). Their proof relies on Carleman estimates for the paraboli
 problem obtained by seeing

the non-linear term yyx as a small for
ing term.

Global 
ontrollability towards steady states of system (1.5) is possible in large time. Su
h studies

have been 
arried out by Fursikov and Imanuvilov in [30℄ for large time global 
ontrollability towards

all steady states, and by Coron in [20℄ for global null 
ontrollability in bounded time (ie. bounded

independently on the initial data).

However, small time global 
ontrollability does not hold. The �rst obstru
tion was obtained by

Diaz in [24℄. He gives a restri
tion for the set of attainable states starting from 0. Indeed, they must

lie under some limit state 
orresponding to an in�nite boundary 
ontrol v1 = +∞.

Fernández-Cara and Guerrero derived an asymptoti
 of the minimal null-
ontrollability time T (r)
for initial states of H1

norm lower than r (see [25℄). This shows that the system is not small time

globally null 
ontrollable.

We move on to two boundary 
ontrols v0 and v1, still with u = 0. Guerrero and Imanuvilov

prove in [32℄ that neither small time null 
ontrollability nor bounded time global 
ontrollability hold in

this 
ontext. Hen
e, 
ontrolling the whole boundary does not provide better 
ontrollability properties.

When three s
alar 
ontrols (namely u(t), v0 and v1) are used, Chapouly has shown in [17℄

that the system is small time globally exa
tly 
ontrollable to the traje
tories. Her proof relies on the

return method and on the fa
t that the 
orresponding invis
id Burgers' system is small time exa
tly


ontrollable (see [19, Chapter 6℄ for other examples of this method applied to Euler or Navier-Stokes).

When v1 = 0, but u and v0 are 
ontrolled, the author proved in [35℄ that small time global

null 
ontrollability holds. Indeed, although a boundary layer appears near the un
ontrolled part of

the boundary at x = 1, pre
ise estimation of the 
reation and dissipation of the boundary layer allows

to 
on
lude.

Con
erning the 
ontrollability of the invis
id Burgers' equation, some works have be


arried out. In [2℄, An
ona and Marson des
ribe the set of attainable states in a pointwise way for

the Burgers' equation on the half-line x ≥ 0 with only one boundary 
ontrol at x = 0. In [33℄, Horsin

des
ribes the set of attainable states for a Burgers' equation on a line segment with two boundary


ontrols. Thorough studies are also 
arried out in [1℄ by Adimurthi et al. In [39℄, Perrollaz studies the


ontrollability of the invis
id Burgers' equation in the 
ontext of entropy solutions with the additional


ontrol u(·) and two boundary 
ontrols.

1.4 A quadrati
 approximation for the non-linear system

Starting now, we introdu
e ε = T to remember that the total allowed time for 
ontrollability is small.

Moreover, we want to use the well-known s
aling trading small time with small vis
osity for vis
ous

�uid equations. Therefore, we introdu
e, for t ∈ (0, 1) and x ∈ (0, 1), ỹ(t, x) = εy(εt, x). Hen
e, ỹ is

the solution to:



















ỹt − εỹxx + ỹỹx = ũ(t) in (0, 1)× (0, 1),

ỹ(t, 0) = 0 in (0, 1),

ỹ(t, 1) = 0 in (0, 1),

ỹ(0, x) = ỹ0(x) in (0, 1),

(1.6)

where ũ(t) = ε2u(εt) and ỹ0 = εy0. This s
aling is widely used for 
ontrollability results sin
e small

vis
osity developments are easier to handle. As we will prove in se
tion 6, system (1.6) 
an help us

to dedu
e results for system (1.1). To further simplify the 
omputations in the following se
tions, let

us drop the tilda signs and the initial data. Therefore, we will study the behavior of the following
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system near y ≡ 0:


















yt − εyxx + yyx = u(t) in (0, 1)× (0, 1),

y(t, 0) = 0 in (0, 1),

y(t, 1) = 0 in (0, 1),

y(0, x) = 0 in (0, 1).

(1.7)

Properties proven on system (1.7) will easily be translated into properties for system (1.1) in Se
tion 6.

Moreover, sin
e we are studying lo
al null 
ontrollability, both the 
ontrol u and the state y are small.

Thus, if η des
ribes the size of the 
ontrol as in De�nition 1, let us name our 
ontrol ηu(t), with u of

size O(1). We expand y as y = ηa+ η2b+O(η3), and we 
ompute the asso
iated systems:



















at − εaxx = u(t) in (0, 1)× (0, 1),

a(t, 0) = 0 in (0, 1),

a(t, 1) = 0 in (0, 1),

a(0, x) = 0 in (0, 1)

(1.8)

and



















bt − εbxx = −aax in (0, 1)× (0, 1),

b(t, 0) = 0 in (0, 1),

b(t, 1) = 0 in (0, 1),

b(0, x) = 0 in (0, 1).

(1.9)

It is easy to see that system (1.8) is not 
ontrollable. Indeed, the 
ontrol u(t) 
an a
tually be written

as u(t)χ[0,1], and χ[0,1] is an even fun
tion on the line segment [0, 1]. Thus, the 
ontrol only a
ts on

even modes of a. In the linearized system (1.8), all odd modes evolve freely. This motivates the se
ond

order expansion of our Burgers' system in order to understand its 
ontrollability properties using b.
Given systems (1.8) and (1.9), we know that a is even and b is odd.

1.5 A �nite dimensional 
ounterpart

Systems (1.8) and (1.9) exhibit an interesting stru
ture. Indeed, the �rst system is fully 
ontrollable

(if we 
onsider that a lives within the subspa
e of even fun
tions), while the se
ond system is indire
tly


ontrolled through a quadrati
 form depending on a. Let us introdu
e the following �nite dimensional


ontrol system:

{

ȧ =Ma+ u(t)m in (0, T ),

ḃ = Lb+Q(a, a) in (0, T ),
(1.10)

where the states a(t), b(t) ∈ R
n ×R

p
, M is an n×n matrix, m is a �xed ve
tor in R

n
along whi
h the

s
alar 
ontrol a
ts, L is a p×p matrix and Q is a quadrati
 fun
tion from R
n×R

n
into R

p
. Moreover,

we assume that the pair (M,m) satis�es the 
lassi
al Kalman rank 
ondition (see [19, Theorem 1.16℄).

Hen
e, the state a is fully 
ontrollable. We 
onsider the small time null 
ontrollability problem for

system (1.10). We want to know, if, for any T > 0, for any initial state (a0, b0), there exists a 
ontrol
u : (0, T ) → R su
h that the solution to (1.10) satis�es a(T ) = 0 and b(T ) = 0. As proved in [11℄ for

the 
ase L = 0, the answer to this question is always no in �nite dimension, whateverM,m,L and Q.
System (1.10) is a parti
ular 
ase of the more general 
lass of 
ontrol a�ne systems. Indeed, if we

let x(t) = (a(t), b(t)) ∈ R
n+p

, we 
an write system (1.10) as:

ẋ = f0(x) + u(t)f1(x), (1.11)

where f0(x) = (Ma,Lb + Q(a, a)) and f1(x) = (m, 0). The 
ontrollability of systems like (1.11) is

deeply linked to the iterated Lie bra
kets of the ve
tor �elds f0 and f1 (see [19, Se
tion 3.2℄ for a

review).

Let us give a few examples with n = 3. We write a = (a1, a2, a3) and we 
onsider the system:

ȧ1 = a2, ȧ2 = a3, ȧ3 = u. (1.12)

Although the strong stru
ture of equation (1.12) 
an seem a little arti�
ial, it is in fa
t the general


ase. Indeed, up to a translation of the 
ontrol, 
ontrollable systems 
an always be brought ba
k
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to this 
anoni
al form introdu
ed by Brunovsky in [12℄ (for a proof, see [45, Theorem 2.2.7℄). The

resulting system is �at. We 
an express the full state as derivatives of a single s
alar fun
tion. Indeed,

if we let θ = a1, we have a2 = θ′, a3 = θ′′ and u = θ′′′. If we 
hoose an initial state (a0, b0) with
a0 = 0, we obtain θ(0) = θ′(0) = θ′′(0) = 0. Moreover, if we assume that the 
ontrol u drives the state

(a, b) to (0, 0) at time T , we also have θ(T ) = θ′(T ) = θ′′(T ) = 0. These 
onditions allow integration

by parts without boundary terms.

To keep the examples simple, we 
hoose p = 1 (hen
e b = b1 ∈ R) and we let L = 0.
First example. We 
onsider the evolution ḃ = a22 + a1a3. If the initial state is (a0, b0) where

a0 = 0, we 
an 
ompute b(T ) = b0 +
∫ T

0 θ′2(t) + θ(t)θ′′(t)dt = b0. Hen
e, null 
ontrollability does not

hold sin
e any 
ontrol driving a from 0 ba
k to 0 has no a
tion on b. This obstru
tion to 
ontrollability
is linked to the fa
t that dimL(0) = 3, where L is the Lie algebra generated by f0 and f1. The system
is lo
ally 
onstrained to evolve within a 3 dimensional manifold of R

4
. Indeed, the evolution equation


an be rephrased as ḃ = d
dt (a1a2). Thus, the quantity b− a1a2 is a 
onstant (
onservation law of the

system).

Se
ond example. We 
onsider the evolution ḃ = a23. Thus, b(T ) = b0 +
∫ T

0
θ′′(t)2dt. This is

also an obstru
tion to null 
ontrollability. Indeed, all 
hoi
es of 
ontrol will make b in
rease. In this

setting, we re
over the well known se
ond order Lie bra
ket 
ondition dis
overed by Sussmann (see [43,

Proposition 6.3℄). Indeed, here, [f1, [f1, f0]] = (0R3 , Q(m,m)) = (0R3 , 1). System (1.11) drifts in the

dire
tion [f1, [f1, f0]] and the 
ontrol 
annot prevent it be
ause this dire
tion does not belong to the

set of the �rst order 
ontrollable dire
tions (m, 0), (Mm, 0) and (M2m, 0) (Lie bra
kets of f0 and f1
involving f1 on
e and only on
e).

Third example. We 
onsider ḃ = a22. Thus, b(T ) = b0 +
∫ T

0 θ′2(t)dt. Again, b 
an only in-


rease. Here, the �rst bad Lie bra
ket [f1, [f1, f0]] vanishes for x = 0. However, we 
an 
he
k that

[f1, [f0, [f0, [f1, f0]]]] = (0R3 , Q(Mm,Mm)) = (0R3 , 1). Compared with the se
ond example, the in-


rease of b is weaker. Indeed, in the se
ond example, we had b(T ) = b0 + |u|2H−1(0,T ). In this third

example, b(T ) = b0 + |u|2H−2(0,T ).

Although these examples may seem 
ari
atural, they re�e
t the general 
ase. In �nite dimension,

systems like (1.10) are never small time 
ontrollable. Either be
ause they evolve within a stri
t

manifold, or be
ause some quantity depending on b in
reases. Moreover, the amount by whi
h b
in
reases is linked to the order of the �rst bad Lie bra
ket and 
an be expressed as a weak norm

depending on the 
ontrol. One of the goals of our work is thus also to investigate the situation in

in�nite dimension, where Lie bra
kets are harder to de�ne and 
ompute.

Therefore, the �rst natural question is to 
ompute the Lie bra
ket [f1, [f1, f0]](0) for systems (1.8)

and (1.9). As we have seen in �nite dimension, this Lie bra
ket is (0, Q(m,m)). In our setting, m is the

even fun
tion χ[0,1] and Q(a, a) = −aax. Thus Q(m,m) is null. This 
an be proved 
omputationally

using Fourier series expansions. Let us give a mu
h simpler argument inspired by the formal fa
t that

∂x1 = 0. For any a ∈ L2(0, 1) and any smooth test fun
tion φ su
h that φ(0) = φ(1) = 0, we have:

∫ 1

0

Q(a, a)φ =
1

2

∫ 1

0

a2(x)φx(x)dx. (1.13)

Hen
e, even if q := Q(1, 1) was de�ned in a very weak sense, (1.13) yields:

〈q, φ〉 = 1

2

∫ 1

0

φx =
1

2
φ(1)− 1

2
φ(0) = 0 (1.14)

Sin
e (1.14) is valid for any smooth φ null at the boundaries, we 
on
lude that indeed, q = Q(1, 1)
is null. Therefore, the 
lassi
al [f1, [f1, f0]] ne
essary 
ondition by Sussmann does not provide an

obstru
tion to small time 
ontrollability for our system. This also explains why the 
oer
ivity property

we are going to prove is in a weaker norm than H−1
.

1.6 Strategy for the proof

Most of this paper is dedi
ated to the asymptoti
 study of systems (1.8) and (1.9) as the vis
osity

ε tends to zero. In Se
tion 6, we prove that this study is su�
ient to 
on
lude about the lo
al null


ontrollability for system (1.1). In order to prove that system (1.1) is not small time lo
ally null
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ontrollable, we intend to exhibit a quantity depending on the state y(t, ·) that 
annot be 
ontrolled.
For ρ ∈ H1(0, 1), we will 
onsider quantities of the form 〈ρ, y(t, ·)〉.

Looking at system (1.9) when ε is very small, we get the idea to 
onsider ρ(x) = x − 1
2 . Indeed,

we obtain:

d

dt

∫ 1

0

ρ(x)b(t, x)dx =
1

2

∫ 1

0

a2(t, x)dx +
ε

2
(bx(t, 1)− bx(t, 0)) . (1.15)

Formally, if we let ε = 0 in equation (1.15), it is very en
ouraging be
ause it shows that the quantity

〈ρ, b〉 
an only in
rease, whatever is the 
hoi
e of the 
ontrol. Moreover, sin
e we 
an 
ompute the

amount by whi
h it in
reases, we have a kind of 
oer
ivity and we 
an hope to be able to use it

to overwhelm both residues 
oming from the fa
t that ε > 0 and residues between the quadrati


approximation and the full non-linear system. Sadly, the se
ond term in the right-hand side of

equation (1.15) is hard to handle. However, as a depends linearly on u, and b depends quadrati
ally
on a, we expe
t that we 
an �nd a kernel Kε(s1, s2) su
h that:

〈ρ, b(1, ·)〉 =
∫ 1

0

∫ 1

0

Kε(s1, s2)u(s1)u(s2)ds1ds2. (1.16)

Thanks to equation (1.15), we expe
t that (1.16) a
tually de�nes a positive de�nite kernel a
ting on

u, allowing us to use its 
oer
ivity to overwhelm various residues.

In Se
tion 2, we re
all a set of te
hni
al well-posedness estimates for heat and Burgers systems.

In Se
tion 3, we show that formula (1.16) holds and we give an expli
it 
onstru
tion of the ker-

nel Kε
. Moreover, we 
ompute formally its limit K0

as ε→ 0.
In Se
tion 4, we prove that the kernel K0

is 
oer
ive with respe
t to the H−5/4(0, 1) norm of the


ontrol u, by re
ognizing a Riesz potential and a fra
tional lapla
ian.

In Se
tion 5, we use weakly singular integral operator estimates to bound the residues between Kε

and K0
and thus dedu
e that Kε

is also 
oer
ive, for ε small enough.

In Se
tion 6, we use these results to go ba
k to the 
ontrollability of Burgers.

In Appendix A, we give a short presentation of the theory of weakly singular integral operators

and a sket
h of proof of the main estimation lemma we use.

2 Preliminary te
hni
al lemmas

In this se
tion, we re
all a few useful lemmas and estimates, mostly 
on
erning the heat equation and

Burgers equation on a line segment. Throughout this se
tion, ν is a positive vis
osity and T a positive

time. To lighten the 
omputations, we will use the notation . to denote inequalities that hold up to

a numeri
al 
onstant. We will not attempt to keep tra
k of these numeri
al 
onstants. We insist on

the fa
t that these 
onstants do not depend on any parameter (neither the time T , nor the vis
osity
ν, the 
ontrol u, or any other unknown).

2.1 Properties of the spa
e XT

We re
all the de�nition given in the introdu
tion and state without proof the following 
lassi
al lemmas

whi
h 
an be proved using either interpolation theory or Fourier transforms with respe
t to time and

spa
e.

De�nition 2. We de�ne the fun
tional spa
e:

XT = L2
(

(0, T ), H2(0, 1)
)

∩H1
(

(0, T ), L2(0, 1)
)

. (2.1)

We endow the spa
e XT with the s
aling invariant norm:

‖z‖XT
:= T−1/2 ‖z‖2 + T−1/2 ‖zxx‖2 + T 1/2 ‖zt‖2 . (2.2)

Lemma 1. XT →֒ C0([0, T ], H1(0, 1)). Moreover, for any fun
tion z ∈ XT ,

sup
t∈[0,T ]

|z(t, ·)|H1(0,1) . ‖z‖XT
. (2.3)

In parti
ular,

‖z‖∞ . ‖z‖XT
. (2.4)
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Lemma 2. For any z ∈ XT , the boundary tra
es of zx satisfy:

T−1/4 |zx(·, 0)|H1/4(0,T ) + T−1/4 |zx(·, 1)|H1/4(0,T ) . ‖z‖XT
. (2.5)

2.2 Smooth setting for the heat equation

We start by re
alling standard estimates in a smooth (strong) setting for one dimensional heat equa-

tions that will be useful in the sequel. We state all results for standard forward heat equations, but

the same results hold for ba
kwards heat equations with �nal time 
onditions.

Lemma 3. Let f ∈ L2((0, T )× (0, 1)) and z0 ∈ H1
0 (0, 1). We 
onsider the system:



















zt − νzxx = f in (0, T )× (0, 1),

z(t, 0) = 0 in (0, T ),

z(t, 1) = 0 in (0, T ),

z(0, x) = z0(x) in (0, 1).

(2.6)

There is a unique solution z ∈ XT to system (2.6). Moreover, it satis�es the estimate:

ν ‖zxx‖2 +
√
ν ‖zx‖2 + ‖zt‖2 . ‖f‖2 +

√
ν|z0x|2. (2.7)

Proof. The proof of the existen
e and uniqueness is standard. Let us re
all how we 
an obtain

estimate (2.7). We multiply equation (2.6) by zxx and integrate by parts over x ∈ (0, 1). Thus,

d

dt

[

1

2

∫ 1

0

z2x

]

+ ν

∫ 1

0

z2xx = −
∫ 1

0

fzxx. (2.8)

For any T ′ < T , we 
an integrate (2.8) over t ∈ (0, T ′). Hen
e, we obtain:

1

2
|zx(T ′)|22 + ν

∫ T ′

0

∫ 1

0

z2xx = −
∫ T ′

0

∫ 1

0

fzxx +
1

2

∣

∣z0x
∣

∣

2

2
. (2.9)

From (2.9), we easily dedu
e that:

ν ‖zxx‖2 . ‖f‖L2 +
√
ν|z0x|2, (2.10)

√
ν ‖zx‖L∞(L2) . ‖f‖L2 +

√
ν|z0x|2. (2.11)

Eventually, we obtain estimate (2.7) from estimates (2.10) and (2.11) sin
e we 
an write zt as f +
νzxx.

Lemma 4. Let z0 ∈ H1
0 (0, 1) and 
onsider z ∈ XT the solution to system (2.6) with a null for
ing

term (f = 0). It satis�es:
‖z‖∞ ≤

∣

∣z0
∣

∣

∞ . (2.12)

Proof. Although (2.12) is not a dire
t 
onsequen
e of the 
ombination of (2.4) and (2.7) (whi
h would

yield a weaker 
on
lusion), it 
an be obtained via a standard appli
ation of the maximum prin
iple,

whi
h 
an be applied in this strong setting.

2.3 Weaker settings for the heat equation

Let us move on to weaker settings for the heat equation. Moreover, we introdu
e inhomogeneous

boundary data as we will need them in the sequel.

De�nition 3. Let f ∈ (XT )
′
, v0, v1 ∈ H−1/4(0, T ) and z0 ∈ H−1(0, 1). We 
onsider:



















zt − νzxx = f in (0, T )× (0, 1),

z(t, 0) = v0(t) in (0, T ),

z(t, 1) = v1(t) in (0, T ),

z(0, x) = z0(x) in (0, 1).

(2.13)
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We say that z ∈ L2((0, T )× (0, 1)) is a weak solution to system (2.13) if, for all g ∈ L2((0, T )× (0, 1)),

〈z, g〉L2,L2 = 〈f, ϕ〉(XT )′,XT
+ 〈z0, ϕ(0, ·)〉H−1(0,1),H1

0
(0,1)

+ ν〈v0, ϕx(·, 0)〉H−1/4(0,T ),H1/4(0,T )

− ν〈v1, ϕx(·, 1)〉H−1/4(0,T ),H1/4(0,T ),

(2.14)

where ϕ ∈ XT is the solution to the dual system:



















ϕt + νϕxx = −g in (0, T )× (0, 1),

ϕ(t, 0) = 0 in (0, T ),

ϕ(t, 1) = 0 in (0, T ),

ϕ(T, x) = 0 in (0, 1).

(2.15)

Lemma 5. There exists a unique weak solution z ∈ L2((0, T )× (0, 1)) to system (2.13). Moreover:

‖z‖2 . T−1/2ν−1
(

‖f‖(XT )′ + |z0|H−1

)

+ T−1/4 (|v0|H−1/4 + |v1|H−1/4) . (2.16)

Proof. For any g ∈ L2((0, T )× (0, 1)), Lemma 3 asserts that system (2.15) admits a unique solution

ϕ ∈ XT su
h that ‖ϕ‖XT . T−1/2ν−1‖g‖L2
. Moreover, thanks to estimates (2.3) and (2.5), the

right-hand side of equation (2.14) de�nes a 
ontinuous linear form on L2
. The Riesz representation

theorem therefore proves the existen
e of a unique z ∈ L2
satisfying estimate (2.16).

Lemma 6. Let f ∈ L2((0, T )× (0, 1)). We 
onsider the following heat system:



















zt − νzxx = fx in (0, 1)× (0, 1),

z(t, 0) = 0 in (0, 1),

z(t, 1) = 0 in (0, 1),

z(0, x) = 0 in (0, 1).

(2.17)

There is a unique solution z ∈ L2((0, T )× (0, 1)) to system (2.17). Moreover, it satis�es the estimate:

ν1/2 ‖z‖L∞(L2) + ν ‖zx‖L2 . ‖f‖L2 . (2.18)

Proof. For f ∈ L2
, it is easy to 
he
k that fx ∈ X ′

T . Hen
e, we 
an apply Lemma 5 and system (2.17)

has a unique solution z ∈ L2
. In fa
t, this solution is even smoother. Estimate (2.18) is obtained as

usual by multiplying equation (2.17) by z and integration by parts.

2.4 Burgers and for
ed Burgers systems

We move on to Burgers-like systems. For the sake of 
ompleteness, we provide a short proof of the

existen
e of a solution to system (1.1) and a pre
ise estimate for for
ed Burgers-like systems that will

be ne
essary in the sequel.

Lemma 7. Let w ∈ XT , g ∈ L2((0, T ), H1(0, 1)) and y0 ∈ H1
0 (0, 1). We 
onsider y ∈ XT a solution

to the following for
ed Burgers-like system:



















yt − νyxx = −yyx + (wy)x + gx in (0, T )× (0, 1),

y(t, 0) = 0 in (0, T ),

y(t, 1) = 0 in (0, T ),

y(0, x) = y0(x) in (0, 1).

(2.19)

Then,

ν ‖yxx‖2 +
√
ν ‖yx‖2 + ‖yt‖2 . ‖gx‖2 + eγ ‖wx‖L2(L∞)

(

ν−1/2 ‖g‖2 +
∣

∣y0
∣

∣

2

2

)

+ (1 +
√
γeγ) ‖w‖∞

(

ν−1 ‖g‖2 + ν−1/2
∣

∣y0
∣

∣

2

2

)

+
(

1 +
√
γe6γ

)

eγ ‖g‖L2(L∞)

(

ν−3/2 ‖g‖2 + ν−1
∣

∣y0
∣

∣

2

)

+
(

1 +
√
γe6γ

)

ν−1/2
∣

∣y0
∣

∣

2

4
+ ν1/2

∣

∣y0x
∣

∣

2
.

(2.20)

where we introdu
e γ = 1
ν ‖w‖2L2(L∞).
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Proof. L2
estimates for y and yx. We start by multiplying equation (2.19) by y, and integrate by

parts over (0, 1):

1

2

d

dt

∫ 1

0

y2 + ν

∫ 1

0

y2x = −
∫ 1

0

wyyx −
∫ 1

0

gyx

≤ 2

2ν

∫ 1

0

w2y2 +
ν

4

∫ 1

0

y2x +
2

2ν

∫ 1

0

g2 +
ν

4

∫ 1

0

y2x.

(2.21)

From (2.21), we dedu
e:

d

dt

∫ 1

0

y2 + ν

∫ 1

0

y2x ≤ 2

ν
|w(t, ·)|2∞

∫ 1

0

y2 +
2

ν

∫ 1

0

g2. (2.22)

We apply Grönwall's lemma to (2.22) to obtain:

‖y‖2L∞(L2) ≤ e2γ
(

2

ν
‖g‖22 +

∣

∣y0
∣

∣

2

2

)

. (2.23)

Plugging (2.23) into (2.22) yields:

ν ‖yx‖22 ≤
(

1 + 2γe2γ
)

(

2

ν
‖g‖22 +

∣

∣y0
∣

∣

2

2

)

. (2.24)

L2
estimate for yyx. We repeat a similar te
hnique, multiplying this time equation (2.19) by y3.

Using the same approa
h yields:

d

dt

∫ 1

0

y4 + 6ν

∫ 1

0

y2y2x ≤ 12

ν
|w(t, ·)|2∞

∫ 1

0

y4 +
12

ν
|g(t, ·)|2∞

∫ 1

0

y2. (2.25)

We apply Grönwall's lemma to (2.25) to obtain:

‖y‖4L∞(L4) ≤ e12γ
(

12

ν
‖g‖2L2(L∞) ‖y‖

2
L∞(L2) +

∣

∣y0
∣

∣

4

4

)

. (2.26)

On
e again, plugging ba
k estimate (2.26) into (2.25) gives:

6ν ‖yyx‖22 ≤
(

1 + 12γe12γ
)

(

12

ν
‖g‖2L2(L∞) ‖y‖

2
L∞(L2) +

∣

∣y0
∣

∣

4

4

)

. (2.27)

Con
lusion. To 
on
lude the proof, we use Lemma 3, with a sour
e term f = gx+wxy+wyx − yyx.
Estimate (2.20) 
omes from the 
ombination of (2.7) with equations (2.23), (2.24) and (2.27).

Lemma 8. For any initial data y0 ∈ H1
0 (0, 1) and any 
ontrol u ∈ L2(0, T ), system (1.1) has a unique

solution y ∈ XT . Moreover:

‖yxx‖2 + ‖yt‖2 . |u|2 + |u|22 + |y0|24 + |y0x|2, (2.28)

‖y‖∞ ≤ |y0|∞ + |u|L1 . (2.29)

Proof. This type of existen
e result relies on standard a priori estimates and the use of a �xed point

theorem. Su
h te
hniques are des
ribed in [34℄. One 
an also use a semi-group method as in [38℄. The

quantitative estimate is obtained by applying Lemma 7 with w = 0 (hen
e γ = 0) and g(t, x) = xu(t).
Equation (2.20) yields (2.28). The se
ond estimate (2.29) is a 
onsequen
e of the maximum prin
iple,

whi
h 
an be applied in this strong setting.

3 From Burgers to a kernel integral operator

3.1 A general method for evaluating a proje
tion

As we mentionned in the introdu
tion, we are going to 
onsider a proje
tion of the state b against some

given pro�le ρ(x) at the �nal time t = 1. Sin
e a depends linearly on u and b depends quadrati
ally
on a, it is natural to look for this proje
tion as a quadrati
 integral operator a
ting on our 
ontrol u.
Indeed, let us prove the following result.
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Lemma 9. Let ρ ∈ L2(0, 1) and ε > 0. There exists a symmetri
 kernel Kε ∈ L∞((0, 1)2) su
h that,

for any u ∈ L2(0, 1), the solution to system (1.8)-(1.9) satis�es:

∫ 1

0

b(1, x)ρ(x)dx =

∫∫

(0,1)2
Kε(s1, s2)u(s1)u(s2)ds1ds2. (3.1)

The key point of the proof is to 
onvert the pointwise in time proje
tion of b into an integrated

proje
tion over the time interval (0, 1). Indeed, we start with the proof of the following lemma.

Lemma 10. Let f ∈ L2((0, 1)2), ε > 0 and z ∈ X1 be the solution to:



















zt − εzxx = f in (0, 1)× (0, 1),

z(t, 0) = 0 in (0, 1),

z(t, 1) = 0 in (0, 1),

z(0, x) = 0 in (0, 1).

(3.2)

Take ρ ∈ L2(0, 1). The �nal time proje
tion of z against ρ satis�es:

∫ 1

0

z(1, x)ρ(x)dx =

∫∫

(0,1)2
Φ(1 − t, x)f(t, x)dxdt, (3.3)

where Φ ∈ X1 is the solution to:



















Φt − εΦxx = 0 in (0, 1)× (0, 1),

Φ(t, 0) = 0 in (0, 1),

Φ(t, 1) = 0 in (0, 1),

Φ(0, x) = ρ(x) in (0, 1).

(3.4)

Proof. Let us introdu
e Ψ ∈ X1, the solution to:



















Ψt − εΨxx = ρ in (0, 1)× (0, 1),

Ψ(t, 0) = 0 in (0, 1),

Ψ(t, 1) = 0 in (0, 1),

Ψ(0, x) = 0 in (0, 1).

(3.5)

Using this system, we 
an 
onvert the time pun
tual proje
tion of the state z against ρ into a proje
tion
of the sour
e term f onto the full square:

∫ 1

0

z(1, x)ρ(x)dx =
d

dT

∫ T

0

∫ 1

0

z(t, x) · ρ(x)dxdt
∣

∣

∣

∣

∣

T=1

=
d

dT

∫ T

0

∫ 1

0

z(t, x) · {Ψt − εΨxx}(T − t, x)dxdt

∣

∣

∣

∣

∣

T=1

=
d

dT

∫ T

0

∫ 1

0

{zt − εzxx}(t, x) ·Ψ(T − t, x)dxdt

∣

∣

∣

∣

∣

T=1

=
d

dT

∫ T

0

∫ 1

0

f(t, x) ·Ψ(T − t, x)dxdt

∣

∣

∣

∣

∣

T=1

=

∫ 1

0

∫ 1

0

f(t, x)Ψt(1− t, x)dxdt.

(3.6)

The integrations by parts performed above are valid be
ause of the null boundary and initial 
onditions


hosen in systems (3.2) and (3.5). Equation (3.3) is a dire
t 
onsequen
e of (3.6) sin
e Ψt = Φ.

Let us 
ome ba
k to the proof of Lemma 9. We apply Lemma 10 to the state b. Thus, from (1.9)

and (3.3) we dedu
e that:

∫ 1

0

b(1, x)ρ(x)dx =

∫ 1

0

∫ 1

0

Φ(1− t, x)[−aax](t, x)dxdt

=
1

2

∫ 1

0

∫ 1

0

Φx(1− t, x)a2(t, x)dxdt.

(3.7)
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In order to express our proje
tion dire
tly using u, we need to eliminate a from (3.7). This 
an easily

be done using an elementary solution of the heat system. Therefore, we introdu
e G the solution to:



















Gt − εGxx = 0 in (0, 1)× (0, 1),

G(t, 0) = 0 in (0, 1),

G(t, 1) = 0 in (0, 1),

G(0, x) = 1 in (0, 1).

(3.8)

Using the initial 
ondition a(t = 0, ·) ≡ 0 from system (1.8), we 
an expand a as:

a(t, x) =

∫ t

0

G(t− s, x)u(s)ds. (3.9)

Pluging (3.9) into (3.7) yields:

∫ 1

0

b(1, x)ρ(x)dx =
1

2

∫ 1

0

∫ 1

0

Φx(1− t)

(∫ t

0

G(t− s1)u(s1)ds1

)(∫ t

0

G(t− s2)u(s2)ds2

)

dt

=
1

2

∫ 1

0

∫ 1

0

u(s1)u(s2)

(∫ 1

s1∨s2

∫ 1

0

Φx(1− t)G(t− s1)G(t− s2)dt

)

ds1ds2.

(3.10)

Finally, equation (3.10) proves (3.1) with:

Kε(s1, s2) =
1

2

∫ 1

s1∨s2

∫ 1

0

Φx(1− t, x)G(t − s1, x)G(t − s2, x)dxdt. (3.11)

Thus, we have proved Lemma 9 and we have a very pre
ise des
ription of the kernel that is involved.

This kernel depends on the proje
tion pro�le ρ(x) by means of Φ de�ned in (3.4). This kernel

also strongly depends on the vis
osity ε whi
h is involded in the 
omputation of both Φ and of the

elementary solution G.
Moreover, it is 
lear that K is a symmetri
 kernel and sin
e all terms are bounded thanks to the

maximum prin
iple, we know that K ∈ L∞
. In fa
t, K is even smoother as we will see later on.

3.2 Choi
e of a pro�le ρ

As we have seen in the introdu
tion, a natural 
hoi
e in the low vis
osity setting would be ρ(x) = x− 1
2 .

We think that our proof 
ould be adapted to work with this pro�le. However, the 
omputations are

tough be
ause it does not satisfy null boundary 
onditions. Thus, we are going to make a 
hoi
e whi
h

is more intrinsi
 to the Burgers system.

For any �xed 
ontrol value ū ∈ R, we want to 
ompute the asso
iated steady state (ā(x), b̄(x)) of
systems (1.8) and (1.9). Thus, we solve the following system:

{

−εāxx = ū in (0, 1),

−εb̄xx = −āāx in (0, 1),
(3.12)

with boundary 
onditions ā(0) = ā(1) = b̄(0) = b̄(1) = 0. Integrating (3.12) with respe
t to x yields

the following family of steady states:

ā(x) =
1

2ε
x(1 − x)ū and b̄(x) =

1

8ε3

(

x5

5
− x4

2
+
x3

3
− x

30

)

ū2. (3.13)

Of 
ourse, b̄ depends quadrati
ally on ū. Thus equation (3.13) gives the idea of 
onsidering:

ρ(x) =
x5

5
− x4

2
+
x3

3
− x

30
. (3.14)

This 
hoi
e of ρ may seem strange be
ause is has been obtained using an in�nite vis
osity limit.

However, sin
e both ρ and ρxx satisfy null boundary 
onditions, the 
omputations of the di�erent

kernel residues turn out to be easier. In the sequel, we assume that ρ is de�ned by (3.14).
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3.3 Rough 
omputation of the asymptoti
 kernel

In this paragraph, we apply Lemma 9 to 
ompute the kernel asso
iated to the 
hoi
e of ρ given

in (3.14). More spe
i�
ally, we are interested in 
omputing a rough approximation of Kε
when ε→ 0.

This approximation will serve as a motivation for the following se
tions where we will need to estimate

all the residues that will be leaving aside for the moment. Sin
e formula (3.11) de�ning Kε
involves

both Φ and G, we need to 
hoose approximations of these quantities as ε→ 0. Looking at system (3.4)

de�ning Φ, we 
hoose to use:

Φx(t, x) ≈ ρx(x). (3.15)

Moreover, for G de�ned by (3.8), we will use the approximation G ≈ 1 inside (0, 1). Stopping here

would not yield anything useful. Indeed, sin
e

∫ 1

0 ρx = ρ(1) − ρ(0) = 0, we would obtain Kε = 0.
Hen
e, we need to 
hoose an approximation of G that is more a

urate near the boundary, eg:

G(t, x) ≈ erf

(

x√
4εt

)

, (3.16)

whi
h we will use near x = 0. Note that equation (3.16) 
orresponds to the solution of a heat equation

on the real line with an initial data equal to −1 for x < 0 and +1 for x > 0. Thus, it satis�es the

boundary 
ondition G(t, 0) ≡ 0 and serves as a boundary layer 
orre
tion. We 
ompute the integrand

inside equation (3.11):

Aε(t, s1, s2) :=
1

2

∫ 1

0

Φx(1− t, x)G(t − s1, x)G(t− s2, x)dx

=
1

2

∫ 1

0

Φx(1− t, x) (G(t− s1, x)G(t − s2, x)− 1) dx sin
e

∫

Φx = 0

=

∫ 1
2

0

Φx(1− t, x) (G(t− s1, x)G(t− s2, x)− 1) dx by parity,

≈
∫ 1

2

0

ρx(x)

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx using (3.15), (3.16),

≈ 2
√
ε

∫ 1

4
√

ε

0

ρx
(

2
√
εx
)

(

erf

(

x
√

(t− s1)

)

erf

(

x
√

(t− s2)

)

− 1

)

dx

∼ −2
√
ερx(0)

∫ +∞

0

(

1− erf

(

x
√

(t− s1)

)

erf

(

x
√

(t− s2)

))

dx.

(3.17)

To 
arry on with the 
omputation, we need the following integral 
al
ulus lemma.

Lemma 11. Let α, β > 0. Then,

∫ +∞

0

(1− erf(αx)erf(βx)) dx =
1

αβ

√

α2 + β2

π
. (3.18)

Proof. We 
an �nd an expli
it primitive for the integrand. Indeed, for any X > 0,

∫ X

0

(1− erf(αx)erf(βx)) dx =X (1− erf(αX)erf(βX))

− erf(αX) exp(−β2X2)

β
√
π

− erf(βX) exp(−α2X2)

α
√
π

+

√

α2 + β2

αβ
√
π

erf
(

√

α2 + β2X
)

.

(3.19)

Equation (3.19) 
an be 
he
ked by di�erentiation. Taking its limit as X → +∞ yields (3.18).

We return to the 
omputation of the asymptoti
 kernel as ε → 0. We note that ρx(0) = − 1
30 .
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Combined with (3.11), (3.17) and Lemma 11, we obtain:

Kε(s1, s2) =

∫ 1

s1∨s2

Aε(t, s1, s2)dt

≈
√
ε

15
√
π

∫ 1

s1∨s2

√

(t− s1) + (t− s2)dt

≈
√
ε

45
√
π
·
[

(2t− s1 − s2)
3
2

]1

s1∨s2

≈
√
ε

45
√
π
K0(s1, s2),

(3.20)

where we introdu
e the asymptoti
 kernel:

K0(s1, s2) = (2− s1 − s2)
3/2 − |s1 − s2|3/2 . (3.21)

At this stage, equation (3.20) is not rigorous. The meaning of the ≈ sign has to be made pre
ise.

This is the goal of Se
tion 5 where we prove that this asymptoti
 formula does make sense. Indeed,

we estimate the kernel residues between Kε
and

√
εK0

. They turn out to be both small (with respe
t

to ε) and smooth (with respe
t to the spa
es on whi
h they de�ne 
ontinuous quadrati
 forms).

4 Coer
ivity of the asymptoti
 kernel

In this se
tion, our goal is to prove the 
oer
ivity of the kernel K0(x, y). This is a symmetri
 real-

valued kernel de�ned on (0, 1) × (0, 1). Note that, sin
e no 
onfusion is possible, we will use (x, y)
instead of (s1, s2) for the variables of the kernel to lighten notations of this se
tion. We will prove the

following theorem.

Lemma 12. The integral operator asso
iated to K0
is 
oer
ive in the spa
e H−5/4(0, 1). There exists

γ > 0 su
h that, for any f ∈ L2(0, 1), the following inequality holds:

∫ 1

0

∫ 1

0

K0(x, y)f(x)f(y)dxdy ≥ γ ‖F‖2H−1/4(0,1) , (4.1)

where F is the primitive of f su
h that F (0) = 0.

Thanks to the 
hange of variables (x, y) 7→ (1 − x, 1− y), the kernel K0
behaves exa
tly like:

N(x, y) = (x+ y)3/2 − |x− y|3/2 . (4.2)

In this se
tion, we will thus study the properties of N whose expression is easier to handle.

4.1 The kernel N is positive de�nite

This se
tion uses results and notions from [9℄. We will say that a matrix A is positive semide�nite

(psd) when 〈Ax|x〉 ≥ 0 for any x ∈ R
m
. We will say that A is positive de�nite if the inequality is

stri
t for any x 6= 0. We will say that A is 
onditionnaly negative semide�nite (
nsd) when 〈Ax|x〉 ≤ 0
for any x su
h that

∑

xi = 0. We will use similar de�nitions for operators.

Lemma 13. For any f ∈ L2(0, 1),

∫ 1

0

∫ 1

0

N(x, y)f(x)f(y)dxdy ≥ 0. (4.3)

Proof. All ne
essary arguments 
an be found in [9, Chapter 3℄. Indeed, the kernel −(x+y)3/2 is 
nsd.
as is proved in [9, Corollary 2.11℄. Moreover, the kernel |x − y|3/2 is also 
nsd. (see [9, Remark 1.10℄

and [9, Corollary 2.10℄). Hen
e, letting:

ψ(x, y) = − (x+ y)
3/2

+ |x− y|3/2 (4.4)

de�nes a 
nsd. kernel. Thus, sin
e:

N(x, y) = ψ(x, 0) + ψ(y, 0)− ψ(x, y)− ψ(0, 0), (4.5)

this kernel is psd. thanks to [9, Lemma 2.1℄. This proves inequality (4.3).
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Even though it is true that the kernels involved in the proof of Lemma 13 are stri
lty negative (or

positive), we 
annot adapt the proof to prove that N is de�nite. Indeed, Mer
er's theorem (whi
h

allows us to take the step from matri
es to 
ontinuous kernels) doesn't preserve stri
t inequalities.

Thus, we have to look for another proof.

4.2 Some insight and fa
ts

Our main insight is that the kernel N is made up of two parts. The most singular one should explain

its behavior. Indeed, kernels whi
h 
an be expressed as a fun
tion r (|x− y|) have been extensively

studied. For example, [46℄ and [40℄ prove asymptoti
 formulas for the eigenvalues of the − |x− y|3/2
part of our kernel:

λn ∼ 3
√
2

4π2

(

1

n

)
5
2

. (4.6)

Moreover, some papers have also studied the eigenve
tors of su
h kernels. For example, in [37℄, one


an �nd asymptoti
 developments for eigenve
tors of kernels of the form |x− y|−α
, where α ∈ (0, 1).

Combining the insight that the eigenve
tors of N should asymptoti
ally behave like os
illating

sinuses and formula (4.6), we expe
t that it should be possible to prove Lemma 12 by means of su
h

an asymptoti
 study. However, we have not been able to prove it using this method. Instead, we give

below a proof based on Riesz potentials.

4.3 Highlighting the singular part of N

The kernel N(x, y) is rather smooth. In order to prove its 
oer
ivity, we will need to isolate it's most

singular part. In the following lemma, we use integration by parts twi
e to show that studying the

behavior of N is equivalent to studying a more singular kernel. By 
hoosing adequatly the primitive,

we show that we 
an also 
an
el boundary terms.

Lemma 14. Let f ∈ L2(0, 1) and F be the primitive of f su
h that F (1) = 0. Then:

(Nf, f) =
3

4

∫ 1

0

∫ 1

0

(

(x+ y)
− 1

2 + |x− y|−
1
2

)

F (x)F (y)dxdy. (4.7)

Proof. Let f ∈ L2(0, 1) and F be the primitive of f su
h that F (1) = 0. We start with:

−
∫ 1

0

∫ 1

0

|x− y|
3
2 f(x)f(y)dxdy

= −
∫ 1

0

f(x)

{∫ x

0

(x− y)
3
2 f(y)dy +

∫ 1

x

(y − x)
3
2 f(y)dy

}

dx

= F (0)

∫ 1

0

x
3
2 f(x)dx +

3

2

∫ 1

0

∫ 1

0

|x− y|
1
2 sg(y − x)f(x)F (y)dxdy

= F (0)

∫ 1

0

x
3
2 f(x)dx +

3

2

∫ 1

0

F (y)

{∫ y

0

(y − x)
1
2 f(x)dx −

∫ 1

y

(x− y)
1
2 f(x)dx

}

dy

= F (0)

∫ 1

0

(

x
3
2 f(x)− 3

2
x

1
2F (x)

)

dx+
3

4

∫ 1

0

∫ 1

0

|x− y|−
1
2 F (x)F (y)dxdy.

(4.8)

We 
ontinue with the other half of the kernel N(x, y):

∫ 1

0

∫ 1

0

(x+ y)
3
2 f(x)f(y)dxdy

= −F (0)
∫ 1

0

x
3
2 f(x)dx− 3

2

∫ 1

0

∫ 1

0

(x+ y)
1
2 f(x)F (y)dxdy

= F (0)

∫ 1

0

(

3

2
x

1
2F (x)− x

3
2 f(x)

)

dx+
3

4

∫ 1

0

∫ 1

0

(x+ y)−
1
2F (x)F (y)dxdy.

(4.9)

Summing the two previous equalities proves Lemma 14.
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4.4 Riesz potential and fra
tional lapla
ian

In this se
tion, we fo
us on the most singular part of the kernel. We re
ognize a Riesz potential of

order

1
2 . Using the fra
tional lapla
ian, we 
an 
ompute the quantity as a usual norm.

Lemma 15. There exists C > 0 su
h that, for any h ∈ L2(0, 1),

∫ 1

0

∫ 1

0

|x− y|−
1
2 h(x)h(y)dxdy ≥ C ‖h‖2H−1/4(0,1) . (4.10)

Proof.

∫ 1

0

∫ 1

0

|x− y|−
1
2 h(x)h(y)dxdy =

∫

R

∫

R

|x− y|−
1
2 h(x)h(y)dxdy

=
(

(−∆)−1/4 h, h
)

=
(

(−∆)
−1/8

h, (−∆)
−1/8

h
)

=
∥

∥

∥(−∆)
−1/8

h
∥

∥

∥

2

L2

= ‖h‖2Ḣ−1/4

≥ ‖h‖2H−1/4

(4.11)

More information on su
h te
hniques 
an be found in [42℄ or posterior works.

4.5 Positivity of the smooth part

To 
on
lude the proof of Lemma 12, we show that the smooth part of our kernel is of positive type.

We 
ould also rely on smoothness arguments to prove that its behavior doesn't modify the asymptoti


behavior of eigenve
tors and eigenvalues of the singular part.

Lemma 16. For any h ∈ L2(0, 1),

∫ 1

0

∫ 1

0

(x+ y)
− 1

2 h(x)h(y)dxdy ≥ 0. (4.12)

Proof. We use de�nitions and theorems found in [9, Chapter 3℄. Thanks to [9, result 1.9, page 69℄,

the kernel given on (0, 1)2 by (x, y) 7→ x + y is 
onditionnaly negative semide�nite (
nsd). Hen
e,

using [9, 
orollary 2.10, page 78℄, the kernel given by (x, y) 7→ √
x+ y is also 
nsd. Eventually, [9,

exer
ise 2.21, page 80℄ proves that the kernel (x, y) 7→ 1/
√
x+ y is positive semide�nite. This means

that, for any n > 0 and any c1, . . . cn ∈ R and any x1, . . . xn ∈ (0, 1),

n
∑

i=1

n
∑

j=1

cicj√
xi + xj

≥ 0. (4.13)

Using Mer
er's theorem (see [36℄), we dedu
e that, for any h ∈ L2(0, 1),

∫ 1

0

∫ 1

0

(x+ y)
− 1

2 h(x)h(y)dxdy ≥ 0. (4.14)

4.6 Con
lusion of the proof

Now we 
an prove Lemma 12. Indeed, 
ombining Lemmas 14, 15 and 16 proves that there exists

C > 0 su
h that, for any f ∈ L2(0, 1),

(Nf, f) ≥ C ‖F‖2H−1/4(0,1) , (4.15)

where F is the primitive of f su
h that F (1) = 0. Thanks to the 
hange of variables already men-

tionned, the same property holds true for K0 with the symmetri
al 
ondition F (0) = 0.
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5 Exa
t 
omputation of the kernel and estimation of residues

In this se
tion, we give a detailed and rigorous expansion of the main kernelKε
. Our goal is to be able

to estimate with pre
ision the size and the smoothness of all the residues that build up the di�eren
e

between the asymptoti
 kernel

√
εK0

and the true kernel. As above, we write:

Kε(s1, s2) =

∫ 1

s1∨s2

A(t, s1, s2)dt, where (5.1)

A(t, s1, s2) =

∫ 1
2

0

Φx(1 − t, x)G(t− s1, x)G(t − s2, x)dx. (5.2)

In equations (5.1) and (5.2), it is impli
it that A, Φx and G depend on ε. Moreover, in equation (5.2),

we use the fa
t that G and Φx are even to write the integral over x ∈
(

0, 12
)

. This breaks the symmetry

but will allow us to use a one-sided expansion of G, thereby fo
using on its behavior near x = 0.

5.1 Smoothness of weakly singular integral operators

We know that the asymptoti
 kernel K0
is 
oer
ive with respe
t to the H−5/4

norm of the 
ontrol u.
Thus, in order for the full kernel to remain 
oer
ive for ε > 0, we need to prove that the residues 
an

be bounded with the same norm. In this paragraph, we give 
onditions on a kernel residue L that are

easy to 
he
k and imply that:

∀u ∈ L2(0, 1), |〈Lu, u〉| . ‖U‖2H−1/4(0,1) , (5.3)

where U is the primitive of u su
h that U(0) = 0. In the following paragraphs, we will 
he
k that

these 
onditions are satis�ed by our residues. We start with the following lemma, whi
h allows us to

express 〈Lu, u〉 dire
tly as a fun
tion of U .

Lemma 17. Let Γ be the triangular domain {(x, y) ∈ (0, 1)× (0, 1), s.t. x ≤ y}. Let L ∈ W 2,1(Γ).
We see L as the restri
tion to Γ of a symmetri
 kernel on (0, 1)× (0, 1) that is smooth on ea
h triangle

but not ne
essarly a

ross the �rst diagonal. Assume that L(·, 1) ≡ 0. Let u ∈ L2(0, 1) and U be the

primitive of u su
h that U(0) = 0. Then:

∫

Γ

L(x, y)u(x)u(y)dxdy =

∫

Γ

∂12L(x, y)U(x)U(y)dxdy +
1

2

∫ 1

0

(∂1L− ∂2L) (x, x)U
2(x)dx. (5.4)

In equation (5.4), it is worth to be noted that ∂1L and ∂2L are evaluated on the �rst diagonal and

must thus be 
omputed using points within Γ.

Proof. We use integration by parts and the boundary 
onditions U(0) = 0 and L(·, 1) = 0.

∫

Γ

L(x, y)u(x)u(y)dxdy =

∫ 1

0

u(x)

∫ 1

x

L(x, y)u(y)dydx

=

∫ 1

0

u(x)

(

[L(x, y)U(y)]1x −
∫ 1

x

∂2L(x, y)U(y)dy

)

dx

= −
∫ 1

0

L(x, x)U(x)u(x)dx −
∫ 1

0

U(y)

∫ y

0

∂2L(x, y)u(x)dx

=

∫ 1

0

d

dx
{L(x, x)} · U

2

2
(x)dx

−
∫ 1

0

U(y)

(

[U(x)∂2L(x, y)]
y
0 −

∫ y

0

∂12L(x, y)U(x)dx

)

dy

=

∫

Γ

∂12L(x, y)U(x)U(y)dxdy +
1

2

∫ 1

0

(∂1L− ∂2L) (x, x)U
2(x)dx.

(5.5)

Equation 
hain (5.5) 
on
ludes the proof of equation (5.4).

Equation (5.4) in
ludes a boundary term evaluated on the diagonal, whi
h looks like the L2
norm

of U . This would forbid us to prove any estimate like (5.3). However, all our kernel residues satisfy

the 
ondition ∂1L − ∂2L = 0 along the diagonal and this term thus vanishes. Hen
e, our task is to


he
k that the new kernel ∂12L generates a bounded quadrati
 form on H−1/4(0, 1).
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Lemma 18. Let L be a 
ontinuous fun
tion de�ned on Ω = {(x, y) ∈ (0, 1)× (0, 1), s.t. x 6= y}.
Assume that there exists κ > 0 and

1
2 < δ ≤ 1, su
h that, on Ω:

|L(x, y)| ≤ κ|x− y|− 1
2 , (5.6)

|L(x, y)− L(x′, y)| ≤ κ|x− x′|δ|x− y|− 1
2
−δ, for |x− x′| ≤ 1

2
|x− y|, (5.7)

|L(x, y)− L(x, y′)| ≤ κ|y − y′|δ|x− y|− 1
2
−δ, for |y − y′| ≤ 1

2
|x− y|. (5.8)

Then L de�nes a 
ontinuous quadra
ti
 form on H−1/4(0, 1). Moreover, there exists a 
onstant C(δ)
depending only on δ (and not on L) su
h that, for any U ∈ L2(0, 1):

|〈LU,U〉| ≤ C(δ)κ|U |2H−1/4(0,1). (5.9)

This te
hni
al lemma is very important for our proof be
ause it gives a quantitative estimate,

through κ, of the a
tion of kernels against 
ontrols. This Lemma 
an be dedu
ed from the works of

Torres [44℄ and Youss� [47℄. We give a proof skeleton in Appendix A. The starting point is to prove

that a kernel satisfying estimates (5.6), (5.7) and (5.8) de�nes a weakly singular integral operator,

whi
h is 
ontinuous from H−1/4
to H+1/4

. Indeed, su
h kernels are smoother then standard Cálderon-

Zygmund operators and it is reasonable to expe
t that they exhibit some smoothing properties.

We end this se
tion with two useful formulas. Let a : (0, 1)3 → R be a fun
tion su
h that

a(t, s1, s2) = a(t, s2, s1). We 
onsider the kernel generated by a:

L(s1, s2) =

∫ 1

s1∨s2

a(t, s1, s2)dt. (5.10)

Lemma 17 
an be applied to su
h kernels be
ause they satisfy the 
ondition L(·, 1) ≡ 0. We 
ompute:

∂1L(s, s)− ∂2L(s, s) = a(s, s, s), for s ∈ (0, 1), (5.11)

∂12L(s1, s2) = −∂s1a(s2, s1, s2) +
∫ T

s2

∂s1∂s2a(t, s1, s2)dt, for s1 < s2. (5.12)

Formulas (5.11) and (5.12) will be used extensively in the following se
tions. Moreover, as soon as

a(s, s, s) ≡ 0, we see that the boundary term ∂1L− ∂2L vanishes.

5.2 Asymptoti
 expansion of Kε

In this se
tion, we make our rough expansions more pre
ise. Therefore we de
ompose G and Φ using

the same �rst order terms as for the heuristi
, but this time we introdu
e and 
ompute the residues.

5.2.1 Expansion of G as ε→ 0

Re
all that we only need to approximate G for x ∈ (0, 1/2). Keeping our approximation introdu
ed

in (3.16), we expand G as:

G(t, x) = erf

(

x√
4εt

)

+H(t, x), (5.13)

where H ∈ C∞((0, 1)× (0, 1/2)) is the solution to:



















Ht − εHxx = 0 in (0, 1)× (0, 1/2),

H(t, 0) = 0 in (0, 1),

Hx(t, 1/2) = σ(εt) in (0, 1),

H(0, x) = 0 in (0, 1/2),

(5.14)

where the sour
e term σ 
omes from the boundary 
ondition Gx(t, 1/2) = 0 and balan
es out the

tra
e of the erf() part:

σ(s) = − ∂

∂x

[

erf

(

x√
4s

)]∣

∣

∣

∣

x= 1
2

= − 1√
sπ

exp

(

− 1

16s

)

. (5.15)
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Lemma 19. Let 0 < γ < 1
16 . There exists C(γ) > 0 su
h that:

‖Ht‖∞ + ‖Htx‖∞ + ‖Htt‖∞ + ‖Httx‖∞ ≤ C(γ)e−γ/ε. (5.16)

Proof. This lemma is due to the exponentially de
aying fa
tor within the sour
e term σ de�ned

by (5.15), whi
h allows as many di�erentiations with respe
t to x or t as needed to be done. Esti-

mate (5.16) 
ould in fa
t be derived for further derivatives. Let us give a sket
h of proof.

First, note that H(3) := Httt is the solution to a similar system as (5.14) with the boundary


ondition H
(3)
x (t, 1/2) = ε3σ(3)(εt). We 
an 
onvert this boundary 
ondition into a sour
e term by

writing H(3)(t, x) = xε3σ(3)(εt) + H̃(3)
, where H̃(3)

is now the solution to a heat equation with

homogeneous mixed boundary 
onditions and a sour
e term −xε4σ(4)(εt). Applying the maximum

prin
iple yields an estimate of the form ‖H̃(3)‖∞ ≤ C(γ)e−γ/ε
. Sin
e εHttxx = H(3)

, we obtain

an L∞
estimate of the same form for Httxx. By integration with respe
t to time and spa
e, we

obtain (5.16).

5.2.2 Expansion of Φ as ε→ 0

Guided by our rough 
omputations, we de
ompose Φ ∈ X1, the solution to (3.4) as:

Φ(t, x) = ρ(x) + εφ(t, x). (5.17)

Thus, we introdu
e the partial di�erential equation satis�ed by φ ∈ X1:



















φt − εφxx = ρxx in (0, 1)× (0, 1),

φ(t, 0) = 0 in (0, 1),

φ(t, 1) = 0 in (0, 1),

φ(0, x) = 0 in (0, 1).

(5.18)

Lemma 20. The following estimates hold:

‖Φx‖∞ . 1, (5.19)

‖φx‖∞ . 1, (5.20)

‖Φtx‖∞ = ‖εφtx‖∞ . ε. (5.21)

Proof. Estimates (5.19), (5.20) and (5.21) 
an be proved using a Fourier series de
omposition for

heat equations. As an example, let us prove (5.21). We introdu
e the basis en(x) =
√
2 sin(nπx).

Sin
e φt is the solution to a heat equation with initial data ρxx ∈ H1
0 , we have:

φt(t, x) =

+∞
∑

n=1

e−εn2π2t〈ρxx, en〉en(x). (5.22)

Thanks to the 
hoi
e of ρ in (3.14), we have ρxx(0) = ρxx(1) = 0. Thus,

〈ρxx, en〉 = − 1

n2π2
〈ρxxxx, en〉 =

12
√
2

n3π3
((−1)n − 1) = O

(

1

n3

)

. (5.23)

Combining equations (5.22) and (5.23) yields:

‖φtx‖∞ ≤
+∞
∑

n=1

nπ|〈ρxx, en〉| .
+∞
∑

n=1

1

n2
. (5.24)

Equation (5.24) 
on
ludes the proof of (5.21). A similar method 
an be applied to prove (5.19)

and (5.20).
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5.2.3 Five stages expansion of the full kernel

Using expansions (5.13) and (5.17), and the fa
t that

∫

Φx = 0, we break down the generator

A(t, s1, s2) into 6 smaller kernel generators, A1 through A6, de�ned by:

A1(t, s1, s2) =

∫ 1
2

0

ρx(0)

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx, (5.25)

A2(t, s1, s2) =

∫ 1
2

0

(ρx(x) − ρx(0))

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx, (5.26)

A3(t, s1, s2) =

∫ 1
2

0

εφx(1− t, x)

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx, (5.27)

A4(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s1, x)erf

(

x
√

4ε(t− s2)

)

dx, (5.28)

A5(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s2, x) · erf
(

x
√

4ε(t− s1)

)

dx, (5.29)

A6(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s1, x)H(t − s2, x)dx. (5.30)

It 
an be 
he
ked that A de�ned in (5.2) is indeed equal to the sum of A1 through A6. For ea
h

1 ≤ i ≤ 6, we 
onsider the asso
iated kernel generated by Ai:

Ki(t, s1, s2) =

∫ T

s1∨s2

Ai(t, s1, s2)dt. (5.31)

A �rst remark is that, for ea
h 1 ≤ i ≤ 6, Ai(s, s, s) ≡ 0 on (0, 1). Thus, equation (5.11) tells us that

there will be no boundary term involving |u|H−1
.

5.2.4 Proof methodology

The six following paragraphs are dedi
ated to estimates for K1 through K6. In order to organize the


omputations that will be 
arried out for ea
h of these six kernels, we introdu
e the notations:

Ti(s1, s2) =
∂Ai

∂s1
(t, s1, s2)|t=s2 , (5.32)

Qi(t, s1, s2) =
∂2Ai

∂s1∂s2
(t, s1, s2), (5.33)

Ri(s1, s2) =

∫ 1

s2

Qi(t, s1, s2)dt. (5.34)

Using formula (5.12), ∂12Ki = Ri − Ti. Therefore, thanks to Lemma 18 and Lemma 17, we need to

prove that ea
h Ti and ea
h Ri satis�es the 
onditions (5.6), (5.7) and (5.8). For a kernel L, we will
denote κ(L) the asso
iated 
onstant in Lemma 18. In the following paragraphs, we investigate the

behavior of κ(∂12Ki) with respe
t to ε. We end this paragraph with a useful estimation lemma.

Lemma 21. For any k > 0 there exists ck > 0 su
h that, for any λ > 0, for any ε > 0,

∫ +∞

0

xk exp

(

− x2

4ελ

)

dx ≤ ck (ελ)
k+1

2 . (5.35)

Proof. Use a 
hange of variables introdu
ing x̃ = x/
√
4ελ.

In the following paragraphs, similarly as we use the . sign, we will use the ≈ sign to denote

equalities that hold up to a numeri
al 
onstant (independent on all variables) of whi
h we will not

keep tra
k.
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5.3 Handling the K1 kernel

The kernel K1 
ontains the main 
oer
ive part of Kε
dis
overed in Se
tion 3. Starting from its

de�nition in (5.25), we de
ompose it using a s
aling on x:

A1(t, s1, s2) = ρx(0)

∫ 1
2

0

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx

=

√
ε

15

∫ 1

4
√

ε

0

(

1− erf
x√
α
erf

x√
β

)

dx

=

√
ε

15

∫ +∞

0

(

1− erf
x√
α
erf

x√
β

)

dx−
√
ε

15

∫ +∞

1

4
√

ε

(

1− erf
x√
α
erf

x√
β

)

dx.

(5.36)

The �rst integral gives rise to the main 
oer
ive part of the kernel and has already been 
omputed

exa
tly in Se
tion 3. The se
ond part is a residue and has to be taken 
are of. Let us name it Ã1:

Ã1(t, s1, s2) = −
√
ε

15

∫ +∞

1

4
√

ε

(

erf

(

x√
α

)

erf

(

x√
β

)

− 1

)

dx. (5.37)

Therefore, equation (5.36) yields:

K1(s1, s2) =

√
ε

45
√
π
K0(s1, s2) + K̃1(s1, s2). (5.38)

Lemma 22. There exist c > 0 and γ > 0 su
h that, for any ε > 0,

κ(∂12K̃1) ≤ c · exp
(

−γ
ε

)

, (5.39)

where κ(∂12K̃1) is the 
onstant asso
iated to the weakly singular integral operator K̃1 in Lemma 18.

Proof. Re
alling notations (5.32), (5.33) and (5.34), we 
ompute:

T̃1(s1, s2) =
(

∂s1Ã1

)

|t=s2 ≈ ε1/2∆−3/2

∫ +∞

1

4
√

ε

x exp

(

−x
2

∆

)

dx, (5.40)

Q̃1(t, s1, s2) = ∂s1∂s2Ã1(t, s1, s2) ≈ ε1/2(αβ)−3/2

∫ +∞

1

4
√

ε

x2 exp

(

−x2
(

1

α
+

1

β

))

dx, (5.41)

R̃1(s1, s2) =

∫ 1

s2

Q̃1(t, s1, s2) ≈ ε1/2
∫ 1

s2

(αβ)−3/2

∫ +∞

1

4
√

ε

x2 exp

(

−x2
(

1

α
+

1

β

))

dxdt, (5.42)

where we introdu
e ∆ = s2 − s1, that will also be used in the sequel. We 
laim that both T̃1 and

R̃1 are C∞
kernels on (0, 1) × (0, 1). Moreover, all their derivatives are bounded by e−γ/ε

for any

γ < 1/16, thanks to the exponential terms in (5.40) and (5.42). We omit the detailed 
omputations

in order to fo
us on the tougher kernels.

5.4 Handling the K2 kernel

Using the de�nition of ρ given in (3.14), we rewrite A2 de�ned in (5.26) as:

A2(t, s1, s2) =

∫ 1
2

0

(ρx(x)− ρx(0)) erf

(

x√
4εα

)

erf

(

x√
4εβ

)

dx

=

∫ 1
2

0

x2(x− 1)2erf

(

x√
4εα

)

erf

(

x√
4εβ

)

dx.

(5.43)

First part. Remembering that erf(+∞) = 1, we 
onsider the �rst order derivative:

T2(s1, s2) = (∂s1A2)|t=s2 ≈ ε−1/2∆−3/2

∫ 1
2

0

x3(x− 1)2 exp

(

− x2

4ε∆

)

dx. (5.44)

20



Using Lemma 21 and di�erentiating gives:

|T2(s1, s2)| . ε3/2∆1/2,

|∂s1T2(s1, s2)| . ε3/2∆−1/2,

|∂s2T2(s1, s2)| . ε3/2∆−1/2.

(5.45)

Estimates (5.45) prove that κ(T2) . ε3/2. In fa
t, T2 is a smoother than the weakly singular integral

operators studied in Lemma 18, sin
e su
h operators allow degenera
y like ∆−1/2
along the diagonal.

Moreover, we proved that T2 is Lips
hitz 
ontinuous, whereas Lemma 18 only requires Cp
with p > 1

2 .

Se
ond part. Now we 
onsider the se
ond order derivative. Let us 
ompute:

Q2(t, s1, s2) = ∂s1∂s2A2(t, s1, s2) ≈ ε−1 (αβ)−3/2
∫ 1

2

0

x4(x− 1)2 exp

(

−x
2

4ε

(

1

α
+

1

β

))

dx. (5.46)

Thanks to Lemma 21, we estimate the size of Q2:

|Q2(t, s1, s2)| . ε3/2 (αβ)
−3/2

(

1

α
+

1

β

)−5/2

=
ε3/2αβ

(α+ β)
5/2

. (5.47)

Writing α = ∆+ τ and β = τ , we 
an estimate:

|R2(s1, s2)| =
∣

∣

∣

∣

∫ 1

s2

Q2(t, s1, s2)dt

∣

∣

∣

∣

. ε3/2
∫ 1

0

τ(∆ + τ)

(∆ + 2τ)5/2
dτ . ε3/2∆−1/2. (5.48)

We should now move on to 
omputing ∂s1R2 and ∂s2R2, to establish the missing estimates on R2.

However, the 
omputations asso
iated to R2 are very similar to the ones that we 
arry out for R3.

Sin
e R3 is a little harder, we skip the proof for R2 and refer the reader to the proof of R3, whi
h is

fully detailed in the next paragraph. Therefore, we 
laim that:

κ(∂12K2) . ε3/2. (5.49)

5.5 Handling the K3 kernel

In this se
tion, we 
onsider:

A3(t, s1, s2) = ε

∫ 1
2

0

φx(1− t, x)

(

erf

(

x
√

4ε(t− s1)

)

erf

(

x
√

4ε(t− s2)

)

− 1

)

dx. (5.27)

First part. Remembering that erf(+∞) = 1, we 
onsider the �rst order derivative:

T3(s1, s2) := (∂s1A3)|t=s2 ≈ ε1/2∆−3/2

∫ 1
2

0

φx(1− s2, x) · x exp
(

− x2

4ε∆

)

dx. (5.50)

Thanks to Lemma 20 and Lemma 21, we have:

|T3(s1, s2)| . ε1/2∆−3/2 ‖φx‖∞ ·
∫ 1

2

0

x exp

(

− x2

4ε∆

)

dx . ε3/2∆−1/2. (5.51)

Moreover,

|∂s1T3(s1, s2)| . ε1/2∆−5/2 ‖φx‖∞ ·
∫ 1

2

0

x exp

(

− x2

4ε∆

)

dx

+ ε1/2∆−3/2 ‖φx‖∞ ·
∫ 1

2

0

x3

4ε∆2
exp

(

− x2

4ε∆

)

dx

. ε3/2∆−3/2.

(5.52)

and

|∂s2T3(s1, s2)| . ε1/2∆−3/2 ‖φxt‖∞ ·
∫ 1

2

0

x exp

(

− x2

4ε∆

)

dx

+ ε1/2∆−5/2 ‖φx‖∞ ·
∫ 1

2

0

x exp

(

− x2

4ε∆

)

dx

+ ε1/2∆−3/2 ‖φx‖∞ ·
∫ 1

2

0

x3

4ε∆2
exp

(

− x2

4ε∆

)

dx

. ε3/2∆−3/2.

(5.53)

21



Putting together estimates (5.51), (5.52) and (5.53) proves that κ(T3) . ε3/2.
Se
ond part. Let us move on to the se
ond order derivative part. We 
ompute:

Q3(t, s1, s2) = ∂s1∂s2A3 ≈ (αβ)−3/2

∫ 1
2

0

x2φx(1 − t, x) exp

(

−x
2

4ε

(

1

α
+

1

β

))

dx. (5.54)

Combining Lemma 21 and Lemma 20 yields:

|Q3(t, s1, s2)| .
ε3/2

(α+ β)3/2
. (5.55)

Writing α = ∆+ τ and β = τ , we 
an estimate:

|R3(s1, s2)| =
∣

∣

∣

∣

∫ 1

s2

Q3(t, s1, s2)dt

∣

∣

∣

∣

.

∫ 1

0

(

ε

∆+ 2τ

)3/2

dτ . ε3/2∆−1/2. (5.56)

Now we will prove similar estimates for the �rst order derivatives of R3. Di�erentiating equation (5.54)

with respe
t to s1 (or similarly α) yields:

∂s1Q3(t, s1, s2) ≈− 3

2
α−5/2β−3/2

∫ 1
2

0

x2φx(1 − t, x) exp

(

−x
2

4ε

(

1

α
+

1

β

))

dx

+ (αβ)−3/2 1

α2

∫ 1
2

0

x4

4ε
φx(1− t, x) exp

(

−x
2

4ε

(

1

α
+

1

β

))

dx.

(5.57)

Combining Lemma 21 and Lemma 20 gives:

|∂s1Q3(t, s1, s2)| . α−5/2β−3/2 ε3/2
(

1
α + 1

β

)3/2
+ α−7/2β−3/2 ε3/2

(

1
α + 1

β

)5/2
. ε3/2α−5/2. (5.58)

Integration with respe
t to t yields an estimate of ∂s1R3:

|∂s1R3(s1, s2)| .
∫ 1

s2

|∂s1Q3(t, s1, s2)| dt . ε3/2
∫ 1

s2

dt

α5/2
. ε3/2∆−3/2. (5.59)

From this, we dedu
e that:

|R3(s1, s2)−R3(s̃1, s2)| . ε3/2∆−3/2 |s1 − s̃1| . (5.60)

Eventually, we �nish with the smoothness of R3 with respe
t to s2. We 
ompute the di�eren
e for

s1 < s2 < s̃2 with s̃2 − s2 ≤ 1
2 (s2 − s1):

|R3(s1, s2)−R3(s1, s̃2)| =
∣

∣

∣

∣

∫ 1

s2

Q3(t, s1, s2)dt−
∫ 1

s̃2

Q3(t, s1, s̃2)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ s̃2

s2

Q3(t, s1, s2)dt−
∫ 1

s̃2

(Q3(t, s1, s̃2)−Q3(t, s1, s2)) dt

∣

∣

∣

∣

∣

≤
∫ s̃2

s2

ε3/2

∆3/2
dt+

∣

∣

∣

∣

∣

∫ 1

s̃2

∫ s̃2

s2

∂s2Q3(t, s1, s)dsdt

∣

∣

∣

∣

∣

≤ ε3/2

∆3/2
|s2 − s̃2|+

∫ s̃2

s2

∫ 1

s̃2

|∂s2Q3(t, s1, s)| dtds.

(5.61)

The �rst term is already in the 
orre
t form. We need to work on the se
ond term. Pro
eeding as

above, di�erentiating equation (5.54) with respe
t to s2 (or similarly β), then 
ombining Lemma 21

and Lemma 20 gives:

|∂s2Q3(t, s1, s)| . ε3/2
1

t− s

1

(t− s+ t− s1)
3/2

. (5.62)
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We 
ompute:

∫ s̃2

s2

∫ 1

s̃2

|∂s2Q3(t, s1, s)| dtds ≤ ε3/2
∫ s̃2

s2

∫ 1

s̃2

1

t− s

1

(t− s1)3/2
dtds

≤ ε3/2∆−3/2

∫ s̃2

s2

∫ 1

s̃2

dt

t− s
ds

≤ ε3/2∆−3/2

∫ s̃2

s2

|ln (s̃2 − s)| ds

≤ ε3/2∆−3/2 |s2 − s̃2| (1 + ln |s2 − s̃2|) .

(5.63)

This last estimate does not give Lips
hitz smoothness, but it does provide Cp
smoothness for any

p < 1, whi
h is enough. Together, estimates (5.56), (5.60) and (5.63) prove that κ(R3) . ε3/2.

5.6 Handling the K4 kernel

In this se
tion, we 
onsider:

A4(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s1, x)erf

(

x
√

4ε(t− s2)

)

dx. (5.28)

First part. We 
onsider the �rst order derivative:

T4(s1, s2) = (∂s1A4)|t=s2

=

∫ 1
2

0

Φx(1− s2, x)Ht(s2 − s1, x)dx,
(5.64)

where we used the fa
t that erf(+∞) = 1. The following estimates are straight forward:

|T2(s1, s2)| ≤ ‖Φx‖∞ ‖Ht‖∞ , (5.65)

|T2(s1, s2)− T2(s̃1, s2)| ≤ |s1 − s̃1| · ‖Φx‖∞ ‖Htt‖∞ , (5.66)

|T2(s1, s2)− T2(s1, s̃2)| ≤ |s2 − s̃2| · ‖Φx‖∞ ‖Htt‖∞ (5.67)

+ |s2 − s̃2| · ‖Φtx‖∞ ‖Ht‖∞ . (5.68)

Se
ond part. We move on to the se
ond order derivative part. We 
ompute:

Q4(t, s1, s2) = ∂s1∂s2A4(t, s1, s2) ≈ ε−1/2β−3/2

∫ 1
2

0

xΦx(1− t, x)Ht(α, x) exp

(

− x2

4εβ

)

dx. (5.69)

Sin
e Ht(t, 0) ≡ 0, |Ht(t, x)| ≤ x ‖Htx‖∞. Using Lemma 21, we obtain:

|Q4(t, s1, s2)| . ε−1/2β−3/2 ‖Htx‖∞ ‖Φx‖∞
∫ 1

2

0

x2 exp

(

− x2

4εβ

)

dx

. ε ‖Htx‖∞ ‖Φx‖∞ .

(5.70)

By integration over t ∈ (s2, 1), we obtain:

|R4(s1, s2)| . ε ‖Htx‖∞ ‖Φx‖∞ . (5.71)

Now we establish the smoothness of Q4 with respe
t to s1. Di�erentiating equation (5.69) with respe
t
to s1 (or α), and applying the same te
hniques yields the estimate:

|∂s1Q4(t, s1, s2)| . ε ‖Httx‖∞ ‖Φx‖∞ . (5.72)

This proves that:

|R4(s1, s2)−R4(s̃1, s2)| . ε ‖Httx‖∞ ‖Φx‖∞ · |s1 − s̃1|. (5.73)

Finally, we 
onsider the smoothness of Q4 with respe
t to s2. We know that:

|R4(s1, s2)−R4(s1, s̃2)| ≤
∫ s̃2

s2

|Q4(t, s1, s2)| dt+
∫ s̃2

s2

∫ 1

s̃2

|∂s2Q4(t, s1, s)| dtds. (5.74)
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This �rst part obviously gives rise to a Lips
hitz estimate. As for the se
ond part, we 
ompute ∂s2Q4

by di�erentiating (5.69) with respe
t to β. We obtain

∂s2Q4(t, s1, s)(t, s1, s) ≈− 3

2
ε−1/2β−5/2

∫ 1
2

0

xΦx(t, x)Ht(α, x) exp

(

− x2

4εβ

)

dx

+ ε−1/2β−3/2 1

4εβ2

∫ 1
2

0

x3Φx(t, x)Ht(α, x) exp

(

− x2

4εβ

)

dx.

(5.75)

Similar estimates yield:

|∂s2Q4(t, s1, s)| . ε ‖Htx‖∞ ‖Φx‖∞ · 1

t− s
. (5.76)

Therefore:

∫ s̃2

s2

∫ 1

s̃2

|∂s2Q4(t, s1, s)| dtds . ε ‖Htx‖∞ ‖Φx‖∞ ·
∫ s̃2

s2

∫ 1

s̃2

dtds

t− s

. ε ‖Htx‖∞ ‖Φx‖∞ ·
∫ s̃2

s2

|ln(s̃2 − s)| ds

. ε ‖Htx‖∞ ‖Φx‖∞ · |s̃2 − s2| (1 + ln |s̃2 − s2|) .

(5.77)

Therefore, for any �xed p < 1, we have:

|R4(s1, s2)−R4(s1, s̃2)| . ε ‖Htx‖∞ ‖Φx‖∞ · |s̃2 − s2|p . (5.78)

Thanks to Lemma 19 and Lemma 20, this proves that, for any γ < 1
16 ,

κ(∂12K4) . exp
(

−γ
ε

)

. (5.79)

5.7 Handling the K5 kernel

Re
all that A5 was de�ned by:

A5(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s2, x)erf

(

x
√

4ε(t− s1)

)

dx. (5.29)

First part. The �rst order derivative T5 is null. Indeed,

T5(s1, s2) = (∂s1A5)|t=s2

=
1

2
√
πε

∫ 1
2

0

Φx(1− s2, x)H(0, x) · x

(s2 − s1)
3
2

exp

(

− x2

4ε(s2 − s1)

)

dx = 0.
(5.80)

Se
ond part. We 
onsider the se
ond order derivative:

Q5(t, s1, s2) = ∂s2∂s1A5(t, s1, s2) ≈ ε−1/2α−3/2

∫ 1
2

0

xΦx(t, x)Ht(β, x) exp

(

− x2

4εα

)

dx. (5.81)

Sin
e Ht(t, 0) ≡ 0, |Ht(t, x)| ≤ x ‖Htx‖∞. Using Lemma 21, we obtain:

|Q5(t, s1, s2)| . ε−1/2α−3/2 ‖Htx‖∞ ‖Φx‖∞
∫ 1

2

0

x2 exp

(

− x2

4εα

)

dx

. ε ‖Htx‖∞ ‖Φx‖∞ .

(5.82)

By integration over t ∈ (s2, 1), we obtain:

|R5(s1, s2)| . ε ‖Htx‖∞ ‖Φx‖∞ . (5.83)

Di�erentiating (5.81) with respe
t to α and pro
eeding likewise yields:

|∂s1Q5(t, s1, s2)| . ε ‖Htx‖∞ ‖Φx‖∞ · 1
α
. (5.84)
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Thus,

|R5(s1, s2)−R5(s̃1, s2)| . ε ‖Htx‖∞ ‖Φx‖∞ ·∆−1 |s̃1 − s1| . (5.85)

Di�erentiation with respe
t to β is even easier and gives:

|∂s2Q5(t, s1, s2)| . ε ‖Httx‖∞ ‖Φx‖∞ , (5.86)

from whi
h we easily 
on
lude that R5 is Lips
hitz with respe
t to s2.
Thanks to Lemma 19 and Lemma 20, this proves that, for any γ < 1

16 ,

κ(∂12K5) . exp
(

−γ
ε

)

. (5.87)

5.8 Handling the K6 kernel

Re
all that A6 was de�ned by:

A6(t, s1, s2) =

∫ 1
2

0

Φx(1− t, x)H(t− s1, x)H(t− s2, x)dx. (5.30)

First part. The �rst order derivative T6 is null. Indeed:

T6(s1, s2) = (∂s1A6)|t=s2 =

∫ 1
2

0

Φx(0, x)Ht(s2 − s1, x)H(0, x)dx = 0. (5.88)

Se
ond part. We 
onsider the se
ond order derivative:

Q6(t, s1, s2) = ∂s2∂s1A6(t, s1, s2) =

∫ 1
2

0

Φx(1− s2, x)Ht(t− s1, x)Ht(t− s2, x)dx. (5.89)

For any t ∈ (0, 1), we estimate:

|Q6(t, s1, s2)| ≤ ‖Φx‖∞ ‖Ht‖2∞ ,

|Q6(t, s1, s2)−Q6(t, s̃1, s2)| ≤ |s1 − s̃1| · ‖Φx‖∞ ‖Htt‖∞ ‖Ht‖∞ ,

|Q6(t, s1, s2)−Q6(t, s1, s̃2)| ≤ |s2 − s̃2| · ‖Φx‖∞ ‖Ht‖∞ ‖Htt‖∞
+ |s2 − s̃2| · ‖Φtx‖∞ ‖Ht‖2∞ .

(5.90)

Hen
e, we 
an extend these estimates to:

R6(s1, s2) =

∫ 1

s2

Q6(t, s1, s2)dt (5.91)

The only non immediate extension is:

|R6(s1, s2)−R6(s1, s̃2)| ≤
∫ 1

s2

|Q6(t, s1, s2)−Q6(t, s1, s̃2)| dt+
∫ s̃2

s2

|Q6(t, s1, s̃2)| dt

≤ |s2 − s̃2| (‖Φx‖∞ ‖Ht‖∞ ‖Htt‖∞
+ ‖Φtx‖∞ ‖Ht‖2∞ + ‖Φx‖∞ ‖Ht‖2∞

)

(5.92)

Thanks to Lemma 19 and Lemma 20, this proves that, for any γ < 1
16 ,

κ(∂12K6) . exp
(

−γ
ε

)

. (5.93)

5.9 Con
lusion of the expansion of Kε

Lemma 23. There exists ε1 > 0 and k1 > 0 su
h that, for any 0 < ε ≤ ε1 and any u ∈ L2(0, 1),

〈Kεu, u〉 ≥ k1
√
ε|U |2H−1/4 . (5.94)

Proof. Thanks to the previous paragraphs, we have shown that Kε =
√
ε

45
√
π
K0 + R, where R =

K̃1 +K2 +K3 +K4 +K5 +K6 is su
h that κ(∂12R) . ε3/2. From Lemma 18, we dedu
e that there

exists C0 su
h that, for any u ∈ L2(0, 1), |〈Ru, u〉| ≤ C0ε
3/2|U |2

H−1/4 . Moreover, thanks to Lemma 12,

there exists c0 su
h that 〈K0u, u〉 ≥ c0|U |2
H−1/4 . Hen
e, for any k1 < c0/(45

√
π), equation (5.94)

holds for ε small enough.

Equation (5.94) gives a very weak 
oer
ivity, both be
ause the norm involved is a very weak H−5/4

norm on the 
ontrol u, and be
ause the 
oer
ivity 
onstant k1
√
ε de
ays when ε → 0. However, this

is enough to over
ome the remaining higher order residues, as we prove in the following se
tion.

25



6 Ba
k to the full Burgers non-linear system

In the �rst part of this work, we studied a se
ond order approximation of our initial Burgers' system.

Thanks to the 
areful study of an integral kernel, we proved that the proje
tion 〈ρ, b〉 of the state is

oer
ive with respe
t to the 
ontrol u, for a given norm. Now, we want to prove that the same fa
t

holds true for the full non-linear system, ie. for the proje
tion 〈ρ, y〉. In order to do this, we need to

provide estimates showing that the proje
tions of the higher order terms in the expansion of the state

are smaller than the 
oer
ive quantity obtained above. Therefore, we need to prove estimates of a, b
and the higher order residues involving the weak |u|H−5/4 norm.

6.1 Preliminary estimates on a and b

6.1.1 Estimating the �rst order term a

In order to 
ompute a (de�ned by system (1.8)), a natural idea is to introdu
e U the primitive of u su
h
that U(0) = 0. Negle
ting the impa
t of the boundary Diri
hlet 
onditions gives the approximation

a(t, x) ≈ U(t). To make this exa
t, we introdu
e ã whi
h is the solution to:



















ãt − εãxx = 0 in (0, 1)× (0, 1),

ã(t, 0) = −U(t) in (0, 1),

ã(t, 1) = −U(t) in (0, 1),

ã(0, x) = 0 in (0, 1).

(6.1)

Hen
e, a(t, x) = U(t) + ã(t, x), without any approximation. This de
omposition is useful be
ause we

write a as the sum of a term whi
h does not depend on x (thus, ax = ãx) and a term whose size is


ontrolled by the desired quantity |U |H−1/4 . Indeed,

Lemma 24. The following estimates hold:

‖ã‖2 . |U |H−1/4 , (6.2)

‖a‖∞ + ‖ã‖∞ . |u|2 , (6.3)

ε ‖ax‖L2(L∞) . |u|2. (6.4)

Proof. The �rst inequality (6.2) is a dire
t appli
ation of estimate (2.16) from Lemma 5.

The se
ond inequality is a 
onsequen
e of the maximum prin
iple. Indeed, thanks to equation (6.1),

‖ã‖∞ is smaller than |U |∞. Sin
e a = U + ã, ‖a‖∞ is smaller than 2 |U |∞. Estimate (6.3) follows

be
ause |U |∞ ≤ |u|2.
The third inequality stems from Lemma 3. Sin
e a is even, ax(·, 1/2) ≡ 0. Thus:

‖ax‖2L2(L∞) =

∫ 1

0

(

sup
x∈(0,1)

|ax(t, x)|
)2

dt

=

∫ 1

0

(

sup
x∈(0,1)

∣

∣

∣

∣

∣

∫ x

1
2

axx(t, x
′)dx′

∣

∣

∣

∣

∣

)2

dt

≤
∫ 1

0

∫ 1

0

a2xx(t, x
′)dx′dt.

(6.5)

Combined with (2.7), this proves (6.4).

6.1.2 Estimating the se
ond order term b

Lemma 25. The following estimate holds:

ε1/2 ‖b‖L∞(L2) + ε ‖bx‖L2 . |u|L2 · |U |H−1/4 , (6.6)

ε3/2 ‖b‖∞ . |u|22 , (6.7)

ε3/2 ‖bx‖L2(L∞) . |u|22 . (6.8)
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Proof. For the �rst inequality, we want to apply Lemma 6. Hen
e, we want to write the sour
e

term in equation (1.9) as a spatial derivative. Writing −aax = −∂x(a2/2) would not lead to the

required estimates. In order for the weak H−1/4
norm to appear, we need to introdu
e ã. Indeed,

using the de
omposition a(t, x) = U(t) + ã(t, x), we 
an write:

− aax = −aãx = − d

dx

[

aã− 1

2
ã2
]

. (6.9)

The term under the derivative 
an easily be estimated in L2
:

∥

∥

∥

∥

aã− 1

2
ã2
∥

∥

∥

∥

L2

≤ ‖ã‖L2 · (‖a‖∞ + ‖ã‖∞) . |u|L2 · |U |H−1/4 , (6.10)

where the last inequality 
omes from Lemma 24. Thus, we 
an apply Lemma 6 to prove (6.6).

For the se
ond and third inequalities, thanks to Lemma 3, ‖ax‖2 . ε−1/2|u|2. Moreover,

thanks to Lemma 24, ‖a‖∞ . |u|2. Thus, ‖aax‖2 . ε−1/2|u|22. We 
an apply Lemma 3 to show that

‖b‖X1
. ε−3/2 |u|22. Inequality (6.7) follows from the inje
tion X1 →֒ L∞

(see (2.4) from Lemma 1).

Moreover, sin
e

∫ 1

0
bx(t, x)dx = b(t, 1) − b(t, 0) = 0 for any t ∈ (0, 1), the mean value of bx(t, ·) is

0. Thus, |bx(t, ·)|∞ ≤ |bxx(t, ·)|2. Hen
e, ‖bx‖L2(L∞) ≤ ‖bxx‖2. This proves estimate (6.8).

6.2 Non-linear residue

Let us expand y as a+ b+ r, where a stands for the �rst order linear approximation, b stands for the
se
ond quadrati
 order and r is a (small) residue. Therefore, r is the solution to:



























rt − εrxx = −rrx − [(a+ b)r]x −
[

ab+
1

2
b2
]

x

in (0, 1)× (0, 1),

r(t, 0) = 0 in (0, 1),

r(t, 1) = 0 in (0, 1),

r(0, x) = 0 in (0, 1).

(6.11)

Lemma 26. System (6.11) admits a unique solution r ∈ X1. Moreover, under the assumption:

|u|2 ≤ ε3/2, (6.12)

the following estimate holds:

‖r‖2 + ‖rt‖2 . ε−3/2 |u|22 |U |H−1/4 (6.13)

Proof. The existen
e of r ∈ X1 
an be dedu
ed dire
tly from the equality r = y − a − b. To prove

the estimate, we will use Lemma 7 with a null initial data, w = −(a + b) and g = −ab − 1
2b

2
. To

apply estimate (2.20), we start by 
omputing the norms of w and g that we need. We start with

w = −(a+ b). Combining (6.3), (6.7) and (6.12) gives:

‖w‖∞ ≤ ‖a‖∞ + ‖b‖∞ . |u|2 + ε−3/2 |u|22 . |u|2 . (6.14)

In parti
ular, (6.14) and (6.12) yield:

γ =
1

ε
‖w‖2L2(L∞) ≤

1

ε
‖w‖2∞ ≤ 1

ε
|u|22 . 1. (6.15)

Finally, 
ombining (6.4) and (6.8):

‖wx‖L2(L∞) ≤ ‖ax‖L2(L∞) + ‖bx‖L2(L∞) . ε−1 |u|2 + ε−3/2 |u|22 . ε−1 |u|2 . (6.16)

We move on to g = −ab− 1
2b

2
. Combining (6.3), (6.6), (6.7) and (6.12) gives:

‖g‖2 ≤ (‖a‖∞ + ‖b‖∞) ‖b‖2
≤
(

|u|2 + ε−3/2 |u|22
)

ε−1/2 |u|2 |U |H−1/4

≤ ε−1/2 |u|22 |U |H−1/4 .

(6.17)
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Combining (6.3), (6.6), (6.7) and (6.12), we obtain:

‖g‖L2(L∞) ≤ (‖a‖∞ + ‖b‖∞) · ‖b‖L2(L∞)

≤ (‖a‖∞ + ‖b‖∞) · ‖bx‖2
. ε−1 |u|22 |U |H−1/4 .

(6.18)

Lastly, mixing (6.3), (6.4), (6.6), (6.7) and (6.12) gives:

‖gx‖2 ≤ ‖ax‖L2(L∞) ‖b‖L∞(L2) + ‖a‖∞ ‖bx‖2 + ‖b‖∞ ‖bx‖2
. ε−3/2 |u|22 |U |H−1/4 + ε−1 |u|22 |U |H−1/4 + ε−5/2 |u|32 |U |H−1/4

. ε−3/2 |u|22 |U |H−1/4 .

(6.19)

Eventually, plugging estimates (6.14)-(6.19) into the main estimation (2.20), yields:

‖rt‖2 . ε−3/2 |u|22 |U |H−1/4 . (6.20)

From (6.20) and the initial 
ondition r(0, ·) = 0, we 
on
lude (6.13).

Lemma 27. Under the assumption (6.12), we have:

|〈ρ, r(1, ·)〉| . ε−3/2 |u|22 |U |2H−1/4 . (6.21)

Proof. This lemma is not a dire
t 
onsequen
e of Lemma 26. Indeed, estimate (6.13) only involves

|U |H−1/4 with an exponent of 1. To obtain estimate (6.21), we need to work a little more. Using

Lemma 10 and equation (6.11), we 
an 
ompute:

〈ρ, r(1, ·)〉 =
∫ 1

0

∫ 1

0

Φx

[

ab+
1

2
b2 + (a+ b)r +

1

2
r2
]

=

∫ 1

0

∫ 1

0

Φx(1− t, x)U(t)r(t, x)dxdt +

∫ 1

0

∫ 1

0

Φx

[

1

2
b2 + (ã+ b)r +

1

2
r2
]

.

(6.22)

We used the fa
t that a = U + ã and the fa
t that Φxab is an odd fun
tion, whose spa
e integral is

thus null. The se
ond term is easy to estimate, be
ause we know how to estimate ã, b and r in L2

using |U |H−1/4 . Thus, we know it will be smaller than |U |2
H−1/4 . The �rst term needs more 
are.

∫ 1

0

U(t)

∫ 1

0

Φx(1− t, x)r(t, x)dxdt = 〈U, v〉H−1,H1
0
, (6.23)

where we introdu
e v(t) =
∫ 1

0
Φx(t, x)r(t, x)dx for t ∈ (0, 1). Sin
e Φ(0, ·) ≡ 0 and r(0, ·) ≡ 0,

v(0) = v(1) = 0. Now we 
ompute its H1
0 norm:

∫ 1

0

vt(t)
2dt =

∫ 1

0

(∫ 1

0

Φtx(1− t, x)r(t, x) + Φx(1− t, x)rt(t, x)dx

)2

dt

≤ 2

∫ 1

0

∫ 1

0

Φ2
txr

2 +Φ2
xr

2
t

≤ 2
(

‖Φtx‖2∞ ‖r‖22 + ‖Φx‖2∞ ‖rt‖22
)

. ε2 ‖r‖22 + ‖rt‖22

. ‖rt‖22 ,

(6.24)

where we used estimates (5.19) and (5.21) to estimate Φ. Let us �nish the proof.

|〈ρ, r(1, ·)〉| ≤
∣

∣

∣〈U, v〉H−1,H1
0

∣

∣

∣+

∣

∣

∣

∣

∫ 1

0

∫ 1

0

Φx

(

1

2
b2 + (ã+ b)r +

1

2
r2
)∣

∣

∣

∣

using (6.22) and (6.23),

. |U |H−1 ‖rt‖2 + ‖Φx‖∞
(

‖b‖22 + ‖ã‖2 ‖r‖2 + ‖r‖22
)

using (6.24).

(6.25)

From (5.19), we know that ‖Φx‖∞ . 1. Moreover, |U |H−1 . |U |H−1/4 . Thanks to (6.2), (6.6), (6.13)

and (6.12), we 
on
lude from (6.25) that |〈ρ, r(1, ·)〉| . ε−3/2 |u|22 |U |2H−1/4 . This 
on
ludes the proof

of Lemma 27.
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6.3 A �rst drifting result 
on
erning rea
hability from zero

The null rea
hability problem 
onsists in 
omputing the set of states that 
an be rea
hed in time T ,
starting from y(0, x) ≡ 0 using a 
ontrol u. Of 
ourse, when dealing with vis
ous equations like (1.1),

one may only hope to rea
h su�
iently smooth states. Theorem 2 tells us that, if the time T is too

small, we 
an never rea
h a state y1(x) in time T if 〈ρ, y1〉 < 0, whatever the 
ontrol u (and the

smoothness of y1). In some sense, the state drifts towards the dire
tion +ρ, as a result of the a
tion

of the 
ontrol.

Theorem 2. There exist T2, k2 > 0 su
h that, for any 0 < T < T2 and any u ∈ L2(0, T ) su
h that

|u|L2(0,T ) ≤ 1, the solution y ∈ XT to system (1.1) starting from the null initial 
ondition y(0, x) ≡ 0
satis�es:

〈ρ, y(T, ·)〉 ≥ k2 |U |2H−1/4(0,T ) , (6.26)

where U , as above, is the primitive of u su
h that U(0) = 0.

Proof. We are going to use the s
aling argument introdu
ed in paragraph 1.4. Thus, from now on, we

reintrodu
e the tilda signs for fun
tions de�ned on the s
aled time interval (0, 1). From Lemma 23,

we know that, for ε < ε1, 〈Kεũ, ũ〉 ≥ k1
√
ε|Ũ |2

H−1/4 . From Lemma 27, we know that there exists c2

su
h that, as soon as |ũ|2 ≤ ε3/2, |〈ρ, r(1, ·)〉| ≤ c2ε
3/2|Ũ |2

H−1/4 . Hen
e, if we 
onsider ỹ the solution

to (1.7), write ỹ = a + b + r, for any 0 < k2 < k1, there exists ε2 > 0 su
h that, for ε < ε2,
〈ρ, ỹ(1, ·)〉 ≥ k2

√
ε|Ũ |2

H−1/4 . Re
alling that ũ(t) = ε2u(εt) and ỹ(t, x) = εy(εt, x), we obtain:

〈ρ, y(ε, ·)〉 =
〈

1

ε
ỹ(1, ·), ρ

〉

≥ k2ε
−1/2|Ũ |2H−1/4(0,1) ≥ k2|U |2H−1/4(0,ε), (6.27)

under the assumption:

|ũ|L2(0,1) ≤ ε3/2 ⇔ |u|L2(0,ε) ≤ 1. (6.28)

Theorem 2 follows from (6.27) and (6.28) with T2 = ε2. Equation (6.28) is obtained via a dire
t 
hange
of variable. To establish (6.27), one 
an 
ompute the weak H−1/4

norms using Fourier transforms.

6.4 Persistan
e of proje
tions in absen
e of 
ontrol

We start by remarking that, when no 
ontrol is used, the proje
tion of the state against any �xed

pro�le µ ∈ L2(0, 1) remains almost 
onstant in small time.

Lemma 28. Let T > 0, µ ∈ L2(0, 1) and y0 ∈ H1
0 (0, 1)∩H2(0, 1). Assume that |y0|H2 ≤ 1. Consider

y ∈ XT the solution to system (1.1) with initial data y0 and null 
ontrol (u = 0). Then,

〈µ, y(T, ·)〉 = 〈µ, y0〉+O
(

T 1/2|µ|2|y0|H2

)

. (6.29)

Proof. We de
ompose y = y0 + z. Hen
e, z is the solution to:



















zt − zxx + zzx = (y0z)x + y0xx − y0y0x in (0, T )× (0, 1),

z(t, 0) = 0 in (0, T ),

z(t, 1) = 0 in (0, T ),

z(0, x) = 0 in (0, 1).

(6.30)

Thus, we 
an apply Lemma 7 with w(t, x) = y0(x) and g(t, x) = y0x − 1
2 (y

0)2 to system (6.30).

Estimate (2.20) tells us that ‖zt‖2 . |y0|H2
. Here, we need the assumption that |y0|H2 ≤ C, where

C is any �xed 
onstant, in order to avoid propagating non-linear estimates (involving exponentials).

Sin
e z(0, x) ≡ 0, we 
an write:

|〈µ, z(T, ·)〉| =
∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

ztµ

∣

∣

∣

∣

∣

≤ T 1/2 ‖zt‖2 |µ|2. (6.31)

The 
on
lusion (6.29) follows from (6.31).

29



6.5 Proof of Theorem 1

Let us �nish the proof of Theorem 1. We 
onsider an initial data of the form yδ = δρ, where δ > 0

an be pi
ked as small as we need and ρ is de�ned in (3.14). Please note that many other initial data


annot be driven ba
k to zero in short time with small 
ontrols. However, to prove Theorem 1, it is

su�
ient to exhibit a single sequen
e.

For T > 0, u ∈ L2(0, T ) and δ > 0, we 
onsider y ∈ XT , the solution to system (1.1) with initial

data yδ and 
ontrol u. To isolate the di�erent 
ontributions, we de
ompose y as ȳ + yu + z, where:



















ȳt − ȳxx + ȳȳx = 0 in (0, T )× (0, 1),

ȳ(t, 0) = 0 in (0, T ),

ȳ(t, 1) = 0 in (0, T ),

ȳ(0, x) = yδ in (0, 1),

(6.32)



















yut − yuxx + yuyux = u(t) in (0, T )× (0, 1),

yu(t, 0) = 0 in (0, T ),

yu(t, 1) = 0 in (0, T ),

yu(0, x) = 0 in (0, 1),

(6.33)



















zt − zxx + zzx = −[(ȳ + yu)z]x − [ȳyu]x in (0, T )× (0, 1),

z(t, 0) = 0 in (0, T ),

z(t, 1) = 0 in (0, T ),

z(0, x) = 0 in (0, 1).

(6.34)

Hen
e, ȳ 
aptures the free movement starting from the initial data yδ while yu 
orresponds to the

a
tion of the 
ontrol starting from a null initial data. Systems (6.32)-(6.34) allow us to de
ouple these

two 
ontributions. The term z is a small residue with homogeneous boundary and initial data.

First, let us apply Lemma 8 to system (6.32). Estimates (2.28) and (2.29) yield:

‖ȳxx‖2 + ‖ȳx‖2 + ‖ȳt‖2 . δ,

‖ȳ‖∞ ≤ |y0|∞ . δ.
(6.35)

Similarly, we apply Lemma 8 to system (6.33). If we assume that |u|2 ≤ 1 and T ≤ 1, we obtain:

‖yuxx‖2 + ‖yux‖2 + ‖yut ‖2 . |u|2 ,
‖yu‖∞ ≤ |u|2 .

(6.36)

Next, we look at system (6.34). We apply Lemma 7 with w = −(ȳ + yu), g = −ȳyu and a null initial

data. Combining (6.35) and (6.36) yields the ne
essary estimates:

‖g‖2 + ‖gx‖2 + ‖g‖L2(L∞) . δ |u|2 , (6.37)

‖w‖∞ + ‖w‖L2(L∞) ‖w‖L2(L∞) . δ + |u|2 . (6.38)

Hen
e, (6.38) yields γ . 1. Therefore, plugging (6.37) and (6.38) into (2.20) gives:

‖zxx‖2 + ‖zt‖2 . δ |u|2 . (6.39)

On
e again, we use the initial 
ondition z(0, ·) ≡ 0 and (6.39) to 
ompute:

|〈ρ, z(T, ·)〉| =
∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

ztρ

∣

∣

∣

∣

∣

. T 1/2δ |u|2 . (6.40)

Now, assuming T ≤ T2, we 
an 
ombine Theorem 2 and Lemma 28 with (6.40) to obtain:

〈y(T, ·), ρ〉 ≥ δ|ρ|22 + k2 |U |2H−1/4 +O
(

T 1/2δ(1 + |u|2)
)

. (6.41)

From (6.41), we dedu
e that 〈ρ, y(T, ·)〉 > 0 as soon as T is small enough and under the assumption

|u|2 ≤ 1. Thus, we have proved Theorem 1 with η = 1.
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Con
lusion and perspe
tives

We expe
t that the methodology followed in this paper 
an be used for a wide variety of non-linear

systems involving a single s
alar 
ontrol. Indeed, when studying small time lo
al 
ontrollability

for some formal system ẏ = F (y, u(t)), the �rst step is always to 
onsider the linearized system,

ȧ = ∂yF (0)a + ∂uF (0)u. When this system is 
ontrollable, �xed point or inverse mapping theorems

often allow us to dedu
e that the non-linear system is small time lo
ally 
ontrollable. When the

linearized system is not 
ontrollable, we 
an de
ompose the state y as a + b, where the (linear)


omponent a is 
ontrollable and the se
ond 
omponent b is indire
tly 
ontrolled through a quadrati


sour
e term involving a (and/or, sometimes, u).
What our proof demonstrates, is that it is possible, even for in�nite dimensional systems, to express

proje
tions of the se
ond order part b as kernels a
ting on the 
ontrol. The 
areful study of these

kernels 
an then lead ever to negative results (like it is the 
ase here, be
ause we prove a 
oer
ivity

lemma), or to positive results (if the kernel is found to have both positive and negative eigenvalues,

we 
an hope to prove that the system 
an be driven in the two opposite dire
tions).

It is worth to be noted that the 
oer
ivity used in this paper, although it involves a weak H−5/4

norm of the 
ontrol u, is in fa
t pretty strong. Indeed, it was obtained for any small u ∈ L2
. It would

have been su�
ient to prove the 
oer
ivity of the kernel Kε
on the stri
t subspa
e:

Vε =
{

u ∈ L2(0, 1), a(t = 1, ·) ≡ 0, where a is the solution to system (1.8)

}

. (6.42)

For other systems, it may be easier (or ne
essary) to restri
t the study of the integral operator Kε
to

the subspa
e Vε in order to obtain a 
on
lusion.

As a perspe
tive, an example of su
h an open problem is the small time 
ontrollability of the non-

linear Korteweg de Vries equation for 
riti
al domains. Indeed, in [41℄, Rosier proved that the KdV

equation was small time lo
ally 
ontrollable for non 
riti
al domains using the linearized system. Then

in [21℄, Coron and Crépeau proved that, for the �rst 
riti
al length, small time lo
al 
ontrollability

holds thanks to a third order expansion. In [15℄ and [16℄, Cerpa then Cerpa and Crépeau proved

that large time lo
al 
ontrollability holds for all 
riti
al lengths. It remains an open question to know

whether small time lo
al 
ontrollability holds for the se
ond 
riti
al length. Maybe our method 
ould

be adapted to this setting or inspire a new proof.

The author thanks Sergio Guerrero for having attra
ted his attention on this 
ontrol problem and

his advisor Jean-Mi
hel Coron for his support and ideas all along the elaboration of this proof.

A Weakly singular integral operators

This appendix is devoted to an explanation of Lemma 18. Although a full proof would ex
eed the

s
ope of this arti
le, we provide here a brief overview of a general method introdu
ed by Torres in [44℄

to study the regularization properties of weakly singular integral operators. Our presentation is also

inspired by a posterior work of Youss�, who states a very 
losely related lemma in [47, Remark 6.a℄.

Let n ≥ 1. Singular integral operators on R
n
have been extensively studied sin
e the seminal works

of Calderón and Zygmund (see [14℄ and [13℄). These integral operators are de�ned by the singularity

of their kernel along the diagonal by an estimate of the form:

|K(x, y)| ≤ C |x− y|−n
. (A.1)

In estimate (A.1), the exponent −n is 
riti
al. Indeed, the margins of su
h kernels are almost in L1
lo


.

Here, we are interested in a 
lass of integral operators for whi
h the singularity along the diagonal is

weaker. Thus, we expe
t that they exhibit better smoothing properties. Throughout this se
tion, we

denote Ω = {(x, y) ∈ R
n × R

n, x 6= y}.
De�nition 4 (Weakly singular integral operator). Let 0 < s < 1 and 0 < δ ≤ 1. Consider a kernel K,


ontinuous on Ω, satisfying:

|K(x, y)| ≤ κ |x− y|−n+s
, (A.2)

|K(x′, y)−K(x, y)| ≤ κ |x′ − x|δ |x− y|−n+s−δ
, for |x′ − x| ≤ 1

2
|x− y| , (A.3)

|K(x, y′)−K(x, y)| ≤ κ |y′ − y|δ |x− y|−n+s−δ
, for |y′ − y| ≤ 1

2
|x− y| . (A.4)
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We introdu
e the asso
iated integral operator TK , 
ontinuous from D (Rn) to D′ (Rn), by de�ning:

∀f ∈ D (Rn) , ∀x ∈ R
n, TK(f)(x) =

∫

K(x, y)f(y)dy. (A.5)

Under these assumptions, we write TK ∈ WSIO(s, δ).

De�nition 4 
an be extended for s ≥ 1. Conditions (A.2), (A.3) and (A.4) must then be extended

to the derivatives ∂αx ∂
β
yK for α + β ≤ s. We restri
t ourselves to the simpler setting 0 < s < 1 as it

is su�
ient for our study. Note that we de�ne the operator TK from its kernel K (as this is the 
ase

for our appli
ations). Pro
eeding the other way around is possible but would require more 
are in the

sequel (namely, the so-
alled weak boundedness property to ensure that (A.5) holds; see [47℄).

A.1 Atomi
 and mole
ular de
ompositions for Triebel-Lizorkin spa
es

We re
all the de�nitions of 
lassi
al fun
tional spa
es involved in this appendix. Let ϕ ∈ S (Rn) be
su
h that ϕ(ξ) = 0 for |ξ| ≥ 1 and ϕ(ξ) = 1 for |ξ| ≤ 1

2 . We introdu
e ψ(ξ) = ϕ(ξ/2)− ϕ(ξ). Hen
e,

ψ ∈ S (Rn) and is supported in the annulus { 1
2 ≤ |ξ| ≤ 2}. We will denote ∆̇j and Ṡj the 
onvolution

operators with symbols ψ(2−jξ) and ϕ(2−jξ).

De�nition 5 (Homogeneous Besov spa
e). For α ∈ R, 1 ≤ p, q ≤ ∞, the homogeneous Besov spa
e

Ḃα,q
p is de�ned by the �niteness of the norm (with standard modi�
ation for q = ∞):

‖f‖Ḃα,q
p

=





∑

j∈Z

2αqj
∥

∥

∥∆̇jf
∥

∥

∥

q

p





1/q

. (A.6)

De�nition 6 (Homogeneous Triebel-Lizorkin spa
e). For α ∈ R, 1 ≤ p, q < ∞, the homogeneous

Triebel-Lizorkin spa
e Ḟα,q
p is de�ned by the �niteness of the norm:

‖f‖Ḟα,q
p

=

∥

∥

∥

∥

∥

∥

∥





∑

j∈Z

2αqj |∆̇jf |q




1/q
∥

∥

∥

∥

∥

∥

∥

p

. (A.7)

Frazier and Jawerth introdu
ed atoms and mole
ules both in the 
ontext of Besov spa
es ([26℄) and

Triebel-Lizorkin spa
es ([27℄ and [28℄). They proved that the norms on these spa
es are then translated

into sequential norms on the sequen
e of 
oe�
ients of the de
omposition. A linear operator will be


ontinuous between two Triebel-Lizorkin spa
es if and only if it maps smooth atoms of the �rst to

smooth mole
ules of the se
ond. The following de�nitions are borrowed from [44℄. For simpli
ity, we

restri
t them to the 
ase 1 ≤ p, q ≤ +∞.

De�nition 7 (Smooth atom). Let α ∈ R and Q be a dyadi
 
ube in R
n
of side length ℓQ. A smooth

α-atom, asso
iated with the 
ube Q is a fun
tion a ∈ D (Rn) satisfying:

supp(a) ⊂ 3Q, (A.8)

∫

xγa(x)dx = 0, ∀|γ| ≤ max{0, [−α]}, (A.9)

|∂γxa(x)| ≤ ℓ
−|γ|
Q , ∀|γ| ≤ max{0, [α]}+ 1. (A.10)

In 
ondition (A.8), 3Q denotes the 
ube with same 
enter as Q but a tripled side length. It is

worth to be noted that multiple normalization 
hoi
es are possible for 
ondition (A.10). We 
hoose

to only in
lude the de
ay 
orresponding to the smoothness of the atom. This 
hoi
e only impa
ts the

formula to 
ompute the size of a fun
tion from its de
omposition on atoms. We have the following

representation theorem:

Lemma 29 (Theorem 5.11, [29℄). Let α ∈ R, 1 ≤ p, q < ∞. Let f ∈ Ḟα,q
p . There exists a sequen
e

of reals (sQ)Q∈Q indexed by the set Q of dyadi
 
ubes of R
n
and a sequen
e of atoms (aQ)Q∈Q su
h

that f =
∑

Q sQaQ. Moreover, there exists a 
onstant C independent on f su
h that:

∥

∥

∥

∥

∥

∥

∥





∑

Q

ℓ−αq
Q |sQ|q|χQ(x)|q





1/q
∥

∥

∥

∥

∥

∥

∥

p

≤ C ‖f‖Ḟα,q
p

. (A.11)
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The re
ipro
al inequality to (A.11) is true even for a wider 
lass of fun
tions, the 
lass of mole
ules.

De�nition 8 (Smooth mole
ule). Let α ∈ R, M > n and α− [α] < δ ≤ 1. Let Q be a dyadi
 
ube in

R
n
of side length ℓQ and 
enter xQ. A (δ,M) smooth α-mole
ule asso
iated with Q is a fun
tion m

satisfying:

|m(x)| ≤
(

1 + ℓ−1
Q |x− xQ|

)−max{M,M−α}
, (A.12)

∫

xγm(x)dx = 0, ∀|γ| ≤ [−α], (A.13)

|∂γxm(x)| ≤ ℓ
−|γ|
Q

(

1 + ℓ−1
Q |x− xQ|

)−M

, ∀|γ| ≤ [α], (A.14)

|∂γxm(x)− ∂γxm(x′)| ≤ ℓ
−|γ|−δ
Q |x− x′|δ sup

|z|≤|x−x′|

(

1 + ℓ−1
Q |z − (x− xQ)|

)−M

, ∀|γ| = [α]. (A.15)

In the de�nition of a mole
ule, 
onditions (A.14) and (A.15) are void by 
onvention if α < 0.
When α ≥ 0, 
ondition (A.14) implies (A.12). When α > 0, 
ondition (A.13) is void. We have:

Lemma 30 (Theorem 5.18, [29℄). Let α ∈ R, M > n and α − [α] < δ ≤ 1. Consider a sequen
e of

reals (sQ)Q∈Q indexed by the set Q of dyadi
 
ubes of R
n
and a sequen
e of (δ,M) smooth α-mole
ules

(mQ)Q∈Q. Let f =
∑

Q sQmQ. There exists a 
onstant C independent on f su
h that:

‖f‖Ḟα,q
p

≤ C

∥

∥

∥

∥

∥

∥

∥





∑

Q

ℓ−αq
Q |sQ|q|χQ(x)|q





1/q
∥

∥

∥

∥

∥

∥

∥

p

. (A.16)

A.2 Cir
umventing the T (1) = 0 
ondition

When dealing with singular integral operators, di�
ulties arise when T (1) 6= 0. Most regularity results

involve some smoothness 
ondition on T (1) (see, for example the early paper [23℄). To 
ir
umvent

this di�
ulty when handling weakly singular integral operators, we will write TK = T̃K + π where

T̃K satis�es the same regularity estimates as TK but is su
h that T̃K(1) = 0 and π is de�ned as a

paraprodu
t, for whi
h we 
an get dire
t smoothing estimates in the appropriate spa
es. For two

fun
tions f, g, we introdu
e the following paraprodu
t π, inspired by ideas of J.-M. Bony (see the

seminal work [10℄, the ni
e introdu
tion to paraprodu
ts [8℄ for a qui
k overview or [3, Se
tion 2.6.1℄

for a 
omplete detailed presentation):

πg(f) =
∑

j∈Z

∆̇j(g)Ṡj−2(f). (A.17)

Lemma 31 (Lemma 4, [47℄). Let 0 < s < δ ≤ 1 and TK ∈ WSIO(s, δ). Then, TK(1) ∈ Ḃs,∞
∞ .

Moreover, there exists C = C(s, δ) su
h that: ‖TK(1)‖Ḃs,∞
∞

≤ Cκ(TK) where κ(TK) is the 
onstant

asso
iated to TK in De�nition 4.

Lemma 32 (Remark 2, [47℄). Let 1 ≤ p, q <∞, t < 0 and s ∈ R. There exists C = C(p, q, t, s) su
h
that, for any b ∈ Ḃs,∞

∞ , πb is 
ontinuous from Ḟ t,q
p to Ḟ t+s,q

p and the following estimate holds:

∀f ∈ Ḟ t,q
p , ‖πb(f)‖Ḟ t+s,q

p
≤ C ‖b‖Ḃs,∞

∞
‖f‖Ḟ t,q

p
. (A.18)

Lemma 33 (Lemma 2, [47℄). Let 0 < s < 1 and 0 < δ ≤ 1. Take b ∈ Ḃs,∞
∞ . Then, the operator πb ∈

WSIO(s, δ). Moreover, there exists a 
onstant C(s) independent of b su
h that, κ(πb) ≤ C(s)‖b‖Ḃs,∞
∞

,

where κ(πb) is the 
onstant in De�nition 4 asso
iated to the operator πb.

Combining these lemmas allows us to 
ir
umvent the T (1) = 0 
ondition. Indeed:

Lemma 34. Let 0 < s < δ ≤ 1 and 1 ≤ p, q <∞. Let t ∈ R be su
h that −s < t < 0. There exists a


onstant C su
h that, for TK ∈ WSIO(s, δ), TK is 
ontinuous from Ḟ t,q
p into Ḟ t+s,q

p and we have:

∀f ∈ Ḟ t,q
p , ‖TK(f)‖Ḟ t+s,q

p
≤ Cκ(TK) ‖f‖Ḟ t,q

p
, (A.19)

where κ(TK) is the 
onstant asso
iated to TK in De�nition 4.
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Proof. Let TK ∈ WSIO(s, δ). Thanks to Lemma 31, TK(1) ∈ Ḃs,∞
∞ and ‖TK(1)‖Ḃs,∞

∞
. κ(TK).

Thanks to Lemma 33, πTK(1) ∈ WSIO(s, δ) and κ(πTK(1)) . κ(TK). Hen
e, we 
an de�ne T̃K :=

TK − πTK(1) and T̃K ∈ WSIO(s, δ), with a 
onstant κ(T̃K) . κ(TK). Moreover, sin
e πb(1) = b for

any b, T̃K(1) = 0. Thanks to Lemma 32, proving the 
ontinuity of T̃K is su�
ient to obtain (A.19).

Let aQ be a smooth t-atom. We 
onsider mQ = T̃K(aQ). The next step is to prove that mQ is

almost a (δ,M) smooth (t + s)-mole
ule, with M = n + s− δ > n. As noted above, sin
e t + s > 0,
we only need to 
he
k (A.14) and (A.15). Indeed, lengthy 
omputations and the essential 
ondition

T̃K(1) = 0 provide the existen
e of a 
onstant D independent on the atom aQ su
h that:

|mQ(x)| ≤ DℓsQ

(

1 + ℓ−1
Q |x− xQ|

)−M

, (A.20)

|mQ(x)−mQ(x
′)| ≤ DℓsQℓ

−δ
Q |x− x′|δ sup

|z|≤|x−x′|

(

1 + ℓ−1
Q |z − (x− xQ)|

)−M

. (A.21)

Hen
e m̃Q := D−1ℓ−s
Q mQ is a mole
ule. For examples of proof te
hniques to prove (A.20) and (A.21),

we refer the reader to [44℄ and [47℄. To 
on
lude the proof, we use Lemma 29 and 30. For f ∈ Ḟ t,q
p , we

write f(x) =
∑

Q sQaQ(x) and ea
h m̃Q = D−1ℓ−s
Q TK(aQ) is a mole
ule. Thus, thanks to Lemma 29

and Lemma 30,

‖TK(f)‖Ḟ t+s,q
p

=

∥

∥

∥

∥

∥

∥

∑

Q

(DℓsQsQ) ·mQ(x)

∥

∥

∥

∥

∥

∥

Ḟ t+s,q
p

.

∥

∥

∥

∥

∥

∥

∥





∑

Q

ℓ
−(t+s)q
Q DqℓsqQ |sQ|q|χQ(x)|q





1/q
∥

∥

∥

∥

∥

∥

∥

p

.

∥

∥

∥

∥

∥

∥

∥





∑

Q

ℓ−tq
Q |sQ|q|χQ(x)|q





1/q
∥

∥

∥

∥

∥

∥

∥

p

. ‖f‖Ḟ t,q
p
.

(A.22)

Equation (A.22) 
on
ludes the proof.

Triebel-Lizorkin spa
es o�er a natural framework for atomi
 and mole
ular de
ompositions. Of


ourse, setting p = q = 2 in the results above also yields results for the more 
lassi
al homogeneous

Sobolev spa
es Ḣα
. Thus, Lemma 34 tells us that operators of WSIO(s, δ) 
ontinuously map Ḣt

into

Ḣt+s
for −s < t < 0. In parti
ular, this is valid for s = 1/2 and t = −1/4.

A.3 Kernels de�ned on bounded domains

Most results involving singular integral operators 
on
ern kernels de�ned on the full spa
e R
n × R

n
.

Here, for �nite time 
ontrollability, we need to adapt these results to a setting where the kernels are

de�ned on squares, eg. [0, 1] × [0, 1]. Atoms and mole
ules are lo
alized fun
tions. Thus, it would

be possible to 
arry on the same proof as above for bounded domains, providing that the analogs of

the representation lemmas 29 and 30 exist for Triebel-Lizorkin spa
es on bounded domains. In this

paragraph, we give another approa
h, whi
h 
onsists in proving that a kernel de�ned on a bounded

domain 
an be extended while satisfying the same estimates.

Lemma 35. Let n = 1, 0 < s < 1 and 0 < δ ≤ 1. Consider a kernel K, de�ned and 
ontinuous on

Ω1 =
{

(x, y) ∈ [0, 1]2, x 6= y
}

, satisfying:

|K(x, y)| ≤ κ |x− y|−1+s
, (A.23)

|K(x′, y)−K(x, y)| ≤ κ |x′ − x|δ |x− y|−1+s−δ
, for |x′ − x| ≤ 1

2
|x− y| , (A.24)

|K(x, y′)−K(x, y)| ≤ κ |y′ − y|δ |x− y|−1+s−δ
, for |y′ − y| ≤ 1

2
|x− y| . (A.25)

Then there exists a kernel K̄ on R× R, 
ontinuous on Ω, su
h that:
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• K̄ is an extension of K: K̄|Ω1
= K,

• K̄ is a weakly singular integral operator of type (s, δ) on Ω,

• K̄ is asso
iated a 
onstant κ(K̄) ≤ Cκ(K), where C is independent of K, s and δ.

Proof. We start by de�ning K̄(x, y) on the in�nite strip −1 < y − x < 1. For (x, y) ∈ Ω1, we set

K̄(x, y) = K(x, y). Outside of the initial square, we extend by 
ontinuity the values taken on the

sides of the square and we 
hoose an extension that is 
onstant along all diagonal lines. Therefore, we

de�ne K̄(x, y) as:

K(1 + x− y, 1) for 1 ≤ y, 0 < y − x < 1,

K(0, y − x) for x ≤ 0, 0 < y − x < 1,

K(1, 1 + y − x) for 1 ≤ x, 0 < x− y < 1,

K(x− y, 0) for y ≤ 0, 0 < x− y < 1.

(A.26)

Outside of the strip, we set:

K̄(x, y) = K(0, 1)|x− y|−1+s, for y − x ≥ 1,

K̄(x, y) = K(1, 0)|x− y|−1+s, for x− y ≥ 1.
(A.27)

This 
ompletes the de�nition of K̄ on Ω. By 
onstru
tion, it is easy to 
he
k that K̄ is 
ontinuous

on Ω. By 
onstru
tion, K̄ also satis�es (A.23) on Ω1, on the whole strip −1 ≤ y − x ≤ 1 thanks

to (A.27) and on the half spa
es y − x ≥ 1 and y − x ≤ −1 thanks to the de
ay 
hosen in (A.27).

The Hölder regularity estimates (A.24) and (A.25) are a little tougher. First, note that, by

symmetry, one only needs to prove, for example, (A.24) on the half pla
eH = {(x, y) ∈ R×R, y−x >
0}. We write H = H̃ ∪ H1 ∪H− ∪H+, where:

H̃ = {(x, y) ∈ H, y − x > 1},
H1 = {(x, y) ∈ H, 0 ≤ x and y ≤ 1},
H+ = {(x, y) ∈ H, y − x ≤ 1 and 1 < y},
H− = {(x, y) ∈ H, y − x ≤ 1 and x < 0}.

(A.28)

Let (x, y) ∈ H and (x′, y) ∈ H with |x− x′| ≤ 1
2 |x− y|. If both points belong to the same subdomain,

then the Hölder regularity estimate in the x dire
tion for K̄ is a dire
t 
onsequen
e either of (A.27)

on H̃, of (A.26) on H± and of the hypothesis on K on H1. If the two points belong to di�erent

subdomains, we use a triangular inequality involving a point at the boundary separating the two

subdomains. As an example of su
h a situation, if x < 0 < x′ and y < x + 1, then (x, y) ∈ H− and

(x′, y) ∈ H1. We have:

∣

∣K̄(x, y)− K̄(x′, y)
∣

∣ = |K(0, y − x) −K(x′, y)|
≤ |K(0, y − x) −K(0, y)|+ |K(0, y)−K(x′, y)|
≤ κ|x|δ|x− y|−1+s−δ + κ|x′|δ|x′ − y|−1+s−δ

≤ 5κ|x− x′|δ|x− y|−1+s−δ.

(A.29)

The last inequality 
omes from the fa
t that |x′|, |x| ≤ |x − x′| and |x′ − y|−1+s−δ ≤ 4|x − y|−1+s−δ

for |x− x′| ≤ 1
2 |x− y|. The details of the other situations are left to the reader.
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